// AMD-ID "dojox/math/BigInteger" define("dojox/math/BigInteger", ["dojo", "dojox"], function(dojo, dojox) { dojo.getObject("math.BigInteger", true, dojox); dojo.experimental("dojox.math.BigInteger"); // Contributed under CLA by Tom Wu // See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details. // Basic JavaScript BN library - subset useful for RSA encryption. // The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary&0xffffff)==0xefcafe); // (public) Constructor function BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this._fromNumber(a,b,c); else if(!b && "string" != typeof a) this._fromString(a,256); else this._fromString(a,b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c; } if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } var BI_FP = 52; // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; var BI_RC = []; var rr,vv; rr = "0".charCodeAt(0); for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = "a".charCodeAt(0); for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = "A".charCodeAt(0); for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s,i) { var c = BI_RC[s.charCodeAt(i)]; return (c==null)?-1:c; } // (protected) copy this to r function bnpCopyTo(r) { for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+_DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r._fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this._fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this._DB) { this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<>(this._DB-sh)); } else this[this.t-1] |= x<= this._DB) sh -= this._DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this._toRadix(b); var km = (1< 0) { if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { if(p < k) { d = (this[i]&((1<>(p+=this._DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this._DB; --i; } } if(d > 0) m = true; if(m) r += int2char(d); } } return m?r:"0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; } // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s-a.s; if(r) return r; var i = this.t; r = i-a.t; if(r) return r; while(--i >= 0) if((r = this[i] - a[i])) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16)) { x = t; r += 16; } if((t=x>>8)) { x = t; r += 8; } if((t=x>>4)) { x = t; r += 4; } if((t=x>>2)) { x = t; r += 2; } if((t=x>>1)) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if(this.t <= 0) return 0; return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n%this._DB; var cbs = this._DB-bs; var bm = (1<= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r._clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this._DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this._DB; var cbs = this._DB-bs; var bm = (1<>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this._DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this._DM; c >>= this._DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this._DM; c >>= this._DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this._DV+c; else if(c > 0) r[i++] = c; r.t = i; r._clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r._clamp(); if(this.s != a.s) BigInteger.ZERO._subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) { r[i+x.t] -= x._DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r._clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q._fromInt(0); if(r != null) this._copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); } else { pm._copyTo(y); pt._copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<1)?y[ys-2]>>this._F2:0); var d1 = this._FV/yt, d2 = (1<= 0) { r[r.t++] = 1; r._subTo(t,r); } BigInteger.ONE._dlShiftTo(ys,t); t._subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y._dlShiftTo(j,t); r._subTo(t,r); while(r[i] < --qd) r._subTo(t,r); } } if(q != null) { r._drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO._subTo(q,q); } r.t = ys; r._clamp(); if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO._subTo(r,r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs()._divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x._divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); } dojo.extend(Classic, { convert: cConvert, revert: cRevert, reduce: cReduce, mulTo: cMulTo, sqrTo: cSqrTo }); // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this._DV-y:-y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m._invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m._DB-15))-1; this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs()._dlShiftTo(this.m.t,r); r._divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x._copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; } } x._clamp(); x._drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x._subTo(this.m,x); } // r = "x^2/R mod m"; x != r function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } dojo.extend(Montgomery, { convert: montConvert, revert: montRevert, reduce: montReduce, mulTo: montMulTo, sqrTo: montSqrTo }); // (protected) true iff this is even function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g._copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { var z; if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m); return this._exp(e,z); } dojo.extend(BigInteger, { // protected, not part of the official API _DB: dbits, _DM: (1 << dbits) - 1, _DV: 1 << dbits, _FV: Math.pow(2, BI_FP), _F1: BI_FP - dbits, _F2: 2 * dbits-BI_FP, // protected _copyTo: bnpCopyTo, _fromInt: bnpFromInt, _fromString: bnpFromString, _clamp: bnpClamp, _dlShiftTo: bnpDLShiftTo, _drShiftTo: bnpDRShiftTo, _lShiftTo: bnpLShiftTo, _rShiftTo: bnpRShiftTo, _subTo: bnpSubTo, _multiplyTo: bnpMultiplyTo, _squareTo: bnpSquareTo, _divRemTo: bnpDivRemTo, _invDigit: bnpInvDigit, _isEven: bnpIsEven, _exp: bnpExp, // public toString: bnToString, negate: bnNegate, abs: bnAbs, compareTo: bnCompareTo, bitLength: bnBitLength, mod: bnMod, modPowInt: bnModPowInt }); dojo._mixin(BigInteger, { // "constants" ZERO: nbv(0), ONE: nbv(1), // internal functions _nbi: nbi, _nbv: nbv, _nbits: nbits, // internal classes _Montgomery: Montgomery }); // export to DojoX dojox.math.BigInteger = BigInteger; return dojox.math.BigInteger; });