Sha256: 5eb98390f77e9dcb0e8d0fcde14a00071ce11d02e9804e6d349f8164158cef24
Contents?: true
Size: 1.64 KB
Versions: 15
Compression:
Stored size: 1.64 KB
Contents
# frozen_string_literal: true require 'svmkit/validation' require 'svmkit/base/base_estimator' require 'svmkit/base/transformer' module SVMKit # This module consists of the classes that perform preprocessings. module Preprocessing # Normalize samples to unit L2-norm. # # @example # normalizer = SVMKit::Preprocessing::StandardScaler.new # new_samples = normalizer.fit_transform(samples) class L2Normalizer include Base::BaseEstimator include Base::Transformer # Return the vector consists of L2-norm for each sample. # @return [Numo::DFloat] (shape: [n_samples]) attr_reader :norm_vec # :nodoc: # Create a new normalizer for normaliing to unit L2-norm. def initialize @params = {} @norm_vec = nil end # Calculate L2-norms of each sample. # # @overload fit(x) -> L2Normalizer # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms. # @return [L2Normalizer] def fit(x, _y = nil) SVMKit::Validation.check_sample_array(x) @norm_vec = Numo::NMath.sqrt((x**2).sum(1)) self end # Calculate L2-norms of each sample, and then normalize samples to unit L2-norm. # # @overload fit_transform(x) -> Numo::DFloat # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms. # @return [Numo::DFloat] The normalized samples. def fit_transform(x, _y = nil) SVMKit::Validation.check_sample_array(x) fit(x) x / @norm_vec.tile(x.shape[1], 1).transpose end end end end
Version data entries
15 entries across 15 versions & 1 rubygems