require 'svmkit/base/base_estimator' require 'svmkit/base/transformer' module SVMKit # This module consists of the classes that perform preprocessings. module Preprocessing # Normalize samples by scaling each feature to a given range. # # @example # normalizer = SVMKit::Preprocessing::MinMaxScaler.new(feature_range: [0.0, 1.0]) # new_training_samples = normalizer.fit_transform(training_samples) # new_testing_samples = normalizer.transform(testing_samples) class MinMaxScaler include Base::BaseEstimator include Base::Transformer # @!visibility private DEFAULT_PARAMS = { feature_range: [0.0, 1.0] }.freeze # Return the vector consists of the minimum value for each feature. # @return [NMatrix] (shape: [1, n_features]) attr_reader :min_vec # Return the vector consists of the maximum value for each feature. # @return [NMatrix] (shape: [1, n_features]) attr_reader :max_vec # Creates a new normalizer for scaling each feature to a given range. # # @overload new(feature_range: [0.0, 1.0]) -> MinMaxScaler # # @param feature_range [Array] (defaults to: [0.0, 1.0]) The desired range of samples. def initialize(params = {}) @params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) @min_vec = nil @max_vec = nil end # Calculate the minimum and maximum value of each feature for scaling. # # @overload fit(x) -> MinMaxScaler # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. # @return [MinMaxScaler] def fit(x, _y = nil) @min_vec = x.min(0) @max_vec = x.max(0) self end # Calculate the minimum and maximum values, and then normalize samples to feature_range. # # @overload fit_transform(x) -> NMatrix # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. # @return [NMatrix] The scaled samples. def fit_transform(x, _y = nil) fit(x).transform(x) end # Perform scaling the given samples according to feature_range. # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to be scaled. # @return [NMatrix] The scaled samples. def transform(x) n_samples, = x.shape dif_vec = @max_vec - @min_vec nx = (x - @min_vec.repeat(n_samples, 0)) / dif_vec.repeat(n_samples, 0) nx * (@params[:feature_range][1] - @params[:feature_range][0]) + @params[:feature_range][0] end # Dump marshal data. # @return [Hash] The marshal data about MinMaxScaler. def marshal_dump { params: @params, min_vec: Utils.dump_nmatrix(@min_vec), max_vec: Utils.dump_nmatrix(@max_vec) } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @min_vec = Utils.restore_nmatrix(obj[:min_vec]) @max_vec = Utils.restore_nmatrix(obj[:max_vec]) nil end end end end