package com.rho.rubyext; import java.io.ByteArrayOutputStream; import java.io.IOException; import net.rim.device.api.compress.ZLibOutputStream; import net.rim.device.api.system.Bitmap; import net.rim.device.api.util.CRC32; /** * PNGEncoder takes a Java Image object and creates a byte string which can be saved as a PNG file. * The Image is presumed to use the DirectColorModel. * *

Thanks to Jay Denny at KeyPoint Software * http://www.keypoint.com/ * who let me develop this code on company time.

* *

You may contact me with (probably very-much-needed) improvements, * comments, and bug fixes at:

* *

david@catcode.com

* *

This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version.

* *

This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details.

* *

You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * A copy of the GNU LGPL may be found at * http://www.gnu.org/copyleft/lesser.html

* * @author J. David Eisenberg * @version 1.5, 19 Oct 2003 * * CHANGES: * -------- * 19-Nov-2002 : CODING STYLE CHANGES ONLY (by David Gilbert for Object Refinery Limited); * 19-Sep-2003 : Fix for platforms using EBCDIC (contributed by Paulo Soares); * 19-Oct-2003 : Change private fields to protected fields so that * PNGEncoderB can inherit them (JDE) * Fixed bug with calculation of nRows * 08-Apr-2008 : Ported to BlackBerry (by Richard Puckett II) */ public class PNGEncoder { /** Constant specifying that alpha channel should be encoded. */ public static final boolean ENCODE_ALPHA = true; /** Constant specifying that alpha channel should not be encoded. */ public static final boolean NO_ALPHA = false; /** Constants for filter (NONE) */ public static final int FILTER_NONE = 0; /** Constants for filter (SUB) */ public static final int FILTER_SUB = 1; /** Constants for filter (UP) */ public static final int FILTER_UP = 2; /** Constants for filter (LAST) */ public static final int FILTER_LAST = 2; /** IHDR tag. */ protected static final byte IHDR[] = {73, 72, 68, 82}; /** IDAT tag. */ protected static final byte IDAT[] = {73, 68, 65, 84}; /** IEND tag. */ protected static final byte IEND[] = {73, 69, 78, 68}; /** The png bytes. */ protected byte[] pngBytes; /** The prior row. */ protected byte[] priorRow; /** The left bytes. */ protected byte[] leftBytes; /** The image. */ protected Bitmap image; /** The width. */ protected int width, height; /** The byte position. */ protected int bytePos, maxPos; /** The CRC value. */ protected int crcValue; /** Encode alpha? */ protected boolean encodeAlpha; /** The filter type. */ protected int filter; /** The bytes-per-pixel. */ protected int bytesPerPixel; /** The compression level. */ protected int compressionLevel; /** * Class constructor */ public PNGEncoder() { this(null, false, FILTER_NONE, 0); } /** * Class constructor specifying Image to encode, with no alpha channel encoding. * * @param image A Java Image object which uses the DirectColorModel */ public PNGEncoder(Bitmap image) { this(image, false, FILTER_NONE, 0); } /** * Class constructor specifying Image to encode, and whether to encode alpha. * * @param image A Java Image object which uses the DirectColorModel * @param encodeAlpha Encode the alpha channel? false=no; true=yes */ public PNGEncoder(Bitmap image, boolean encodeAlpha) { this(image, encodeAlpha, FILTER_NONE, 0); } /** * Class constructor specifying Image to encode, whether to encode alpha, and filter to use. * * @param image A Java Image object which uses the DirectColorModel * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @param whichFilter 0=none, 1=sub, 2=up */ public PNGEncoder(Bitmap image, boolean encodeAlpha, int whichFilter) { this(image, encodeAlpha, whichFilter, 0); } /** * Class constructor specifying Image source to encode, whether to encode alpha, filter to use, * and compression level. * * @param image A Java Image object * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @param whichFilter 0=none, 1=sub, 2=up * @param compLevel 0..9 */ public PNGEncoder(Bitmap image, boolean encodeAlpha, int whichFilter, int compLevel) { this.image = image; this.encodeAlpha = encodeAlpha; setFilter(whichFilter); if (compLevel >= 0 && compLevel <= 9) { this.compressionLevel = compLevel; } } /** * Set the image to be encoded * * @param image A Java Image object which uses the DirectColorModel */ public void setImage(Bitmap image) { this.image = image; pngBytes = null; } /** * Creates an array of bytes that is the PNG equivalent of the current image, specifying * whether to encode alpha or not. * * @param encodeAlpha boolean false=no alpha, true=encode alpha * @return an array of bytes, or null if there was a problem */ public byte[] encode(boolean encodeAlpha) throws IOException { byte[] pngIdBytes = {-119, 80, 78, 71, 13, 10, 26, 10}; if (image == null) { return null; } width = image.getWidth(); height = image.getHeight(); /* * start with an array that is big enough to hold all the pixels * (plus filter bytes), and an extra 200 bytes for header info */ pngBytes = new byte[((width + 1) * height * 3) + 200]; /* * keep track of largest byte written to the array */ maxPos = 0; bytePos = writeBytes(pngIdBytes, 0); writeHeader(); if (writeImageData()) { writeEnd(); pngBytes = resizeByteArray(pngBytes, maxPos); } else { pngBytes = null; } return pngBytes; } /** * Creates an array of bytes that is the PNG equivalent of the current image. * Alpha encoding is determined by its setting in the constructor. * * @return an array of bytes, or null if there was a problem */ public byte[] encode() throws IOException { return encode(encodeAlpha); } /** * Set the alpha encoding on or off. * * @param encodeAlpha false=no, true=yes */ public void setEncodeAlpha(boolean encodeAlpha) { this.encodeAlpha = encodeAlpha; } /** * Retrieve alpha encoding status. * * @return boolean false=no, true=yes */ public boolean getEncodeAlpha() { return encodeAlpha; } /** * Set the filter to use * * @param whichFilter from constant list */ public void setFilter(int whichFilter) { this.filter = FILTER_NONE; if (whichFilter <= FILTER_LAST) { this.filter = whichFilter; } } /** * Retrieve filtering scheme * * @return int (see constant list) */ public int getFilter() { return filter; } /** * Set the compression level to use * * @param level 0 through 9 */ public void setCompressionLevel(int level) { if (level >= 0 && level <= 9) { this.compressionLevel = level; } } /** * Retrieve compression level * * @return int in range 0-9 */ public int getCompressionLevel() { return compressionLevel; } /** * Increase or decrease the length of a byte array. * * @param array The original array. * @param newLength The length you wish the new array to have. * @return Array of newly desired length. If shorter than the * original, the trailing elements are truncated. */ protected byte[] resizeByteArray(byte[] array, int newLength) { byte[] newArray = new byte[newLength]; int oldLength = array.length; java.lang.System.arraycopy(array, 0, newArray, 0, Math.min(oldLength, newLength)); return newArray; } /** * Write an array of bytes into the pngBytes array. * Note: This routine has the side effect of updating * maxPos, the largest element written in the array. * The array is resized by 1000 bytes or the length * of the data to be written, whichever is larger. * * @param data The data to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeBytes(byte[] data, int offset) { maxPos = Math.max(maxPos, offset + data.length); if (data.length + offset > pngBytes.length) { pngBytes = resizeByteArray(pngBytes, pngBytes.length + Math.max(1000, data.length)); } java.lang.System.arraycopy(data, 0, pngBytes, offset, data.length); return offset + data.length; } /** * Write an array of bytes into the pngBytes array, specifying number of bytes to write. * Note: This routine has the side effect of updating * maxPos, the largest element written in the array. * The array is resized by 1000 bytes or the length * of the data to be written, whichever is larger. * * @param data The data to be written into pngBytes. * @param nBytes The number of bytes to be written. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeBytes(byte[] data, int nBytes, int offset) { maxPos = Math.max(maxPos, offset + nBytes); if (nBytes + offset > pngBytes.length) { pngBytes = resizeByteArray(pngBytes, pngBytes.length + Math.max(1000, nBytes)); } java.lang.System.arraycopy(data, 0, pngBytes, offset, nBytes); return offset + nBytes; } /** * Write a two-byte integer into the pngBytes array at a given position. * * @param n The integer to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeInt2(int n, int offset) { byte[] temp = {(byte) ((n >> 8) & 0xff), (byte) (n & 0xff)}; return writeBytes(temp, offset); } /** * Write a four-byte integer into the pngBytes array at a given position. * * @param n The integer to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeInt4(int n, int offset) { byte[] temp = {(byte) ((n >> 24) & 0xff), (byte) ((n >> 16) & 0xff), (byte) ((n >> 8) & 0xff), (byte) (n & 0xff)}; return writeBytes(temp, offset); } /** * Write a single byte into the pngBytes array at a given position. * * @param b The integer to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeByte(int b, int offset) { byte[] temp = {(byte) b}; return writeBytes(temp, offset); } /** * Write a PNG "IHDR" chunk into the pngBytes array. */ protected void writeHeader() { int startPos; startPos = bytePos = writeInt4(13, bytePos); bytePos = writeBytes(IHDR, bytePos); width = image.getWidth(); height = image.getHeight(); bytePos = writeInt4(width, bytePos); bytePos = writeInt4(height, bytePos); bytePos = writeByte(8, bytePos); // bit depth bytePos = writeByte((encodeAlpha) ? 6 : 2, bytePos); // direct model bytePos = writeByte(0, bytePos); // compression method bytePos = writeByte(0, bytePos); // filter method bytePos = writeByte(0, bytePos); // no interlace crcValue = CRC32.update(CRC32.INITIAL_VALUE, pngBytes, startPos, bytePos - startPos); bytePos = writeInt4(crcValue, bytePos); } /** * Perform "sub" filtering on the given row. * Uses temporary array leftBytes to store the original values * of the previous pixels. The array is 16 bytes long, which * will easily hold two-byte samples plus two-byte alpha. * * @param pixels The array holding the scan lines being built * @param startPos Starting position within pixels of bytes to be filtered. * @param width Width of a scanline in pixels. */ protected void filterSub(byte[] pixels, int startPos, int width) { int i; int offset = bytesPerPixel; int actualStart = startPos + offset; int nBytes = width * bytesPerPixel; int leftInsert = offset; int leftExtract = 0; for (i = actualStart; i < startPos + nBytes; i++) { leftBytes[leftInsert] = pixels[i]; pixels[i] = (byte) ((pixels[i] - leftBytes[leftExtract]) % 256); leftInsert = (leftInsert + 1) % 0x0f; leftExtract = (leftExtract + 1) % 0x0f; } } /** * Perform "up" filtering on the given row. * Side effect: refills the prior row with current row * * @param pixels The array holding the scan lines being built * @param startPos Starting position within pixels of bytes to be filtered. * @param width Width of a scanline in pixels. */ protected void filterUp(byte[] pixels, int startPos, int width) { int i, nBytes; byte currentByte; nBytes = width * bytesPerPixel; for (i = 0; i < nBytes; i++) { currentByte = pixels[startPos + i]; pixels[startPos + i] = (byte) ((pixels[startPos + i] - priorRow[i]) % 256); priorRow[i] = currentByte; } } // protected int[] blur(int[] src, int width, int height) { // int[] blurred = new int[width * height]; // int scanPos = 0; // where we are in the scan lines // // int boxw = 2; // double mul = 1.0 / (double) (boxw * 2 + 1); // System.out.println("mul = " + mul); // // for (int y = 0; y < height; y++) { // int redChannel = 0; // int greenChannel = 0; // int blueChannel = 0; // // for (int x = 0; x < boxw; x++) { // redChannel += (src[scanPos] >> 16) & 0xff; // greenChannel += (src[scanPos] >> 8) & 0xff; // blueChannel += src[scanPos] & 0xff; // } // System.out.println("Primed redChannel (" + scanPos + ") = " + redChannel); // System.out.println("Primed greenChannel = " + greenChannel); // System.out.println("Primed blueChannel = " + blueChannel); // // for (int x = 0; x < width; x++) { // if (x > boxw) { // redChannel -= (src[scanPos - boxw - 1] >> 16) & 0xff; // greenChannel -= (src[scanPos - boxw - 1] >> 8) & 0xff; // blueChannel -= src[scanPos - boxw - 1] & 0xff; // } // // if (x + boxw < width) { // redChannel += (src[scanPos + boxw] >> 16) & 0xff; // greenChannel += (src[scanPos + boxw] >> 8) & 0xff; // blueChannel += src[scanPos + boxw] & 0xff; // } // // blurred[scanPos] |= (new Double(redChannel / (boxw + 1)).byteValue() << 16); // blurred[scanPos] |= (new Double(greenChannel / (boxw + 1)).byteValue() << 8); // blurred[scanPos] |= new Double(blueChannel / (boxw + 1)).byteValue(); // // if (encodeAlpha) { // blurred[scanPos] |= (src[scanPos] & 0xff000000); // } // // scanPos++; // } // } // // return blurred; // } /** * Write the image data into the pngBytes array. * This will write one or more PNG "IDAT" chunks. In order * to conserve memory, this method grabs as many rows as will * fit into 32K bytes, or the whole image; whichever is less. * * * @return true if no errors; false if error grabbing pixels */ protected boolean writeImageData() throws IOException { int rowsLeft = height; // number of rows remaining to write int startRow = 0; // starting row to process this time through int nRows; // how many rows to grab at a time byte[] scanLines; // the scan lines to be compressed int scanPos; // where we are in the scan lines int startPos; // where this line's actual pixels start (used for filtering) byte[] compressedLines; // the resultant compressed lines int nCompressed; // how big is the compressed area? bytesPerPixel = (encodeAlpha) ? 4 : 3; ByteArrayOutputStream outBytes = new ByteArrayOutputStream(1024); ZLibOutputStream compBytes = new ZLibOutputStream(outBytes); while (rowsLeft > 0) { nRows = Math.min(32767 / (width * (bytesPerPixel + 1)), rowsLeft); nRows = Math.max( nRows, 1 ); int[] pixels = new int[width * nRows]; image.getARGB(pixels, 0, width, 0, startRow, width, nRows); /* * Create a data chunk. scanLines adds "nRows" for * the filter bytes. */ scanLines = new byte[width * nRows * bytesPerPixel + nRows]; if (filter == FILTER_SUB) { leftBytes = new byte[16]; } if (filter == FILTER_UP) { priorRow = new byte[width * bytesPerPixel]; } scanPos = 0; startPos = 1; for (int i = 0; i < width * nRows; i++) { if (i % width == 0) { scanLines[scanPos++] = (byte) filter; startPos = scanPos; } scanLines[scanPos++] = (byte) ((pixels[i] >> 16) & 0xff); scanLines[scanPos++] = (byte) ((pixels[i] >> 8) & 0xff); scanLines[scanPos++] = (byte) ((pixels[i]) & 0xff); if (encodeAlpha) { scanLines[scanPos++] = (byte) ((pixels[i] >> 24) & 0xff); } if ((i % width == width - 1) && (filter != FILTER_NONE)) { if (filter == FILTER_SUB) { filterSub(scanLines, startPos, width); } if (filter == FILTER_UP) { filterUp(scanLines, startPos, width); } } } /* * Write these lines to the output area */ compBytes.write(scanLines, 0, scanPos); startRow += nRows; rowsLeft -= nRows; } compBytes.close(); /* * Write the compressed bytes */ compressedLines = outBytes.toByteArray(); nCompressed = compressedLines.length; bytePos = writeInt4(nCompressed, bytePos); bytePos = writeBytes(IDAT, bytePos); crcValue = CRC32.update(CRC32.INITIAL_VALUE, IDAT); bytePos = writeBytes(compressedLines, nCompressed, bytePos); crcValue = CRC32.update(crcValue, compressedLines, 0, nCompressed); bytePos = writeInt4(crcValue, bytePos); return true; } /** * Write a PNG "IEND" chunk into the pngBytes array. */ protected void writeEnd() { bytePos = writeInt4(0, bytePos); bytePos = writeBytes(IEND, bytePos); crcValue = CRC32.update(CRC32.INITIAL_VALUE, IEND); bytePos = writeInt4(crcValue, bytePos); } }