module Prawn::SVG::Calculators module ArcToBezierCurve protected # Convert the elliptical arc to a cubic bézier curve using this algorithm: # http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf def calculate_bezier_curve_points_for_arc(cx, cy, a, b, lambda_1, lambda_2, theta) e = lambda do |eta| [ cx + (a * Math.cos(theta) * Math.cos(eta)) - (b * Math.sin(theta) * Math.sin(eta)), cy + (a * Math.sin(theta) * Math.cos(eta)) + (b * Math.cos(theta) * Math.sin(eta)) ] end ep = lambda do |eta| [ (-a * Math.cos(theta) * Math.sin(eta)) - (b * Math.sin(theta) * Math.cos(eta)), (-a * Math.sin(theta) * Math.sin(eta)) + (b * Math.cos(theta) * Math.cos(eta)) ] end iterations = 1 d_lambda = lambda_2 - lambda_1 while iterations < 1024 if d_lambda.abs <= Math::PI / 2.0 # TODO : run error algorithm, see whether it meets threshold or not # puts "error = #{calculate_curve_approximation_error(a, b, eta1, eta1 + d_eta)}" break end iterations *= 2 d_lambda = (lambda_2 - lambda_1) / iterations end (0...iterations).collect do |iteration| eta_a, eta_b = calculate_eta_from_lambda(a, b, lambda_1 + (iteration * d_lambda), lambda_1 + ((iteration + 1) * d_lambda)) d_eta = eta_b - eta_a alpha = Math.sin(d_eta) * ((Math.sqrt(4 + (3 * (Math.tan(d_eta / 2)**2))) - 1) / 3) x1, y1 = e[eta_a] x2, y2 = e[eta_b] ep_eta1_x, ep_eta1_y = ep[eta_a] q1_x = x1 + (alpha * ep_eta1_x) q1_y = y1 + (alpha * ep_eta1_y) ep_eta2_x, ep_eta2_y = ep[eta_b] q2_x = x2 - (alpha * ep_eta2_x) q2_y = y2 - (alpha * ep_eta2_y) { p2: [x2, y2], q1: [q1_x, q1_y], q2: [q2_x, q2_y] } end end private ERROR_COEFFICIENTS_A = [ [ [3.85268, -21.229, -0.330434, 0.0127842], [-1.61486, 0.706564, 0.225945, 0.263682], [-0.910164, 0.388383, 0.00551445, 0.00671814], [-0.630184, 0.192402, 0.0098871, 0.0102527] ], [ [-0.162211, 9.94329, 0.13723, 0.0124084], [-0.253135, 0.00187735, 0.0230286, 0.01264], [-0.0695069, -0.0437594, 0.0120636, 0.0163087], [-0.0328856, -0.00926032, -0.00173573, 0.00527385] ] ].freeze ERROR_COEFFICIENTS_B = [ [ [0.0899116, -19.2349, -4.11711, 0.183362], [0.138148, -1.45804, 1.32044, 1.38474], [0.230903, -0.450262, 0.219963, 0.414038], [0.0590565, -0.101062, 0.0430592, 0.0204699] ], [ [0.0164649, 9.89394, 0.0919496, 0.00760802], [0.0191603, -0.0322058, 0.0134667, -0.0825018], [0.0156192, -0.017535, 0.00326508, -0.228157], [-0.0236752, 0.0405821, -0.0173086, 0.176187] ] ].freeze def calculate_curve_approximation_error(a, b, eta1, eta2) b_over_a = b / a coefficents = b_over_a < 0.25 ? ERROR_COEFFICIENTS_A : ERROR_COEFFICIENTS_B c = lambda do |i| (0..3).inject(0) do |accumulator, j| coef = coefficents[i][j] accumulator + ((((coef[0] * (b_over_a**2)) + (coef[1] * b_over_a) + coef[2]) / (b_over_a * coef[3])) * Math.cos(j * (eta1 + eta2))) end end (((0.001 * (b_over_a**2)) + (4.98 * b_over_a) + 0.207) / (b_over_a * 0.0067)) * a * Math.exp(c[0] + (c[1] * (eta2 - eta1))) end def calculate_eta_from_lambda(a, b, lambda_1, lambda_2) # 2.2.1 eta1 = Math.atan2(Math.sin(lambda_1) / b, Math.cos(lambda_1) / a) eta2 = Math.atan2(Math.sin(lambda_2) / b, Math.cos(lambda_2) / a) # ensure eta1 <= eta2 <= eta1 + 2*PI eta2 -= 2 * Math::PI * ((eta2 - eta1) / (2 * Math::PI)).floor eta2 += 2 * Math::PI if lambda_2 - lambda_1 > Math::PI && eta2 - eta1 < Math::PI [eta1, eta2] end end end