/* ** ARM instruction emitter. ** Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h */ /* -- Constant encoding --------------------------------------------------- */ static uint8_t emit_invai[16] = { /* AND */ (ARMI_AND^ARMI_BIC) >> 21, /* EOR */ 0, /* SUB */ (ARMI_SUB^ARMI_ADD) >> 21, /* RSB */ 0, /* ADD */ (ARMI_ADD^ARMI_SUB) >> 21, /* ADC */ (ARMI_ADC^ARMI_SBC) >> 21, /* SBC */ (ARMI_SBC^ARMI_ADC) >> 21, /* RSC */ 0, /* TST */ 0, /* TEQ */ 0, /* CMP */ (ARMI_CMP^ARMI_CMN) >> 21, /* CMN */ (ARMI_CMN^ARMI_CMP) >> 21, /* ORR */ 0, /* MOV */ (ARMI_MOV^ARMI_MVN) >> 21, /* BIC */ (ARMI_BIC^ARMI_AND) >> 21, /* MVN */ (ARMI_MVN^ARMI_MOV) >> 21 }; /* Encode constant in K12 format for data processing instructions. */ static uint32_t emit_isk12(ARMIns ai, int32_t n) { uint32_t invai, i, m = (uint32_t)n; /* K12: unsigned 8 bit value, rotated in steps of two bits. */ for (i = 0; i < 4096; i += 256, m = lj_rol(m, 2)) if (m <= 255) return ARMI_K12|m|i; /* Otherwise try negation/complement with the inverse instruction. */ invai = emit_invai[((ai >> 21) & 15)]; if (!invai) return 0; /* Failed. No inverse instruction. */ m = ~(uint32_t)n; if (invai == ((ARMI_SUB^ARMI_ADD) >> 21) || invai == (ARMI_CMP^ARMI_CMN) >> 21) m++; for (i = 0; i < 4096; i += 256, m = lj_rol(m, 2)) if (m <= 255) return ARMI_K12|(invai<<21)|m|i; return 0; /* Failed. */ } /* -- Emit basic instructions --------------------------------------------- */ static void emit_dnm(ASMState *as, ARMIns ai, Reg rd, Reg rn, Reg rm) { *--as->mcp = ai | ARMF_D(rd) | ARMF_N(rn) | ARMF_M(rm); } static void emit_dm(ASMState *as, ARMIns ai, Reg rd, Reg rm) { *--as->mcp = ai | ARMF_D(rd) | ARMF_M(rm); } static void emit_dn(ASMState *as, ARMIns ai, Reg rd, Reg rn) { *--as->mcp = ai | ARMF_D(rd) | ARMF_N(rn); } static void emit_nm(ASMState *as, ARMIns ai, Reg rn, Reg rm) { *--as->mcp = ai | ARMF_N(rn) | ARMF_M(rm); } static void emit_d(ASMState *as, ARMIns ai, Reg rd) { *--as->mcp = ai | ARMF_D(rd); } static void emit_n(ASMState *as, ARMIns ai, Reg rn) { *--as->mcp = ai | ARMF_N(rn); } static void emit_m(ASMState *as, ARMIns ai, Reg rm) { *--as->mcp = ai | ARMF_M(rm); } static void emit_lsox(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs) { lua_assert(ofs >= -255 && ofs <= 255); if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U; *--as->mcp = ai | ARMI_LS_P | ARMI_LSX_I | ARMF_D(rd) | ARMF_N(rn) | ((ofs & 0xf0) << 4) | (ofs & 0x0f); } static void emit_lso(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs) { lua_assert(ofs >= -4095 && ofs <= 4095); /* Combine LDR/STR pairs to LDRD/STRD. */ if (*as->mcp == (ai|ARMI_LS_P|ARMI_LS_U|ARMF_D(rd^1)|ARMF_N(rn)|(ofs^4)) && (ai & ~(ARMI_LDR^ARMI_STR)) == ARMI_STR && rd != rn && (uint32_t)ofs <= 252 && !(ofs & 3) && !((rd ^ (ofs >>2)) & 1) && as->mcp != as->mcloop) { as->mcp++; emit_lsox(as, ai == ARMI_LDR ? ARMI_LDRD : ARMI_STRD, rd&~1, rn, ofs&~4); return; } if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U; *--as->mcp = ai | ARMI_LS_P | ARMF_D(rd) | ARMF_N(rn) | ofs; } #if !LJ_SOFTFP static void emit_vlso(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs) { lua_assert(ofs >= -1020 && ofs <= 1020 && (ofs&3) == 0); if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U; *--as->mcp = ai | ARMI_LS_P | ARMF_D(rd & 15) | ARMF_N(rn) | (ofs >> 2); } #endif /* -- Emit loads/stores --------------------------------------------------- */ /* Prefer spills of BASE/L. */ #define emit_canremat(ref) ((ref) < ASMREF_L) /* Try to find a one step delta relative to another constant. */ static int emit_kdelta1(ASMState *as, Reg d, int32_t i) { RegSet work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != d); if (emit_canremat(ref)) { int32_t delta = i - (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i); uint32_t k = emit_isk12(ARMI_ADD, delta); if (k) { if (k == ARMI_K12) emit_dm(as, ARMI_MOV, d, r); else emit_dn(as, ARMI_ADD^k, d, r); return 1; } } rset_clear(work, r); } return 0; /* Failed. */ } /* Try to find a two step delta relative to another constant. */ static int emit_kdelta2(ASMState *as, Reg d, int32_t i) { RegSet work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != d); if (emit_canremat(ref)) { int32_t other = ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i; if (other) { int32_t delta = i - other; uint32_t sh, inv = 0, k2, k; if (delta < 0) { delta = -delta; inv = ARMI_ADD^ARMI_SUB; } sh = lj_ffs(delta) & ~1; k2 = emit_isk12(0, delta & (255 << sh)); k = emit_isk12(0, delta & ~(255 << sh)); if (k) { emit_dn(as, ARMI_ADD^k2^inv, d, d); emit_dn(as, ARMI_ADD^k^inv, d, r); return 1; } } } rset_clear(work, r); } return 0; /* Failed. */ } /* Load a 32 bit constant into a GPR. */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { uint32_t k = emit_isk12(ARMI_MOV, i); lua_assert(rset_test(as->freeset, r) || r == RID_TMP); if (k) { /* Standard K12 constant. */ emit_d(as, ARMI_MOV^k, r); } else if ((as->flags & JIT_F_ARMV6T2) && (uint32_t)i < 0x00010000u) { /* 16 bit loword constant for ARMv6T2. */ emit_d(as, ARMI_MOVW|(i & 0x0fff)|((i & 0xf000)<<4), r); } else if (emit_kdelta1(as, r, i)) { /* One step delta relative to another constant. */ } else if ((as->flags & JIT_F_ARMV6T2)) { /* 32 bit hiword/loword constant for ARMv6T2. */ emit_d(as, ARMI_MOVT|((i>>16) & 0x0fff)|(((i>>16) & 0xf000)<<4), r); emit_d(as, ARMI_MOVW|(i & 0x0fff)|((i & 0xf000)<<4), r); } else if (emit_kdelta2(as, r, i)) { /* Two step delta relative to another constant. */ } else { /* Otherwise construct the constant with up to 4 instructions. */ /* NYI: use mvn+bic, use pc-relative loads. */ for (;;) { uint32_t sh = lj_ffs(i) & ~1; int32_t m = i & (255 << sh); i &= ~(255 << sh); if (i == 0) { emit_d(as, ARMI_MOV ^ emit_isk12(0, m), r); break; } emit_dn(as, ARMI_ORR ^ emit_isk12(0, m), r, r); } } } #define emit_loada(as, r, addr) emit_loadi(as, (r), i32ptr((addr))) static Reg ra_allock(ASMState *as, int32_t k, RegSet allow); /* Get/set from constant pointer. */ static void emit_lsptr(ASMState *as, ARMIns ai, Reg r, void *p) { int32_t i = i32ptr(p); emit_lso(as, ai, r, ra_allock(as, (i & ~4095), rset_exclude(RSET_GPR, r)), (i & 4095)); } #if !LJ_SOFTFP /* Load a number constant into an FPR. */ static void emit_loadn(ASMState *as, Reg r, cTValue *tv) { int32_t i; if ((as->flags & JIT_F_VFPV3) && !tv->u32.lo) { uint32_t hi = tv->u32.hi; uint32_t b = ((hi >> 22) & 0x1ff); if (!(hi & 0xffff) && (b == 0x100 || b == 0x0ff)) { *--as->mcp = ARMI_VMOVI_D | ARMF_D(r & 15) | ((tv->u32.hi >> 12) & 0x00080000) | ((tv->u32.hi >> 4) & 0x00070000) | ((tv->u32.hi >> 16) & 0x0000000f); return; } } i = i32ptr(tv); emit_vlso(as, ARMI_VLDR_D, r, ra_allock(as, (i & ~1020), RSET_GPR), (i & 1020)); } #endif /* Get/set global_State fields. */ #define emit_getgl(as, r, field) \ emit_lsptr(as, ARMI_LDR, (r), (void *)&J2G(as->J)->field) #define emit_setgl(as, r, field) \ emit_lsptr(as, ARMI_STR, (r), (void *)&J2G(as->J)->field) /* Trace number is determined from pc of exit instruction. */ #define emit_setvmstate(as, i) UNUSED(i) /* -- Emit control-flow instructions -------------------------------------- */ /* Label for internal jumps. */ typedef MCode *MCLabel; /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) static void emit_branch(ASMState *as, ARMIns ai, MCode *target) { MCode *p = as->mcp; ptrdiff_t delta = (target - p) - 1; lua_assert(((delta + 0x00800000) >> 24) == 0); *--p = ai | ((uint32_t)delta & 0x00ffffffu); as->mcp = p; } #define emit_jmp(as, target) emit_branch(as, ARMI_B, (target)) static void emit_call(ASMState *as, void *target) { MCode *p = --as->mcp; ptrdiff_t delta = ((char *)target - (char *)p) - 8; if ((((delta>>2) + 0x00800000) >> 24) == 0) { if ((delta & 1)) *p = ARMI_BLX | ((uint32_t)(delta>>2) & 0x00ffffffu) | ((delta&2) << 27); else *p = ARMI_BL | ((uint32_t)(delta>>2) & 0x00ffffffu); } else { /* Target out of range: need indirect call. But don't use R0-R3. */ Reg r = ra_allock(as, i32ptr(target), RSET_RANGE(RID_R4, RID_R12+1)); *p = ARMI_BLXr | ARMF_M(r); } } /* -- Emit generic operations --------------------------------------------- */ /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { #if LJ_SOFTFP lua_assert(!irt_isnum(ir->t)); UNUSED(ir); #else if (dst >= RID_MAX_GPR) { emit_dm(as, irt_isnum(ir->t) ? ARMI_VMOV_D : ARMI_VMOV_S, (dst & 15), (src & 15)); return; } #endif if (as->mcp != as->mcloop) { /* Swap early registers for loads/stores. */ MCode ins = *as->mcp, swp = (src^dst); if ((ins & 0x0c000000) == 0x04000000 && (ins & 0x02000010) != 0x02000010) { if (!((ins ^ (dst << 16)) & 0x000f0000)) *as->mcp = ins ^ (swp << 16); /* Swap N in load/store. */ if (!(ins & 0x00100000) && !((ins ^ (dst << 12)) & 0x0000f000)) *as->mcp = ins ^ (swp << 12); /* Swap D in store. */ } } emit_dm(as, ARMI_MOV, dst, src); } /* Generic load of register with base and (small) offset address. */ static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { #if LJ_SOFTFP lua_assert(!irt_isnum(ir->t)); UNUSED(ir); #else if (r >= RID_MAX_GPR) emit_vlso(as, irt_isnum(ir->t) ? ARMI_VLDR_D : ARMI_VLDR_S, r, base, ofs); else #endif emit_lso(as, ARMI_LDR, r, base, ofs); } /* Generic store of register with base and (small) offset address. */ static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { #if LJ_SOFTFP lua_assert(!irt_isnum(ir->t)); UNUSED(ir); #else if (r >= RID_MAX_GPR) emit_vlso(as, irt_isnum(ir->t) ? ARMI_VSTR_D : ARMI_VSTR_S, r, base, ofs); else #endif emit_lso(as, ARMI_STR, r, base, ofs); } /* Emit an arithmetic/logic operation with a constant operand. */ static void emit_opk(ASMState *as, ARMIns ai, Reg dest, Reg src, int32_t i, RegSet allow) { uint32_t k = emit_isk12(ai, i); if (k) emit_dn(as, ai^k, dest, src); else emit_dnm(as, ai, dest, src, ra_allock(as, i, allow)); } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) emit_opk(as, ARMI_ADD, r, r, ofs, rset_exclude(RSET_GPR, r)); } #define emit_spsub(as, ofs) emit_addptr(as, RID_SP, -(ofs))