# Title: # # Quaternion # # Copyright: # # Copyright (c) 2002 K. Kodama # # Authors: # # K. Kodama # # Todo: # # - The following documentation should occur before the methods # they describe. require "mathn" require "complex" # = Quaternion # # NOTE This Quaternion class is still very experimental. # # Quaternions are attributed to Sir William Rowan Hamilton # who find it in 1843, and published a major analysis in 1844 called # "On a Species of Imaginary Quantities Connected with a Theory of Quaternions" # in the Proceedings of the Royal Irish Academ. (2, pp 424-434). # # Typical quaternion number q is of the form q = r + a i + b j + c k. # Bases i j k behaves as follows: # # i^2 = j^2 = k^2 = -1 # i j = k, j k = i, k i = j # j i = -k, k j = -i, i k = -j # # Quaternion numbers are not Commutative. # Quaternion is 4-D space over Real number, # and 2-D space over Complex numbers as q = (a + b i) + (c + d i)j. # # === Polar Coordinates # # A Quaternion q = r + a i + b j + k c have 1st level polar form such that # # q = |q|(cos t1 + sin t1 u1) , where u1 is unit vector of u1 = a1 i + b1 j + c1 k. # # u1 have 2nd level # # u1 = i cos t2 + sin t2 u2, where u2 is unit vector of u2 = b2 j + c2 k. # # And u2 have 3rd level # # u2 = j cos t3 + k sin t3. # # So we have # # q=|q|( cos t1 + sin t1 ( i cos t2 + sin t2 ( j cos t3 + k sin t3 ))) # # The equivalent to polar coordinates in quaternion space are # # r = |q| cos(t1) # a = |q| sin(t1) cos(t2) # b = |q| sin(t1) sin(t2) cos(t3) # c = |q| sin(t1) sin(t2) sin(t3) # # |q| is known as the magnitude of the quaternion, t1 is the amplitude(or angle), # t2 and t3 are the latitude (or co-latitude) and longitude respectively. # # === Vector # # A Quaternions q= r + a i + b j + c k is 4-D space over Real numbers. # A Quaternions with zero real part q = a i + b j + c k is 3-D space, # and called a vector quaternion or, simply, vector. # For q = r + a i + b j + c k, # v=a i + b j + c k is called vector part of q. # A vector u of |u|=1 is called a unit vector. # We can write q = r + u |v| = |q|(cos t + u sin t). # Note that u^2=-1. # Vectors are 3-D space And can define cross-product q1 x q2. # # === Rotation # # Quaternion can be used to describe rotation in 3-D space. # For a vector v and a Quaternion q = |q|(cos t/2 + u sin t/2), # q v q^(-1) is a vector v t-rotated along u. # Composit rotation of q1, q2 is described as q2 q1, # because q2 (q1 v q1^(-1)) q2^(-1) = (q2 q1) v (q2 q1)^(-1). # # === GCD # # D4 lattice space is lattice points of Quaternion q = r + a i + b j + c k as follows. # (1) r,a,b,c are all integer, or # (2) r,a,b,c are all half-integer. # D4 is sub-ring of Quaternion with GCD. # (Ring means a space with +, -, *.) =begin * Building quaternions and taking them apart Quaternion(real number r) # r as quaternion Quaternion(a+bi) # a+bi as quaternion Quaternion(a+bi,c+di) # a+bi+cj+dk = (a+bi)+(c+di)j Quaternion(a,b=0,c=0,d=0) # a+bi+cj+dk Quaternion(quaternion number q) # return q Quaternion::Zero (=0 as quaternion) Quaternion::One (=1 as quaternion) Quaternion::I (=i as quaternion) Quaternion::J (=j) Quaternion::K (=k) q.re ( = real part of q) q.real ( = real part of q) q.real_part ( = real part of q) q.im ( = i part of q) q.image ( = i part of q) q.jm ( = j part of q) q.km ( = k part of q) orthogonal_split(o) return [q1,q2]. q = q1 + q2 such that q1 parallel to o, and q2 orthogonal to o. * Vector q.vector ( = vector part of q = non-real part of q) q.unit_vector ( = unit vector of q) Quaternian::vector(v) # 3-D vector v=[x,y,z] as array to Quaternion vector Quaternion::rotation(v,t) # t-rotatin along the 3-D vector v q.rotate(r) rotate by r = q r^(-1) q.rotate_angle # = q.amplitude/2 * Polar notation Quaternion::polar(m,t1=0,t2=0,t3=0) q.magnitude (= |q|) q.amplitude (=arg1) q.latitude (=arg2) q.longitude (=arg3) q.arg1 q.arg2 q.arg3 q.abs ( = |q| ) q.abs2 ( = |q|^2 ) q.polar # get array of [magnitude, amplitude, latitude, longitude] * Boolean Quaternion::generic?(other) q.is_vector? # have no real part q.is_unit_vector? # q is vector and |q|=1 q.is_complex? # j part =0 and k part = 0 q.is_quaternion? # have j or k part q.is_real? # i,j,k parts are all 0 * Arithmetic q.conjugate (= q~) q.inverse (=1/q) q1<=>q2 ( same as |q1|<=>|q2| ) q1==q2 q1 + q2 q1 - q2 q1 * q2 q1 / q2 q1.dot_product(q2) (Dot product q1, q2 = (q1*q2.conjugate).real_part ) q1.cross_product(q2) (Cross product as vectors q1,q2) Assume q1, q2 be 3-D vectors. q1.rdiv(q2) # right division: q1/q2 (same as /) q1.ldiv(q2) # left division: 1/q1 * q2 * lattice or D4-lattice q.round # round to integer coefficients q.round_D4 # round to D4 lattice q1.divmod(q2) # right divmod: q1=d*q2+m q1.ldivmod(q2) # left divmod: q2=q1*d+m q1 % q2 # right mod q1.rmod(q2) # right mod(same as %) q1.lmod(q2) # left mod divmod_D4 other # right divmod: q1=d*q2+m, d be D4 value ldivmod_D4 other # left divmod: q2=q1*d+m, d be D4 value rmod_D4 other # right mod with d be D4 value lmod_D4 other # left mod with d be D4 value q1.gcd(q2) # Asume that q1, q2 are D4 value * Exponential and logarithmic functions q.exp # e^(r+uv)=exp(r)(cos(v)+u*sin(v)) q.log # log(r+uv)=1/2 log(r^2+v^2)+u atan(v/w) q1**q2 ( = q1^q2 ) q.sqrt ( = q^1/2 ) q.sinh q.cosh q.tanh * Trigonometric functions q.sin q.cos q.tan * Inverse trigonometric functions q.asin q.acos q.atan * Conversion to_s # get string to_c # real and i part as complex to_c2 # j and k part as complex to_v # vector part as array to_a # array of parts * Other q.hash q.inspect =end module Stick def Quaternion(a=0, b=0,c=0, d=0) if a.kind_of?(Quaternion); a; elsif a.kind_of?(Complex) and b.kind_of?(Complex); Quaternion.new(a.real, a.image, b.real, b.image) elsif a.kind_of?(Complex); Quaternion.new(a.real, a.image) else Quaternion.new(a,b,c,d); end end module_function :Quaternion class Quaternion < Numeric attr :re attr :im attr :jm attr :km def image; return @im; end def real_part; return @re; end def real; return @re; end def to_c; return Complex(@re,@im); end def to_c2; return Complex(@jm,@km); end def to_a; return [@re, @im, @jm, @km]; end def Quaternion::generic?(other) return (other.kind_of?(Complex) or Complex.generic?(other)); end def initialize(a=0,b=0,c=0,d=0) raise "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric; raise "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric; raise "non numeric 3rd arg `#{c.inspect}'" if !c.kind_of? Numeric; raise "non numeric 4th arg `#{d.inspect}'" if !d.kind_of? Numeric; @re=a; @im=b; @jm=c; @km=d end private :initialize Zero=Quaternion(0) One=Quaternion(1) I=Quaternion(0,1) J=Quaternion(0,0,1) K=Quaternion(0,0,0,1) def Quaternion::polar(m,t1=0,t2=0,t3=0) # q= # m*cos(t1) # +m*sin(t1)cos(t2)i # +m*sin(t1)sin(t2)cos(t3)j # +m*sin(t1)sin(t2)sin(t3)k # m is known as the magnitude, # t1 is the amplitude(or angle) of the quaternion, # t2 and t3 are the latitude (or co-latitude) and longitude respectively. if m.kind_of?(Array) and (m.size==4); t1=m[1]; t2=m[2]; t3=m[3]; m=m[0]; end; s=m r_part=s*Math.cos(t1); s=s*Math.sin(t1) i_part=s*Math.cos(t2); s=s*Math.sin(t2) j_part=s*Math.cos(t3); k_part=s*Math.sin(t3) new(r_part, i_part, j_part, k_part) end def amplitude; Math.atan2(Math.sqrt((@im*@im+@jm*@jm+@km*@km).to_f),@re.to_f); end def latitude; Math.atan2(Math.sqrt((@jm*@jm+@km*@km).to_f),@im.to_f); end def longitude; Math.atan2( @km.to_f, @jm.to_f); end def arg1; return amplitude; end def arg2; return latitude; end def arg3; return longitude; end def polar; [magnitude, amplitude, latitude, longitude]; end def round; Quaternion(@re.round,@im.round,@jm.round,@km.round);end def round_D4 # round to D4 lattice r1=@re.round; a1=@im.round; b1=@jm.round; c1=@km.round; q1=Quaternion(r1,a1,b1,c1); d1=(q1-self).abs2 if d1<=1/4; return q1; end if @re (other); self.abs <=> other.abs; end def == (other) if other.kind_of?(Quaternion) return (@re==other.re and @im==other.im and @jm==other.jm and @km==other.km) elsif other.kind_of?(Complex) @re==other.real and @im==other.image and @jm==0 and @km==0 elsif Complex.generic?(other) @re==other and @im==0 and @jm==0 and @km==0 else x , y = other.coerce(self); x == y end end def + (other) if other.kind_of?(Quaternion) Quaternion(@re+other.re,@im+other.im,@jm+other.jm,@km+other.km) elsif other.kind_of?(Complex) Quaternion(@re+other.real,@im+other.image, @jm, @km) elsif Complex.generic?(other) Quaternion(@re+other.real,@im, @jm, @km) else x , y = other.coerce(self); x + y end end def - (other) if other.kind_of?(Quaternion) Quaternion(@re-other.re,@im-other.im,@jm-other.jm,@km-other.km) elsif other.kind_of?(Complex) Quaternion(@re-other.real,@im-other.image, @jm, @km) elsif Complex.generic?(other) Quaternion(@re-other.real,@im, @jm, @km) else x , y = other.coerce(self); x - y end end def * (other) if other.kind_of?(Quaternion) Quaternion(@re*other.re-@im*other.im-@jm*other.jm-@km*other.km, @re*other.im+@im*other.re+@jm*other.km-@km*other.jm, @re*other.jm-@im*other.km+@jm*other.re+@km*other.im, @re*other.km+@im*other.jm-@jm*other.im+@km*other.re) elsif other.kind_of?(Complex) Quaternion(@re*other.real - @im*other.image, @re*other.image + @im*other.real, @jm*other.real + @km*other.image, @km*other.real - @jm*other.image) elsif Complex.generic?(other) Quaternion(@re * other, @im * other, @jm * other, @km * other) else x , y = other.coerce(self); x * y end end def dot_product other (self*other.conjugate).re end def cross_product other -(self*other.conjugate).vector end def / other if other.kind_of?(Quaternion); self*other.conjugate/other.abs2 elsif other.kind_of?(Complex); self*other.conjugate/other.abs2 elsif Complex.generic?(other); Quaternion(@re/other, @im/other, @jm/other, @km/other ) else x, y = other.coerce(self); x / y end end def rdiv other # right division: q1/q2 self/other end def ldiv other # left division: 1/q1 * q2 (self.conjugate)*other/self.abs2 end def divmod other # right divmod: q1=d*q2+m d=self.rdiv(other).round; m=self-d*other; return d,m end def divmod_D4 other # right divmod: q1=d*q2+m, d be D4 d=self.rdiv(other).round_D4; m=self-d*other; return d,m end def ldivmod other # left divmod: q2=q1*d+m d=self.ldiv(other).round; m=other-self*d; return d,m end def ldivmod_D4 other # left divmod: q2=q1*d+m, d be D4 d=self.ldiv(other).round_D4; m=other-self*d; return d,m end def % other # right mod d,m=divmod(other); return m end def rmod other # right mod(same as %) d,m=divmod(other); return m end def rmod_D4 other # right mod with D4 d,m=divmod_D4(other); return m end def lmod other # left mod d,m=ldivmod(other); return m end def lmod_D4 other # left mod with D4 d,m=ldivmod_D4(other); return m end def gcd other a=self; b=other while true if b==0 ; return a;end a=a.rmod_D4(b) if a==0 ; return b;end b=a.lmod_D4(b) end end def orthogonal_split(o) # [q1,q2]. q = q1 + q2 such that q1 parallel to o, and q2 orthogonal to o. q1 = o * dot_product(o); q2=self-q1; return q1,q2 end # Exponential and logarithmic functions def exp # e^(r+uv)=exp(r)(cos(v)+u*sin(v)) if is_real?; return Quaternion(Math::exp(@re)); end vec=self.vector; v=vec.abs; u = vec/v; Math::exp(@re)*(Math::cos(v)+u*Math::sin(v)) end def log # log(r+uv)=1/2 log(r^2+v^2)+u atan(v/r) if is_real?; if @re>=0; return Quaternion(Math::log(@re)); else return Quaternion(Math::log(-@re),Math::PI,0,0); end end vec=self.vector; v=vec.abs; u = vec/v; Math::log(self.abs2.to_f)/2+u*Math::atan2( v, @re) end def ** other # q1^q2 = exp((log q1)*q2) if other.kind_of?(Quaternion); ((self.log)*other).exp elsif other.kind_of?(Complex); ((self.log)*other).exp elsif other.kind_of?(Integer); if other==0; return One; elsif other>0; x = self; q = x; n = other - 1 while n != 0 while (d, m = n.divmod(2); m == 0); x = x*x; n = d; end q *= x; n -= 1 end return q else return self.inverse**(-other) end elsif Quaternion::generic?(other); ((self.log)*other).exp else x, y = other.coerce(self); x ** y end; end def sqrt; self**(0.5); end def sinh; e=exp; return (e-e.inverse)/2; end def cosh; e=exp; return (e+e.inverse)/2; end def tanh; e=exp; e=e*e; return (e-1)/(e+1); end # Trigonometric functions def sin # sin(r+uv)=sin r cosh v + u cos r sinh v vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::sin(@re)); end u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er (Math::sin(@re)*c+u*Math::cos(@re)*s)/2 end def cos # cos(r+uv)=cos r cosh v - u sin r sinh v vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::cos(@re)); end u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er (Math::cos(@re)*c-u*Math::sin(@re)*s)/2 end def tan vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::tan(@re)); end u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er co=Math::cos(@re); si=Math::sin(@re); (si*c+u*co*s)/(co*c-u*si*s) end # Inverse trigonometric functions def asin # asin q = -u log(uq+sqrt(1-q^2)) q=self; u=unit_vector; -u*((u*q+(1-q*q).sqrt).log) end def acos # acos q = -u log(q+sqrt(q^2-1)) q=self; u=unit_vector; -u*((q+(q*q-1).sqrt).log) end def atan # atan q = u/2 log( (u+q)/(u-q) ) q=self; u=q.unit_vector; u*((u+q)/(u-q)).log/2 end def hash; @re^@im^@jm^@km; end def inspect sprintf("Quaternion(%s,%s,%s,%s)", @re.inspect, @im.inspect, @jm.inspect, @km.inspect) end def to_s s="" if @re!=0; s=@re.to_s; end if @im!=0; if s==""; s=sprintf("%si", @im); else if @im>0; s=sprintf("%s+%si",s,@im); else s=sprintf("%s-%si",s,-@im); end end end if @jm!=0; if s==""; s=sprintf("%sj", @jm); else if @jm>0; s=sprintf("%s+%sj",s,@jm); else s=sprintf("%s-%sj",s,-@jm); end end end if @km!=0; if s==""; s=sprintf("%sk", @km); else if @km>0; s=sprintf("%s+%sk",s,@km); else s=sprintf("%s-%sk",s,-@km); end end end if s=="" ; s="0"; end; return s end end # Quaternion end # Stick