Sha256: 5a39fa4e783071bcbf76cc2727bb9382f148b08bdbd975217d71e0382eee64d1
Contents?: true
Size: 1.52 KB
Versions: 1
Compression:
Stored size: 1.52 KB
Contents
= Fluent::Plugin::Anomalydetect To detect anomaly for log stream, use this plugin. Then you can find changes in logs casually. = Installation Add this line to your application's Gemfile: gem 'fluent-plugin-anomalydetect' And then execute: $ bundle Or install it yourself as: $ gem install fluent-plugin-anomalydetect == Usage <source> type file ... tag access.log </source> <match access.**> type anomalydetect tag anomaly.access tick 86400 </match> <match anomaly.access> type file ... </match> Then the plugin output anomaly log counts in each day. This plugin watches a value of input record number in the interval set with `tick`. If you want to watch a value for a target field <fieldname> in data, write below: <match access.**> type anomalydetect tag anomaly.access tick 86400 target fieldname </match> == more configuration <match access.**> type anomalydetect tag anomaly.access tick 86400 target fieldname outlier_term 7 outlier_discount 0.5 smooth_term 7 score_term 28 score_discount 0.01 </match> If you want to know detail of these parameters, see "Theory". == Theory "データマイニングによる異常検知" http://amzn.to/XHXNun = TODO == threshold fluentd outputs value when the outlier value over threshold == FFT algorithms = Copyright Copyright:: Copyright (c) 2013- Muddy Dixon License:: Apache License, Version 2.0
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
fluent-plugin-anomalydetect-0.0.1 | README.rdoc |