/* * * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include "src/core/lib/iomgr/port.h" #ifdef GRPC_POSIX_SOCKET_TCP_CLIENT #include #include #include #include #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include #include #include #include "src/core/lib/address_utils/sockaddr_utils.h" #include "src/core/lib/channel/channel_args.h" #include "src/core/lib/gpr/string.h" #include "src/core/lib/iomgr/ev_posix.h" #include "src/core/lib/iomgr/executor.h" #include "src/core/lib/iomgr/iomgr_internal.h" #include "src/core/lib/iomgr/sockaddr.h" #include "src/core/lib/iomgr/socket_mutator.h" #include "src/core/lib/iomgr/socket_utils_posix.h" #include "src/core/lib/iomgr/tcp_client_posix.h" #include "src/core/lib/iomgr/tcp_posix.h" #include "src/core/lib/iomgr/timer.h" #include "src/core/lib/iomgr/unix_sockets_posix.h" #include "src/core/lib/slice/slice_internal.h" extern grpc_core::TraceFlag grpc_tcp_trace; struct async_connect { gpr_mu mu; grpc_fd* fd; grpc_timer alarm; grpc_closure on_alarm; int refs; grpc_closure write_closure; grpc_pollset_set* interested_parties; std::string addr_str; grpc_endpoint** ep; grpc_closure* closure; grpc_channel_args* channel_args; int64_t connection_handle; bool connect_cancelled; }; struct ConnectionShard { grpc_core::Mutex mu; absl::flat_hash_map pending_connections ABSL_GUARDED_BY(&mu); }; namespace { gpr_once g_tcp_client_posix_init = GPR_ONCE_INIT; std::vector* g_connection_shards = nullptr; std::atomic g_connection_id{1}; void do_tcp_client_global_init(void) { size_t num_shards = std::max(2 * gpr_cpu_num_cores(), 1u); g_connection_shards = new std::vector(num_shards); } } // namespace void grpc_tcp_client_global_init() { gpr_once_init(&g_tcp_client_posix_init, do_tcp_client_global_init); } static grpc_error_handle prepare_socket(const grpc_resolved_address* addr, int fd, const grpc_channel_args* channel_args) { grpc_error_handle err = GRPC_ERROR_NONE; GPR_ASSERT(fd >= 0); err = grpc_set_socket_nonblocking(fd, 1); if (!GRPC_ERROR_IS_NONE(err)) goto error; err = grpc_set_socket_cloexec(fd, 1); if (!GRPC_ERROR_IS_NONE(err)) goto error; if (!grpc_is_unix_socket(addr)) { err = grpc_set_socket_low_latency(fd, 1); if (!GRPC_ERROR_IS_NONE(err)) goto error; err = grpc_set_socket_reuse_addr(fd, 1); if (!GRPC_ERROR_IS_NONE(err)) goto error; err = grpc_set_socket_tcp_user_timeout(fd, channel_args, true /* is_client */); if (!GRPC_ERROR_IS_NONE(err)) goto error; } err = grpc_set_socket_no_sigpipe_if_possible(fd); if (!GRPC_ERROR_IS_NONE(err)) goto error; err = grpc_apply_socket_mutator_in_args(fd, GRPC_FD_CLIENT_CONNECTION_USAGE, channel_args); if (!GRPC_ERROR_IS_NONE(err)) goto error; goto done; error: if (fd >= 0) { close(fd); } done: return err; } static void tc_on_alarm(void* acp, grpc_error_handle error) { int done; async_connect* ac = static_cast(acp); if (GRPC_TRACE_FLAG_ENABLED(grpc_tcp_trace)) { gpr_log(GPR_INFO, "CLIENT_CONNECT: %s: on_alarm: error=%s", ac->addr_str.c_str(), grpc_error_std_string(error).c_str()); } gpr_mu_lock(&ac->mu); if (ac->fd != nullptr) { grpc_fd_shutdown( ac->fd, GRPC_ERROR_CREATE_FROM_STATIC_STRING("connect() timed out")); } done = (--ac->refs == 0); gpr_mu_unlock(&ac->mu); if (done) { gpr_mu_destroy(&ac->mu); grpc_channel_args_destroy(ac->channel_args); delete ac; } } grpc_endpoint* grpc_tcp_client_create_from_fd( grpc_fd* fd, const grpc_channel_args* channel_args, absl::string_view addr_str) { return grpc_tcp_create(fd, channel_args, addr_str); } static void on_writable(void* acp, grpc_error_handle error) { async_connect* ac = static_cast(acp); int so_error = 0; socklen_t so_error_size; int err; int done; grpc_endpoint** ep = ac->ep; grpc_closure* closure = ac->closure; std::string addr_str = ac->addr_str; grpc_fd* fd; (void)GRPC_ERROR_REF(error); if (GRPC_TRACE_FLAG_ENABLED(grpc_tcp_trace)) { gpr_log(GPR_INFO, "CLIENT_CONNECT: %s: on_writable: error=%s", ac->addr_str.c_str(), grpc_error_std_string(error).c_str()); } gpr_mu_lock(&ac->mu); GPR_ASSERT(ac->fd); fd = ac->fd; ac->fd = nullptr; bool connect_cancelled = ac->connect_cancelled; gpr_mu_unlock(&ac->mu); grpc_timer_cancel(&ac->alarm); gpr_mu_lock(&ac->mu); if (!GRPC_ERROR_IS_NONE(error)) { error = grpc_error_set_str(error, GRPC_ERROR_STR_OS_ERROR, "Timeout occurred"); goto finish; } if (connect_cancelled) { // The callback should not get scheduled in this case. error = GRPC_ERROR_NONE; goto finish; } do { so_error_size = sizeof(so_error); err = getsockopt(grpc_fd_wrapped_fd(fd), SOL_SOCKET, SO_ERROR, &so_error, &so_error_size); } while (err < 0 && errno == EINTR); if (err < 0) { error = GRPC_OS_ERROR(errno, "getsockopt"); goto finish; } switch (so_error) { case 0: grpc_pollset_set_del_fd(ac->interested_parties, fd); *ep = grpc_tcp_client_create_from_fd(fd, ac->channel_args, ac->addr_str); fd = nullptr; break; case ENOBUFS: /* We will get one of these errors if we have run out of memory in the kernel for the data structures allocated when you connect a socket. If this happens it is very likely that if we wait a little bit then try again the connection will work (since other programs or this program will close their network connections and free up memory). This does _not_ indicate that there is anything wrong with the server we are connecting to, this is a local problem. If you are looking at this code, then chances are that your program or another program on the same computer opened too many network connections. The "easy" fix: don't do that! */ gpr_log(GPR_ERROR, "kernel out of buffers"); gpr_mu_unlock(&ac->mu); grpc_fd_notify_on_write(fd, &ac->write_closure); return; case ECONNREFUSED: /* This error shouldn't happen for anything other than connect(). */ error = GRPC_OS_ERROR(so_error, "connect"); break; default: /* We don't really know which syscall triggered the problem here, so punt by reporting getsockopt(). */ error = GRPC_OS_ERROR(so_error, "getsockopt(SO_ERROR)"); break; } finish: if (!connect_cancelled) { int shard_number = ac->connection_handle % (*g_connection_shards).size(); struct ConnectionShard* shard = &(*g_connection_shards)[shard_number]; { grpc_core::MutexLock lock(&shard->mu); shard->pending_connections.erase(ac->connection_handle); } } if (fd != nullptr) { grpc_pollset_set_del_fd(ac->interested_parties, fd); grpc_fd_orphan(fd, nullptr, nullptr, "tcp_client_orphan"); fd = nullptr; } done = (--ac->refs == 0); gpr_mu_unlock(&ac->mu); if (!GRPC_ERROR_IS_NONE(error)) { std::string str; bool ret = grpc_error_get_str(error, GRPC_ERROR_STR_DESCRIPTION, &str); GPR_ASSERT(ret); std::string description = absl::StrCat("Failed to connect to remote host: ", str); error = grpc_error_set_str(error, GRPC_ERROR_STR_DESCRIPTION, description); error = grpc_error_set_str(error, GRPC_ERROR_STR_TARGET_ADDRESS, addr_str); } if (done) { // This is safe even outside the lock, because "done", the sentinel, is // populated *inside* the lock. gpr_mu_destroy(&ac->mu); grpc_channel_args_destroy(ac->channel_args); delete ac; } // Push async connect closure to the executor since this may actually be // called during the shutdown process, in which case a deadlock could form // between the core shutdown mu and the connector mu (b/188239051) if (!connect_cancelled) { grpc_core::Executor::Run(closure, error); } else if (!GRPC_ERROR_IS_NONE(error)) { // Unref the error here because it is not used. (void)GRPC_ERROR_UNREF(error); } } grpc_error_handle grpc_tcp_client_prepare_fd( const grpc_channel_args* channel_args, const grpc_resolved_address* addr, grpc_resolved_address* mapped_addr, int* fd) { grpc_dualstack_mode dsmode; grpc_error_handle error; *fd = -1; /* Use dualstack sockets where available. Set mapped to v6 or v4 mapped to v6. */ if (!grpc_sockaddr_to_v4mapped(addr, mapped_addr)) { /* addr is v4 mapped to v6 or v6. */ memcpy(mapped_addr, addr, sizeof(*mapped_addr)); } error = grpc_create_dualstack_socket(mapped_addr, SOCK_STREAM, 0, &dsmode, fd); if (!GRPC_ERROR_IS_NONE(error)) { return error; } if (dsmode == GRPC_DSMODE_IPV4) { /* Original addr is either v4 or v4 mapped to v6. Set mapped_addr to v4. */ if (!grpc_sockaddr_is_v4mapped(addr, mapped_addr)) { memcpy(mapped_addr, addr, sizeof(*mapped_addr)); } } if ((error = prepare_socket(mapped_addr, *fd, channel_args)) != GRPC_ERROR_NONE) { return error; } return GRPC_ERROR_NONE; } int64_t grpc_tcp_client_create_from_prepared_fd( grpc_pollset_set* interested_parties, grpc_closure* closure, const int fd, const grpc_channel_args* channel_args, const grpc_resolved_address* addr, grpc_core::Timestamp deadline, grpc_endpoint** ep) { int err; do { err = connect(fd, reinterpret_cast(addr->addr), addr->len); } while (err < 0 && errno == EINTR); auto addr_uri = grpc_sockaddr_to_uri(addr); if (!addr_uri.ok()) { grpc_error_handle error = GRPC_ERROR_CREATE_FROM_CPP_STRING(addr_uri.status().ToString()); grpc_core::ExecCtx::Run(DEBUG_LOCATION, closure, error); return 0; } std::string name = absl::StrCat("tcp-client:", addr_uri.value()); grpc_fd* fdobj = grpc_fd_create(fd, name.c_str(), true); int64_t connection_id = 0; if (errno == EWOULDBLOCK || errno == EINPROGRESS) { // Connection is still in progress. connection_id = g_connection_id.fetch_add(1, std::memory_order_acq_rel); } if (err >= 0) { // Connection already succeded. Return 0 to discourage any cancellation // attempts. *ep = grpc_tcp_client_create_from_fd(fdobj, channel_args, addr_uri.value()); grpc_core::ExecCtx::Run(DEBUG_LOCATION, closure, GRPC_ERROR_NONE); return 0; } if (errno != EWOULDBLOCK && errno != EINPROGRESS) { // Connection already failed. Return 0 to discourage any cancellation // attempts. grpc_error_handle error = GRPC_OS_ERROR(errno, "connect"); error = grpc_error_set_str(error, GRPC_ERROR_STR_TARGET_ADDRESS, addr_uri.value()); grpc_fd_orphan(fdobj, nullptr, nullptr, "tcp_client_connect_error"); grpc_core::ExecCtx::Run(DEBUG_LOCATION, closure, error); return 0; } grpc_pollset_set_add_fd(interested_parties, fdobj); async_connect* ac = new async_connect(); ac->closure = closure; ac->ep = ep; ac->fd = fdobj; ac->interested_parties = interested_parties; ac->addr_str = addr_uri.value(); ac->connection_handle = connection_id; ac->connect_cancelled = false; gpr_mu_init(&ac->mu); ac->refs = 2; GRPC_CLOSURE_INIT(&ac->write_closure, on_writable, ac, grpc_schedule_on_exec_ctx); ac->channel_args = grpc_channel_args_copy(channel_args); if (GRPC_TRACE_FLAG_ENABLED(grpc_tcp_trace)) { gpr_log(GPR_INFO, "CLIENT_CONNECT: %s: asynchronously connecting fd %p", ac->addr_str.c_str(), fdobj); } int shard_number = connection_id % (*g_connection_shards).size(); struct ConnectionShard* shard = &(*g_connection_shards)[shard_number]; { grpc_core::MutexLock lock(&shard->mu); shard->pending_connections.insert_or_assign(connection_id, ac); } gpr_mu_lock(&ac->mu); GRPC_CLOSURE_INIT(&ac->on_alarm, tc_on_alarm, ac, grpc_schedule_on_exec_ctx); grpc_timer_init(&ac->alarm, deadline, &ac->on_alarm); grpc_fd_notify_on_write(ac->fd, &ac->write_closure); gpr_mu_unlock(&ac->mu); return connection_id; } static int64_t tcp_connect(grpc_closure* closure, grpc_endpoint** ep, grpc_pollset_set* interested_parties, const grpc_channel_args* channel_args, const grpc_resolved_address* addr, grpc_core::Timestamp deadline) { grpc_resolved_address mapped_addr; int fd = -1; grpc_error_handle error; *ep = nullptr; if ((error = grpc_tcp_client_prepare_fd(channel_args, addr, &mapped_addr, &fd)) != GRPC_ERROR_NONE) { grpc_core::ExecCtx::Run(DEBUG_LOCATION, closure, error); return 0; } return grpc_tcp_client_create_from_prepared_fd(interested_parties, closure, fd, channel_args, &mapped_addr, deadline, ep); } static bool tcp_cancel_connect(int64_t connection_handle) { if (connection_handle <= 0) { return false; } int shard_number = connection_handle % (*g_connection_shards).size(); struct ConnectionShard* shard = &(*g_connection_shards)[shard_number]; async_connect* ac = nullptr; { grpc_core::MutexLock lock(&shard->mu); auto it = shard->pending_connections.find(connection_handle); if (it != shard->pending_connections.end()) { ac = it->second; GPR_ASSERT(ac != nullptr); // Trying to acquire ac->mu here would could cause a deadlock because // the on_writable method tries to acquire the two mutexes used // here in the reverse order. But we dont need to acquire ac->mu before // incrementing ac->refs here. This is because the on_writable // method decrements ac->refs only after deleting the connection handle // from the corresponding hashmap. If the code enters here, it means that // deletion hasn't happened yet. The deletion can only happen after the // corresponding g_shard_mu is unlocked. ++ac->refs; // Remove connection from list of active connections. shard->pending_connections.erase(it); } } if (ac == nullptr) { return false; } gpr_mu_lock(&ac->mu); bool connection_cancel_success = (ac->fd != nullptr); if (connection_cancel_success) { // Connection is still pending. The on_writable callback hasn't executed // yet because ac->fd != nullptr. ac->connect_cancelled = true; // Shutdown the fd. This would cause on_writable to run as soon as possible. // We dont need to pass a custom error here because it wont be used since // the on_connect_closure is not run if connect cancellation is successfull. grpc_fd_shutdown(ac->fd, GRPC_ERROR_NONE); } bool done = (--ac->refs == 0); gpr_mu_unlock(&ac->mu); if (done) { // This is safe even outside the lock, because "done", the sentinel, is // populated *inside* the lock. gpr_mu_destroy(&ac->mu); grpc_channel_args_destroy(ac->channel_args); delete ac; } return connection_cancel_success; } grpc_tcp_client_vtable grpc_posix_tcp_client_vtable = {tcp_connect, tcp_cancel_connect}; #endif