// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_REGISTER_ALLOCATOR_H_ #define V8_REGISTER_ALLOCATOR_H_ #include "macro-assembler.h" #include "type-info.h" #if V8_TARGET_ARCH_IA32 #include "ia32/register-allocator-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/register-allocator-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/register-allocator-arm.h" #elif V8_TARGET_ARCH_MIPS #include "mips/register-allocator-mips.h" #else #error Unsupported target architecture. #endif namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Results // // Results encapsulate the compile-time values manipulated by the code // generator. They can represent registers or constants. class Result BASE_EMBEDDED { public: enum Type { INVALID, REGISTER, CONSTANT }; // Construct an invalid result. Result() { invalidate(); } // Construct a register Result. explicit Result(Register reg, TypeInfo info = TypeInfo::Unknown()); // Construct a Result whose value is a compile-time constant. explicit Result(Handle value) { ZoneObjectList* constant_list = Isolate::Current()->result_constant_list(); TypeInfo info = TypeInfo::TypeFromValue(value); value_ = TypeField::encode(CONSTANT) | TypeInfoField::encode(info.ToInt()) | IsUntaggedInt32Field::encode(false) | DataField::encode(constant_list->length()); constant_list->Add(value); } // The copy constructor and assignment operators could each create a new // register reference. inline Result(const Result& other); inline Result& operator=(const Result& other); inline ~Result(); inline void Unuse(); Type type() const { return TypeField::decode(value_); } void invalidate() { value_ = TypeField::encode(INVALID); } inline TypeInfo type_info() const; inline void set_type_info(TypeInfo info); inline bool is_number() const; inline bool is_smi() const; inline bool is_integer32() const; inline bool is_double() const; bool is_valid() const { return type() != INVALID; } bool is_register() const { return type() == REGISTER; } bool is_constant() const { return type() == CONSTANT; } // An untagged int32 Result contains a signed int32 in a register // or as a constant. These are only allowed in a side-effect-free // int32 calculation, and if a non-int32 input shows up or an overflow // occurs, we bail out and drop all the int32 values. Constants are // not converted to int32 until they are loaded into a register. bool is_untagged_int32() const { return IsUntaggedInt32Field::decode(value_); } void set_untagged_int32(bool value) { value_ &= ~IsUntaggedInt32Field::mask(); value_ |= IsUntaggedInt32Field::encode(value); } Register reg() const { ASSERT(is_register()); uint32_t reg = DataField::decode(value_); Register result; result.code_ = reg; return result; } Handle handle() const { ASSERT(type() == CONSTANT); return Isolate::Current()->result_constant_list()-> at(DataField::decode(value_)); } // Move this result to an arbitrary register. The register is not // necessarily spilled from the frame or even singly-referenced outside // it. void ToRegister(); // Move this result to a specified register. The register is spilled from // the frame, and the register is singly-referenced (by this result) // outside the frame. void ToRegister(Register reg); private: uint32_t value_; // Declare BitFields with template parameters . class TypeField: public BitField {}; class TypeInfoField : public BitField {}; class IsUntaggedInt32Field : public BitField {}; class DataField: public BitField {}; inline void CopyTo(Result* destination) const; friend class CodeGeneratorScope; }; // ------------------------------------------------------------------------- // Register file // // The register file tracks reference counts for the processor registers. // It is used by both the register allocator and the virtual frame. class RegisterFile BASE_EMBEDDED { public: RegisterFile() { Reset(); } void Reset() { for (int i = 0; i < kNumRegisters; i++) { ref_counts_[i] = 0; } } // Predicates and accessors for the reference counts. bool is_used(int num) { ASSERT(0 <= num && num < kNumRegisters); return ref_counts_[num] > 0; } int count(int num) { ASSERT(0 <= num && num < kNumRegisters); return ref_counts_[num]; } // Record a use of a register by incrementing its reference count. void Use(int num) { ASSERT(0 <= num && num < kNumRegisters); ref_counts_[num]++; } // Record that a register will no longer be used by decrementing its // reference count. void Unuse(int num) { ASSERT(is_used(num)); ref_counts_[num]--; } // Copy the reference counts from this register file to the other. void CopyTo(RegisterFile* other) { for (int i = 0; i < kNumRegisters; i++) { other->ref_counts_[i] = ref_counts_[i]; } } private: // C++ doesn't like zero length arrays, so we make the array length 1 even if // we don't need it. static const int kNumRegisters = (RegisterAllocatorConstants::kNumRegisters == 0) ? 1 : RegisterAllocatorConstants::kNumRegisters; int ref_counts_[kNumRegisters]; // Very fast inlined loop to find a free register. Used in // RegisterAllocator::AllocateWithoutSpilling. Returns // kInvalidRegister if no free register found. int ScanForFreeRegister() { for (int i = 0; i < RegisterAllocatorConstants::kNumRegisters; i++) { if (!is_used(i)) return i; } return RegisterAllocatorConstants::kInvalidRegister; } friend class RegisterAllocator; }; // ------------------------------------------------------------------------- // Register allocator // class RegisterAllocator BASE_EMBEDDED { public: static const int kNumRegisters = RegisterAllocatorConstants::kNumRegisters; static const int kInvalidRegister = RegisterAllocatorConstants::kInvalidRegister; explicit RegisterAllocator(CodeGenerator* cgen) : cgen_(cgen) {} // True if the register is reserved by the code generator, false if it // can be freely used by the allocator Defined in the // platform-specific XXX-inl.h files.. static inline bool IsReserved(Register reg); // Convert between (unreserved) assembler registers and allocator // numbers. Defined in the platform-specific XXX-inl.h files. static inline int ToNumber(Register reg); static inline Register ToRegister(int num); // Predicates and accessors for the registers' reference counts. bool is_used(int num) { return registers_.is_used(num); } inline bool is_used(Register reg); int count(int num) { return registers_.count(num); } inline int count(Register reg); // Explicitly record a reference to a register. void Use(int num) { registers_.Use(num); } inline void Use(Register reg); // Explicitly record that a register will no longer be used. void Unuse(int num) { registers_.Unuse(num); } inline void Unuse(Register reg); // Reset the register reference counts to free all non-reserved registers. void Reset() { registers_.Reset(); } // Initialize the register allocator for entry to a JS function. On // entry, the (non-reserved) registers used by the JS calling // convention are referenced and the other (non-reserved) registers // are free. inline void Initialize(); // Allocate a free register and return a register result if possible or // fail and return an invalid result. Result Allocate(); // Allocate a specific register if possible, spilling it from the // current frame if necessary, or else fail and return an invalid // result. Result Allocate(Register target); // Allocate a free register without spilling any from the current // frame or fail and return an invalid result. Result AllocateWithoutSpilling(); // Allocate a free byte register without spilling any from the current // frame or fail and return an invalid result. Result AllocateByteRegisterWithoutSpilling(); // Copy the internal state to a register file, to be restored later by // RestoreFrom. void SaveTo(RegisterFile* register_file) { registers_.CopyTo(register_file); } // Restore the internal state. void RestoreFrom(RegisterFile* register_file) { register_file->CopyTo(®isters_); } private: CodeGenerator* cgen_; RegisterFile registers_; }; } } // namespace v8::internal #endif // V8_REGISTER_ALLOCATOR_H_