// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_SVM_C_EKm_TRAINER_Hh_ #define DLIB_SVM_C_EKm_TRAINER_Hh_ #include "../algs.h" #include "function.h" #include "kernel.h" #include "empirical_kernel_map.h" #include "svm_c_linear_trainer.h" #include "svm_c_ekm_trainer_abstract.h" #include "../statistics.h" #include "../rand.h" #include namespace dlib { template < typename K > class svm_c_ekm_trainer { public: typedef K kernel_type; typedef typename kernel_type::scalar_type scalar_type; typedef typename kernel_type::sample_type sample_type; typedef typename kernel_type::mem_manager_type mem_manager_type; typedef decision_function trained_function_type; svm_c_ekm_trainer ( ) { verbose = false; ekm_stale = true; initial_basis_size = 10; basis_size_increment = 50; max_basis_size = 300; } explicit svm_c_ekm_trainer ( const scalar_type& C ) { // make sure requires clause is not broken DLIB_ASSERT(C > 0, "\t svm_c_ekm_trainer::svm_c_ekm_trainer()" << "\n\t C must be greater than 0" << "\n\t C: " << C << "\n\t this: " << this ); ocas.set_c(C); verbose = false; ekm_stale = true; initial_basis_size = 10; basis_size_increment = 50; max_basis_size = 300; } void set_epsilon ( scalar_type eps ) { // make sure requires clause is not broken DLIB_ASSERT(eps > 0, "\t void svm_c_ekm_trainer::set_epsilon()" << "\n\t eps must be greater than 0" << "\n\t eps: " << eps << "\n\t this: " << this ); ocas.set_epsilon(eps); } const scalar_type get_epsilon ( ) const { return ocas.get_epsilon(); } void set_max_iterations ( unsigned long max_iter ) { ocas.set_max_iterations(max_iter); } unsigned long get_max_iterations ( ) { return ocas.get_max_iterations(); } void be_verbose ( ) { verbose = true; ocas.be_quiet(); } void be_very_verbose ( ) { verbose = true; ocas.be_verbose(); } void be_quiet ( ) { verbose = false; ocas.be_quiet(); } void set_oca ( const oca& item ) { ocas.set_oca(item); } const oca get_oca ( ) const { return ocas.get_oca(); } const kernel_type get_kernel ( ) const { return kern; } void set_kernel ( const kernel_type& k ) { kern = k; ekm_stale = true; } template void set_basis ( const T& basis_samples ) { // make sure requires clause is not broken DLIB_ASSERT(basis_samples.size() > 0 && is_vector(mat(basis_samples)), "\tvoid svm_c_ekm_trainer::set_basis(basis_samples)" << "\n\t You have to give a non-empty set of basis_samples and it must be a vector" << "\n\t basis_samples.size(): " << basis_samples.size() << "\n\t is_vector(mat(basis_samples)): " << is_vector(mat(basis_samples)) << "\n\t this: " << this ); basis = mat(basis_samples); ekm_stale = true; } bool basis_loaded( ) const { return (basis.size() != 0); } void clear_basis ( ) { basis.set_size(0); ekm.clear(); ekm_stale = true; } unsigned long get_max_basis_size ( ) const { return max_basis_size; } void set_max_basis_size ( unsigned long max_basis_size_ ) { // make sure requires clause is not broken DLIB_ASSERT(max_basis_size_ > 0, "\t void svm_c_ekm_trainer::set_max_basis_size()" << "\n\t max_basis_size_ must be greater than 0" << "\n\t max_basis_size_: " << max_basis_size_ << "\n\t this: " << this ); max_basis_size = max_basis_size_; if (initial_basis_size > max_basis_size) initial_basis_size = max_basis_size; } unsigned long get_initial_basis_size ( ) const { return initial_basis_size; } void set_initial_basis_size ( unsigned long initial_basis_size_ ) { // make sure requires clause is not broken DLIB_ASSERT(initial_basis_size_ > 0, "\t void svm_c_ekm_trainer::set_initial_basis_size()" << "\n\t initial_basis_size_ must be greater than 0" << "\n\t initial_basis_size_: " << initial_basis_size_ << "\n\t this: " << this ); initial_basis_size = initial_basis_size_; if (initial_basis_size > max_basis_size) max_basis_size = initial_basis_size; } unsigned long get_basis_size_increment ( ) const { return basis_size_increment; } void set_basis_size_increment ( unsigned long basis_size_increment_ ) { // make sure requires clause is not broken DLIB_ASSERT(basis_size_increment_ > 0, "\t void svm_c_ekm_trainer::set_basis_size_increment()" << "\n\t basis_size_increment_ must be greater than 0" << "\n\t basis_size_increment_: " << basis_size_increment_ << "\n\t this: " << this ); basis_size_increment = basis_size_increment_; } void set_c ( scalar_type C ) { // make sure requires clause is not broken DLIB_ASSERT(C > 0, "\t void svm_c_ekm_trainer::set_c()" << "\n\t C must be greater than 0" << "\n\t C: " << C << "\n\t this: " << this ); ocas.set_c(C); } const scalar_type get_c_class1 ( ) const { return ocas.get_c_class1(); } const scalar_type get_c_class2 ( ) const { return ocas.get_c_class2(); } void set_c_class1 ( scalar_type C ) { // make sure requires clause is not broken DLIB_ASSERT(C > 0, "\t void svm_c_ekm_trainer::set_c_class1()" << "\n\t C must be greater than 0" << "\n\t C: " << C << "\n\t this: " << this ); ocas.set_c_class1(C); } void set_c_class2 ( scalar_type C ) { // make sure requires clause is not broken DLIB_ASSERT(C > 0, "\t void svm_c_ekm_trainer::set_c_class2()" << "\n\t C must be greater than 0" << "\n\t C: " << C << "\n\t this: " << this ); ocas.set_c_class2(C); } template < typename in_sample_vector_type, typename in_scalar_vector_type > const decision_function train ( const in_sample_vector_type& x, const in_scalar_vector_type& y ) const { scalar_type obj; if (basis_loaded()) return do_train_user_basis(mat(x),mat(y),obj); else return do_train_auto_basis(mat(x),mat(y),obj); } template < typename in_sample_vector_type, typename in_scalar_vector_type > const decision_function train ( const in_sample_vector_type& x, const in_scalar_vector_type& y, scalar_type& svm_objective ) const { if (basis_loaded()) return do_train_user_basis(mat(x),mat(y),svm_objective); else return do_train_auto_basis(mat(x),mat(y),svm_objective); } private: template < typename in_sample_vector_type, typename in_scalar_vector_type > const decision_function do_train_user_basis ( const in_sample_vector_type& x, const in_scalar_vector_type& y, scalar_type& svm_objective ) const /*! requires - basis_loaded() == true ensures - trains an SVM with the user supplied basis !*/ { // make sure requires clause is not broken DLIB_ASSERT(is_binary_classification_problem(x,y) == true, "\t decision_function svm_c_ekm_trainer::train(x,y)" << "\n\t invalid inputs were given to this function" << "\n\t x.nr(): " << x.nr() << "\n\t y.nr(): " << y.nr() << "\n\t x.nc(): " << x.nc() << "\n\t y.nc(): " << y.nc() << "\n\t is_binary_classification_problem(x,y): " << is_binary_classification_problem(x,y) ); if (ekm_stale) { ekm.load(kern, basis); ekm_stale = false; } // project all the samples with the ekm running_stats rs; std::vector > proj_samples; proj_samples.reserve(x.size()); for (long i = 0; i < x.size(); ++i) { if (verbose) { scalar_type err; proj_samples.push_back(ekm.project(x(i), err)); rs.add(err); } else { proj_samples.push_back(ekm.project(x(i))); } } if (verbose) { std::cout << "\nMean EKM projection error: " << rs.mean() << std::endl; std::cout << "Standard deviation of EKM projection error: " << rs.stddev() << std::endl; } // now do the training decision_function > > df; df = ocas.train(proj_samples, y, svm_objective); if (verbose) { std::cout << "Final svm objective: " << svm_objective << std::endl; } decision_function final_df; final_df = ekm.convert_to_decision_function(df.basis_vectors(0)); final_df.b = df.b; return final_df; } template < typename in_sample_vector_type, typename in_scalar_vector_type > const decision_function do_train_auto_basis ( const in_sample_vector_type& x, const in_scalar_vector_type& y, scalar_type& svm_objective ) const { // make sure requires clause is not broken DLIB_ASSERT(is_binary_classification_problem(x,y) == true, "\t decision_function svm_c_ekm_trainer::train(x,y)" << "\n\t invalid inputs were given to this function" << "\n\t x.nr(): " << x.nr() << "\n\t y.nr(): " << y.nr() << "\n\t x.nc(): " << x.nc() << "\n\t y.nc(): " << y.nc() << "\n\t is_binary_classification_problem(x,y): " << is_binary_classification_problem(x,y) ); std::vector > proj_samples(x.size()); decision_function > > df; // we will use a linearly_independent_subset_finder to store our basis set. linearly_independent_subset_finder lisf(get_kernel(), max_basis_size); dlib::rand rnd; // first pick the initial basis set randomly for (unsigned long i = 0; i < 10*initial_basis_size && lisf.size() < initial_basis_size; ++i) { lisf.add(x(rnd.get_random_32bit_number()%x.size())); } ekm.load(lisf); // first project all samples into the span of the current basis for (long i = 0; i < x.size(); ++i) { proj_samples[i] = ekm.project(x(i)); } svm_c_linear_trainer > > trainer(ocas); const scalar_type min_epsilon = trainer.get_epsilon(); // while we are determining what the basis set will be we are going to use a very // lose stopping condition. We will tighten it back up before producing the // final decision_function. trainer.set_epsilon(0.2); scalar_type prev_svm_objective = std::numeric_limits::max(); empirical_kernel_map prev_ekm; // This loop is where we try to generate a basis for SVM training. We will // do this by repeatedly training the SVM and adding a few points which violate the // margin to the basis in each iteration. while (true) { // if the basis is already as big as it's going to get then just do the most // accurate training right now. if (lisf.size() == max_basis_size) trainer.set_epsilon(min_epsilon); while (true) { // now do the training. df = trainer.train(proj_samples, y, svm_objective); if (svm_objective < prev_svm_objective) break; // If the training didn't reduce the objective more than last time then // try lowering the epsilon and doing it again. if (trainer.get_epsilon() > min_epsilon) { trainer.set_epsilon(std::max(trainer.get_epsilon()*0.5, min_epsilon)); if (verbose) std::cout << " *** Reducing epsilon to " << trainer.get_epsilon() << std::endl; } else break; } if (verbose) { std::cout << "svm objective: " << svm_objective << std::endl; std::cout << "basis size: " << lisf.size() << std::endl; } // if we failed to make progress on this iteration then we are done if (svm_objective >= prev_svm_objective) break; prev_svm_objective = svm_objective; // now add more elements to the basis unsigned long count = 0; for (unsigned long j = 0; (j < 100*basis_size_increment) && (count < basis_size_increment) && (lisf.size() < max_basis_size); ++j) { // pick a random sample const unsigned long idx = rnd.get_random_32bit_number()%x.size(); // If it is a margin violator then it is useful to add it into the basis set. if (df(proj_samples[idx])*y(idx) < 1) { // Add the sample into the basis set if it is linearly independent of all the // vectors already in the basis set. if (lisf.add(x(idx))) { ++count; } } } // if we couldn't add any more basis vectors then stop if (count == 0) { if (verbose) std::cout << "Stopping, couldn't add more basis vectors." << std::endl; break; } // Project all the samples into the span of our newly enlarged basis. We will do this // using the special transformation in the EKM that lets us project from a smaller // basis set to a larger without needing to reevaluate kernel functions we have already // computed. ekm.swap(prev_ekm); ekm.load(lisf); projection_function proj_part; matrix prev_to_new; prev_ekm.get_transformation_to(ekm, prev_to_new, proj_part); matrix temp; for (long i = 0; i < x.size(); ++i) { // assign to temporary to avoid memory allocation that would result if we // assigned this expression straight into proj_samples[i] temp = prev_to_new*proj_samples[i] + proj_part(x(i)); proj_samples[i] = temp; } } // Reproject all the data samples using the final basis. We could just use what we // already have but the recursive thing done above to compute the proj_samples // might have accumulated a little numerical error. So lets just be safe. running_stats rs, rs_margin; for (long i = 0; i < x.size(); ++i) { if (verbose) { scalar_type err; proj_samples[i] = ekm.project(x(i),err); rs.add(err); // if this point is within the margin if (df(proj_samples[i])*y(i) < 1) rs_margin.add(err); } else { proj_samples[i] = ekm.project(x(i)); } } // do the final training trainer.set_epsilon(min_epsilon); df = trainer.train(proj_samples, y, svm_objective); if (verbose) { std::cout << "\nMean EKM projection error: " << rs.mean() << std::endl; std::cout << "Standard deviation of EKM projection error: " << rs.stddev() << std::endl; std::cout << "Mean EKM projection error for margin violators: " << rs_margin.mean() << std::endl; std::cout << "Standard deviation of EKM projection error for margin violators: " << ((rs_margin.current_n()>1)?rs_margin.stddev():0) << std::endl; std::cout << "Final svm objective: " << svm_objective << std::endl; } decision_function final_df; final_df = ekm.convert_to_decision_function(df.basis_vectors(0)); final_df.b = df.b; // we don't need the ekm anymore so clear it out ekm.clear(); return final_df; } /*! CONVENTION - if (ekm_stale) then - kern or basis have changed since the last time they were loaded into the ekm !*/ svm_c_linear_trainer > > ocas; bool verbose; kernel_type kern; unsigned long max_basis_size; unsigned long basis_size_increment; unsigned long initial_basis_size; matrix basis; mutable empirical_kernel_map ekm; mutable bool ekm_stale; }; } #endif // DLIB_SVM_C_EKm_TRAINER_Hh_