Sha256: 5a39fa4e783071bcbf76cc2727bb9382f148b08bdbd975217d71e0382eee64d1

Contents?: true

Size: 1.52 KB

Versions: 1

Compression:

Stored size: 1.52 KB

Contents

= Fluent::Plugin::Anomalydetect

To detect anomaly for log stream, use this plugin.
Then you can find changes in logs casually.

= Installation

Add this line to your application's Gemfile:

    gem 'fluent-plugin-anomalydetect'

And then execute:

    $ bundle

Or install it yourself as:

    $ gem install fluent-plugin-anomalydetect

== Usage

    <source>
      type file
      ...
      tag access.log
    </source>

    <match access.**>
      type anomalydetect
      tag anomaly.access
      tick 86400
    </match>

    <match anomaly.access>
      type file
      ...
    </match>

Then the plugin output anomaly log counts in each day.

This plugin watches a value of input record number in the interval set with `tick`.

If you want to watch a value for a target field <fieldname> in data, write below:

    <match access.**>
      type anomalydetect
      tag anomaly.access
      tick 86400
      target fieldname
    </match>

== more configuration

    <match access.**>
      type anomalydetect
      tag anomaly.access
      tick 86400
      target fieldname
      outlier_term 7
      outlier_discount 0.5
      smooth_term 7
      score_term 28
      score_discount 0.01
    </match>

If you want to know detail of these parameters, see "Theory".
    

== Theory
"データマイニングによる異常検知" http://amzn.to/XHXNun

= TODO

== threshold

fluentd outputs value when the outlier value over threshold

== FFT algorithms

= Copyright

Copyright:: Copyright (c) 2013- Muddy Dixon
License::   Apache License, Version 2.0

Version data entries

1 entries across 1 versions & 1 rubygems

Version Path
fluent-plugin-anomalydetect-0.0.1 README.rdoc