/* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2005 * * Last modified: * $Date: 2006-08-04 16:05:50 +0200 (Fri, 04 Aug 2006) $ by $Author: schulte $ * $Revision: 3515 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * See the file "LICENSE" for information on usage and * redistribution of this file, and for a * DISCLAIMER OF ALL WARRANTIES. * */ #include namespace Gecode { namespace Iter { namespace Ranges { /** * \brief Range iterator for pointwise product with a positive integer * * Note that this iterator has a different interface as it can be used * for both integer precision as well as souble precision (depending * on the type \a Val (\c int or \c double) and * on the type \a UnsVal (\c unsigned \c int or \c double). * * Requires \code #include "gecode/iter.hh" \endcode * \ingroup FuncIterRanges */ template class ScaleUp { protected: /// Iterator to be scaled I i; /// Scale-factor int a; /// Current value of range Val cur; /// Last value of scaled range of \a i Val end; public: /// \name Constructors and initialization //@{ /// Default constructor ScaleUp(void); /// Initialize with ranges from \a i and scale factor \a a ScaleUp(I& i, int a); /// Initialize with ranges from \a i and scale factor \a a void init(I& i, int a); //@} /// \name Iteration control //@{ /// Test whether iterator is still at a range or done bool operator()(void) const; /// Move iterator to next range (if possible) void operator++(void); //@} /// \name Range access //@{ /// Return smallest value of range Val min(void) const; /// Return largest value of range Val max(void) const; /// Return width of range (distance between minimum and maximum) UnsVal width(void) const; //@} }; /** * \brief Range iterator for pointwise division by a positive integer * * Requires \code #include "gecode/iter.hh" \endcode * \ingroup FuncIterRanges */ template class ScaleDown : public MinMax { protected: /// Iterator to be scaled down I i; /// Divide by this factor int a; public: /// \name Constructors and initialization //@{ /// Default constructor ScaleDown(void); /// Initialize with ranges from \a i and scale factor \a a ScaleDown(I& i, int a); /// Initialize with ranges from \a i and scale factor \a a void init(I& i, int a); //@} /// \name Iteration control //@{ /// Move iterator to next range (if possible) void operator++(void); //@} }; template forceinline ScaleUp::ScaleUp(void) {} template inline void ScaleUp::init(I& i0, int a0) { i = i0; a = a0; if (i()) { cur = a * i.min(); end = a * i.max(); } else { cur = 1; end = 0; } } template inline ScaleUp::ScaleUp(I& i0, int a0) : i(i0), a(a0) { if (i()) { cur = a * i.min(); end = a * i.max(); } else { cur = 1; end = 0; } } template forceinline void ScaleUp::operator++(void) { if (a == 1) { ++i; } else { cur += a; if (cur > end) { ++i; if (i()) { cur = a * i.min(); end = a * i.max(); } } } } template forceinline bool ScaleUp::operator()(void) const { return (a == 1) ? i() : (cur <= end); } template forceinline Val ScaleUp::min(void) const { return (a == 1) ? static_cast(i.min()) : cur; } template forceinline Val ScaleUp::max(void) const { return (a == 1) ? static_cast(i.max()) : cur; } template forceinline UnsVal ScaleUp::width(void) const { return (a == 1) ? static_cast(i.width()) : static_cast(max - min + 1); } template forceinline void ScaleDown::operator++(void) { finish(); while ((mi > ma) && i()) { mi = static_cast(ceil(static_cast(i.min())/a)); ma = static_cast(floor(static_cast(i.max())/a)); ++i; } while (i()) { int n_mi = static_cast(ceil(static_cast(i.min())/a)); if (n_mi-ma > 1) break; int n_ma = static_cast(floor(static_cast(i.max())/a)); if (n_mi <= n_ma) { ma = n_ma; } ++i; } } template forceinline ScaleDown::ScaleDown(void) {} template inline void ScaleDown::init(I& i0, int a0) { i = i0; a = a0; operator++(); } template inline ScaleDown::ScaleDown(I& i0, int a0) : i(i0), a(a0) { i = i0; a = a0; operator++(); } }}} // STATISTICS: iter-any