require 'pycall/import' include PyCall::Import pyimport 'numpy', as: :np pyimport 'matplotlib.pyplot', as: :plt pyimport 'matplotlib.colors', as: :mplc pyfrom 'sklearn.cross_validation', import: :train_test_split pyfrom 'sklearn.preprocessing', import: :StandardScaler pyfrom 'sklearn.datasets', import: %i(make_moons make_circles make_classification) pyfrom 'sklearn.neighbors', import: :KNeighborsClassifier pyfrom 'sklearn.svm', import: :SVC pyfrom 'sklearn.tree', import: :DecisionTreeClassifier pyfrom 'sklearn.ensemble', import: %i(RandomForestClassifier AdaBoostClassifier) pyfrom 'sklearn.naive_bayes', import: :GaussianNB pyfrom 'sklearn.discriminant_analysis', import: %i(LinearDiscriminantAnalysis QuadraticDiscriminantAnalysis) h = 0.02 # step size in the mesh names = [ 'Nearest Neighbors', 'Linear SVM', 'RBF SVM', 'Decision Tree', 'Random Forest', 'AdaBoost', 'Naive Bayes', 'Linear Discriminant Analysis', 'Quadratic Discriminant Analysis' ] classifiers = [ KNeighborsClassifier.(3), SVC.(kernel: 'linear', C: 0.025), SVC.(gamma: 2, C: 1), DecisionTreeClassifier.(max_depth: 5), RandomForestClassifier.(max_depth: 5, n_estimators: 10, max_features: 1), AdaBoostClassifier.(), GaussianNB.(), LinearDiscriminantAnalysis.(), QuadraticDiscriminantAnalysis.() ] x, y = make_classification.( n_features: 2, n_redundant: 0, n_informative: 2, random_state: 1, n_clusters_per_class: 1 ) np.random.seed.(42) x += 2 * np.random.random_sample.(x.shape) linearly_separable = PyCall.tuple(x, y) datasets = [ make_moons.(noise: 0.3, random_state: 0), make_circles.(noise: 0.2, factor: 0.5, random_state: 1), linearly_separable ] fig = plt.figure.(figsize: PyCall.tuple(27, 9)) i = 1 all = PyCall.slice(nil) datasets.each do |ds| x, y = ds x = StandardScaler.().fit_transform.(x) x_train, x_test, y_train, y_test = train_test_split.(x, y, test_size: 0.4) x_min, x_max = np.min.(x[all, 0]) - 0.5, np.max.(x[all, 0]) + 0.5 y_min, y_max = np.min.(x[all, 1]) - 0.5, np.max.(x[all, 1]) + 0.5 xx, yy = np.meshgrid.( np.linspace.(x_min, x_max, ((x_max - x_min)/h).round), np.linspace.(y_min, y_max, ((y_max - y_min)/h).round), ) mesh_points = np.dstack.(PyCall.tuple(xx.ravel.(), yy.ravel.()))[0, all, all] # just plot the dataset first cm = plt.cm.RdBu cm_bright = mplc.ListedColormap.(["#FF0000", "#0000FF"]) ax = plt.subplot.(datasets.length, classifiers.length + 1, i) # plot the training points ax.scatter.(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright) # and testing points ax.scatter.(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6) ax.set_xlim.(np.min.(xx), np.max.(xx)) ax.set_ylim.(np.min.(yy), np.max.(yy)) ax.set_xticks.(PyCall.tuple()) ax.set_yticks.(PyCall.tuple()) i += 1 # iterate over classifiers names.zip(classifiers).each do |name, clf| ax = plt.subplot.(datasets.length, classifiers.length + 1, i) clf.fit.(x_train, y_train) scor = clf.score.(x_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max] begin # not implemented for some z = clf.decision_function.(mesh_points) rescue z = clf.predict_proba.(mesh_points)[all, 1] end # Put the result into a color plot z = z.reshape.(xx.shape) ax.contourf.(xx, yy, z, cmap: cm, alpha: 0.8) # Plot also the training points ax.scatter.(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright) # and testing points ax.scatter.(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6) ax.set_xlim.(np.min.(xx), np.max.(xx)) ax.set_ylim.(np.min.(yy), np.max.(yy)) ax.set_xticks.(PyCall.tuple()) ax.set_yticks.(PyCall.tuple()) ax.set_title.(name) ax.text.(np.max.(xx) - 0.3, np.min.(yy) + 0.3, "%.2f" % scor, size: 15, horizontalalignment: 'right') i += 1 end end fig.subplots_adjust.(left: 0.02, right: 0.98) plt.show.()