# insert your copyright here # see the URL below for information on how to write OpenStudio measures # http://nrel.github.io/OpenStudio-user-documentation/reference/measure_writing_guide/ # start the measure class AddElectrochromicWindow < OpenStudio::Measure::ModelMeasure # human readable name def name # Measure name should be the title case of the class name. return 'Add Electrochromic Window' end # human readable description def description return 'This measure replaces existing window construction to electrochromic window, and allows a few control '\ 'strategies such as by glare, solar radiation, schedule, and illuminance. This measure models two states '\ 'of the electrochromic window, the light and dark states.' end # human readable description of modeling approach def modeler_description return 'This measure implements the electrochromic window as a three-layer construction, which includes a typical '\ '3mm glass layer, an air gap, and an electrochromic layer. The control strategies are implemented via '\ 'WindowShadingControl object. For the electrochromic window layer performance, the user could either use default values, '\ ' which we got from View manufacturer data, or enter their own product performance.' end # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # Performance of electrochromic window layer (Default from View product https://windows.lbl.gov/tools/knowledge-base/articles/view-electrochromic) # thickness of the electrochromic glass layer thickness_electro_glass = OpenStudio::Measure::OSArgument.makeDoubleArgument('thickness_electro_glass', true) thickness_electro_glass.setDisplayName('Thickness of the electrochromic glass layer in mm') thickness_electro_glass.setUnits('m') thickness_electro_glass.setDefaultValue(0.0058) args << thickness_electro_glass # thickness of the air gap between electrochromic window layer and inside clear glass layer thickness_air_gap = OpenStudio::Measure::OSArgument.makeDoubleArgument('thickness_air_gap', true) thickness_air_gap.setDisplayName('Thickness of the air gap between electrochromic glass layer and inside clear glass layer in meter') thickness_air_gap.setUnits('m') thickness_air_gap.setDefaultValue(0.0125) # 0.5 inch args << thickness_air_gap # thickness of the inside clear glass layer thickness_clear_glass = OpenStudio::Measure::OSArgument.makeDoubleArgument('thickness_clear_glass', true) thickness_clear_glass.setDisplayName('Thickness of the inside clear glass layer in meter') thickness_clear_glass.setUnits('m') thickness_clear_glass.setDefaultValue(0.003) args << thickness_clear_glass # thermal conductivity of the electrochromic glass layer tc_electro_glass = OpenStudio::Measure::OSArgument.makeDoubleArgument('tc_electro_glass', true) tc_electro_glass.setDisplayName('Thermal conductivity of the electrochromic glass layer in W/m.K') tc_electro_glass.setUnits('W/m.K') tc_electro_glass.setDefaultValue(0.9) args << tc_electro_glass # solar transmittance - light state solar_trans_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_trans_light', true) solar_trans_light.setDisplayName('Electrochromic glass solar transmittance - light state') solar_trans_light.setDefaultValue(0.444) args << solar_trans_light # solar reflectance - front side - light state solar_ref_f_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_ref_f_light', true) solar_ref_f_light.setDisplayName('Electrochromic glass solar reflectance - front side - light state') solar_ref_f_light.setDefaultValue(0.134) args << solar_ref_f_light # solar reflectance - back side - light state solar_ref_b_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_ref_b_light', true) solar_ref_b_light.setDisplayName('Electrochromic glass solar reflectance - back side - light state') solar_ref_b_light.setDefaultValue(0.196) args << solar_ref_b_light # visible transmittance - light state vis_trans_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('vis_trans_light', true) vis_trans_light.setDisplayName('Electrochromic glass visible transmittance - light state') vis_trans_light.setDefaultValue(0.696) args << vis_trans_light # visible reflectance - front side - light state vis_ref_f_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('vis_ref_f_light', true) vis_ref_f_light.setDisplayName('Electrochromic glass visible reflectance - front side - light state') vis_ref_f_light.setDefaultValue(0.119) args << vis_ref_f_light # visible reflectance - back side - light state vis_ref_b_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('vis_ref_b_light', true) vis_ref_b_light.setDisplayName('Electrochromic glass visible reflectance - back side - light state') vis_ref_b_light.setDefaultValue(0.133) args << vis_ref_b_light # infrared transmittance - light state ir_trans_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('ir_trans_light', true) ir_trans_light.setDisplayName('Electrochromic glass infrared transmittance - light state') ir_trans_light.setDefaultValue(0) args << ir_trans_light # infrared emissivity - front side - light state ir_emis_f_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('ir_emis_f_light', true) ir_emis_f_light.setDisplayName('Electrochromic glass infrared emissivity - front side - light state') ir_emis_f_light.setDefaultValue(0.84) args << ir_emis_f_light # infrared emissivity - back side - light state ir_emis_b_light = OpenStudio::Measure::OSArgument.makeDoubleArgument('ir_emis_b_light', true) ir_emis_b_light.setDisplayName('Electrochromic glass infrared emissivity - back side - light state') ir_emis_b_light.setDefaultValue(0.159) args << ir_emis_b_light # solar transmittance - dark state solar_trans_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_trans_dark', true) solar_trans_dark.setDisplayName('Electrochromic glass solar transmittance - dark state') solar_trans_dark.setDefaultValue(0.006) args << solar_trans_dark # solar reflectance - front side - dark state solar_ref_f_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_ref_f_dark', true) solar_ref_f_dark.setDisplayName('Electrochromic glass solar reflectance - front side - dark state') solar_ref_f_dark.setDefaultValue(0.121) args << solar_ref_f_dark # solar reflectance - back side - dark state solar_ref_b_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_ref_b_dark', true) solar_ref_b_dark.setDisplayName('Electrochromic glass solar reflectance - back side - dark state') solar_ref_b_dark.setDefaultValue(0.194) args << solar_ref_b_dark # visible transmittance - dark state vis_trans_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('vis_trans_dark', true) vis_trans_dark.setDisplayName('Electrochromic glass visible transmittance - dark state') vis_trans_dark.setDefaultValue(0.012) args << vis_trans_dark # visible reflectance - front side - dark state vis_ref_f_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('vis_ref_f_dark', true) vis_ref_f_dark.setDisplayName('Electrochromic glass visible reflectance - front side - dark state') vis_ref_f_dark.setDefaultValue(0.098) args << vis_ref_f_dark # visible reflectance - back side - dark state vis_ref_b_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('vis_ref_b_dark', true) vis_ref_b_dark.setDisplayName('Electrochromic glass visible reflectance - back side - dark state') vis_ref_b_dark.setDefaultValue(0.114) args << vis_ref_b_dark # infrared transmittance - dark state ir_trans_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('ir_trans_dark', true) ir_trans_dark.setDisplayName('Electrochromic glass infrared transmittance - dark state') ir_trans_dark.setDefaultValue(0) args << ir_trans_dark # infrared emissivity - front side - dark state ir_emis_f_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('ir_emis_f_dark', true) ir_emis_f_dark.setDisplayName('Electrochromic glass infrared emissivity - front side - dark state') ir_emis_f_dark.setDefaultValue(0.84) args << ir_emis_f_dark # infrared emissivity - back side - dark state ir_emis_b_dark = OpenStudio::Measure::OSArgument.makeDoubleArgument('ir_emis_b_dark', true) ir_emis_b_dark.setDisplayName('Electrochromic glass infrared emissivity - back side - dark state') ir_emis_b_dark.setDefaultValue(0.16) args << ir_emis_b_dark # type of the air gap between electrochromic window layer and inside clear glass layer gas_type = OpenStudio::Measure::OSArgument.makeChoiceArgument('gas_type', ['Air', 'Argon', 'Krypton', 'Xenon'], true) gas_type.setDisplayName('Select the type of air gap for the electrochromic window') gas_type.setDefaultValue('Air') args << gas_type # control strategies - choice ctrl_type = OpenStudio::Measure::OSArgument.makeChoiceArgument('ctrl_type', ['OnIfHighGlare', 'OnIfHighSolarOnWindow', 'MeetDaylightIlluminanceSetpoint'], true) ctrl_type.setDisplayName('Select control strategy for electrochromic window') ctrl_type.setDescription("Setpoint of glare, radiation, or illuminance should also be set based on selected control strategy") ctrl_type.setDefaultValue('OnIfHighGlare') args << ctrl_type # glare setpoint for electrochromic window control glare_stp = OpenStudio::Measure::OSArgument.makeDoubleArgument('glare_stp', false) glare_stp.setDisplayName('Maximum allowable discomfort glare index') glare_stp.setDescription('Electrochromic window will turn to dark state when glare index is above this value.') glare_stp.setDefaultValue(22) args << glare_stp # solar radiation setpoint for electrochromic window control solar_rad_stp = OpenStudio::Measure::OSArgument.makeDoubleArgument('solar_rad_stp', false) solar_rad_stp.setDisplayName('Total (beam plus diffuse) solar radiation setpoint') solar_rad_stp.setDescription('Electrochromic window will turn to dark state when total solar radiation is above this value.') solar_rad_stp.setUnits('W/m2') solar_rad_stp.setDefaultValue(800) args << solar_rad_stp # illuminance setpoint for electrochromic window control illum_stp = OpenStudio::Measure::OSArgument.makeDoubleArgument('illum_stp', false) illum_stp.setDisplayName('Illuminance setpoint') illum_stp.setDescription('The transmittance of the electrochromic window will be adjusted to just meet the daylight illuminance setpoint.') illum_stp.setUnits('lux') illum_stp.setDefaultValue(300) args << illum_stp return args end # define what happens when the measure is run def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables thickness_electro_glass = runner.getDoubleArgumentValue('thickness_electro_glass', user_arguments) thickness_air_gap = runner.getDoubleArgumentValue('thickness_air_gap', user_arguments) thickness_clear_glass = runner.getDoubleArgumentValue('thickness_clear_glass', user_arguments) tc_electro_glass = runner.getDoubleArgumentValue('tc_electro_glass', user_arguments) solar_trans_light = runner.getDoubleArgumentValue('solar_trans_light', user_arguments) solar_ref_f_light = runner.getDoubleArgumentValue('solar_ref_f_light', user_arguments) solar_ref_b_light = runner.getDoubleArgumentValue('solar_ref_b_light', user_arguments) vis_trans_light = runner.getDoubleArgumentValue('vis_trans_light', user_arguments) vis_ref_f_light = runner.getDoubleArgumentValue('vis_ref_f_light', user_arguments) vis_ref_b_light = runner.getDoubleArgumentValue('vis_ref_b_light', user_arguments) ir_trans_light = runner.getDoubleArgumentValue('ir_trans_light', user_arguments) ir_emis_f_light = runner.getDoubleArgumentValue('ir_emis_f_light', user_arguments) ir_emis_b_light = runner.getDoubleArgumentValue('ir_emis_b_light', user_arguments) solar_trans_dark = runner.getDoubleArgumentValue('solar_trans_dark', user_arguments) solar_ref_f_dark = runner.getDoubleArgumentValue('solar_ref_f_dark', user_arguments) solar_ref_b_dark = runner.getDoubleArgumentValue('solar_ref_b_dark', user_arguments) vis_trans_dark = runner.getDoubleArgumentValue('vis_trans_dark', user_arguments) vis_ref_f_dark = runner.getDoubleArgumentValue('vis_ref_f_dark', user_arguments) vis_ref_b_dark = runner.getDoubleArgumentValue('vis_ref_b_dark', user_arguments) ir_trans_dark = runner.getDoubleArgumentValue('ir_trans_dark', user_arguments) ir_emis_f_dark = runner.getDoubleArgumentValue('ir_emis_f_dark', user_arguments) ir_emis_b_dark = runner.getDoubleArgumentValue('ir_emis_b_dark', user_arguments) gas_type = runner.getStringArgumentValue('gas_type', user_arguments) ctrl_type = runner.getStringArgumentValue('ctrl_type', user_arguments) glare_stp = runner.getDoubleArgumentValue('glare_stp', user_arguments) solar_rad_stp = runner.getDoubleArgumentValue('solar_rad_stp', user_arguments) illum_stp = runner.getDoubleArgumentValue('illum_stp', user_arguments) # validate inputs rationality if thickness_electro_glass > 0.02 # 20mm runner.registerError("Electrochromic glass layer is thicker than 20mm, which is abnormally high.") return false elsif thickness_electro_glass >= 0.01 runner.registerWarning("Electrochromic glass layer is thicker than 10mm, which is higher than normal.") elsif thickness_electro_glass <= 0 runner.registerError("Electrochromic glass layer thickness should be positive.") return false end if thickness_air_gap > 0.1 # 100mm runner.registerError("Air gap layer is thicker than 100mm, which is abnormally high.") return false elsif thickness_air_gap >= 0.03 runner.registerWarning("Air gap layer is thicker than 30mm, which is higher than normal.") elsif thickness_air_gap <= 0 runner.registerError("Air gap layer thickness should be positive.") return false end if thickness_clear_glass > 0.02 # 20mm runner.registerError("Clear glass layer is thicker than 20mm, which is abnormally high.") return false elsif thickness_clear_glass >= 0.01 runner.registerWarning("Clear glass layer is thicker than 10mm, which is higher than normal.") elsif thickness_clear_glass <= 0 runner.registerError("Clear glass layer thickness should be positive.") return false end if tc_electro_glass <= 0 runner.registerError("Thermal conductivity should be positive.") return false end if glare_stp <= 0 runner.registerError("Glare setpoint should be positive.") return false elsif glare_stp > 50 runner.registerWarning("Glare setpoint is greater than 50, which is higher than normal.") end if solar_rad_stp <= 0 runner.registerError("Solar radiation setpoint should be positive.") return false elsif solar_rad_stp > 2000 runner.registerWarning("Solar radiation setpoint is greater than 2000, which is higher than normal.") end if illum_stp <= 0 runner.registerError("Illuminance setpoint should be positive.") return false elsif illum_stp > 800 runner.registerWarning("Illuminance setpoint is greater than 800W/m2, which is higher than normal.") end glazing_param_names = [ 'solar_trans_light', 'solar_ref_f_light', 'solar_ref_b_light', 'vis_trans_light', 'vis_ref_f_light', 'vis_ref_b_light', 'ir_trans_light', 'ir_emis_f_light', 'ir_emis_b_light', 'solar_trans_dark', 'solar_ref_f_dark', 'solar_ref_b_dark', 'vis_trans_dark', 'vis_ref_f_dark', 'vis_ref_b_dark', 'ir_trans_dark', 'ir_emis_f_dark', 'ir_emis_b_dark' ] # validate the property inputs of glazing material glazing_param_names.each do |param_name| param_val = eval(param_name) if param_val > 1 runner.registerError("Glazing parameter #{param_name} should be no greater than 1.") return false elsif param_val < 0 runner.registerError("Glazing parameter #{param_name} should be non-negative.") return false end end # ------------------------------------------------------------------------------------ # Replace existing window construction with electrochromic window new_elec_win_light_cons = OpenStudio::Model::Construction.new(model) new_elec_win_light_cons.setName('Electrochromic window construction light state') new_elec_win_dark_cons = OpenStudio::Model::Construction.new(model) new_elec_win_dark_cons.setName('Electrochromic window construction dark state') # clear glass layer clear_glazing = OpenStudio::Model::StandardGlazing.new(model) clear_glazing.setName("CLEAR #{thickness_clear_glass*1000}mm glass") clear_glazing.setThickness(thickness_clear_glass) clear_glazing.setSolarTransmittanceatNormalIncidence(0.834) clear_glazing.setFrontSideSolarReflectanceatNormalIncidence(0.075) clear_glazing.setBackSideSolarReflectanceatNormalIncidence(0.075) clear_glazing.setVisibleTransmittance(0.899) clear_glazing.setFrontSideVisibleReflectanceatNormalIncidence(0.083) clear_glazing.setBackSideVisibleReflectanceatNormalIncidence(0.083) clear_glazing.setInfraredTransmittanceatNormalIncidence(0.0) clear_glazing.setFrontSideInfraredHemisphericalEmissivity(0.84) clear_glazing.setBackSideInfraredHemisphericalEmissivity(0.84) clear_glazing.setThermalConductivity(1.0) # electrochromic layer # light state elec_glazing_light = OpenStudio::Model::StandardGlazing.new(model) elec_glazing_light.setName('Electrochromic glass light state') elec_glazing_light.setThickness(thickness_electro_glass) elec_glazing_light.setSolarTransmittanceatNormalIncidence(solar_trans_light) elec_glazing_light.setFrontSideSolarReflectanceatNormalIncidence(solar_ref_f_light) elec_glazing_light.setBackSideSolarReflectanceatNormalIncidence(solar_ref_b_light) elec_glazing_light.setVisibleTransmittance(vis_trans_light) elec_glazing_light.setFrontSideVisibleReflectanceatNormalIncidence(vis_ref_f_light) elec_glazing_light.setBackSideVisibleReflectanceatNormalIncidence(vis_ref_b_light) elec_glazing_light.setInfraredTransmittanceatNormalIncidence(ir_trans_light) elec_glazing_light.setFrontSideInfraredHemisphericalEmissivity(ir_emis_f_light) elec_glazing_light.setBackSideInfraredHemisphericalEmissivity(ir_emis_b_light) elec_glazing_light.setThermalConductivity(tc_electro_glass) # dark state elec_glazing_dark = OpenStudio::Model::StandardGlazing.new(model) elec_glazing_dark.setName('Electrochromic glass dark state') elec_glazing_dark.setThickness(thickness_electro_glass) elec_glazing_dark.setSolarTransmittanceatNormalIncidence(solar_trans_dark) elec_glazing_dark.setFrontSideSolarReflectanceatNormalIncidence(solar_ref_f_dark) elec_glazing_dark.setBackSideSolarReflectanceatNormalIncidence(solar_ref_b_dark) elec_glazing_dark.setVisibleTransmittance(vis_trans_dark) elec_glazing_dark.setFrontSideVisibleReflectanceatNormalIncidence(vis_ref_f_dark) elec_glazing_dark.setBackSideVisibleReflectanceatNormalIncidence(vis_ref_b_dark) elec_glazing_dark.setInfraredTransmittanceatNormalIncidence(ir_trans_dark) elec_glazing_dark.setFrontSideInfraredHemisphericalEmissivity(ir_emis_f_dark) elec_glazing_dark.setBackSideInfraredHemisphericalEmissivity(ir_emis_b_dark) elec_glazing_dark.setThermalConductivity(tc_electro_glass) # air gap layer gas_layer = OpenStudio::Model::Gas.new(model) gas_layer.setName("WinAirGap") gas_layer.setGasType(gas_type) gas_layer.setThickness(thickness_air_gap) # TODO: make sure the clear glazing is inside and electrochromic is outside facing win_layers_light = OpenStudio::Model::MaterialVector.new win_layers_dark = OpenStudio::Model::MaterialVector.new win_layers_light << clear_glazing win_layers_light << gas_layer win_layers_light << elec_glazing_light win_layers_dark << clear_glazing win_layers_dark << gas_layer win_layers_dark << elec_glazing_dark new_elec_win_light_cons.setLayers(win_layers_light) new_elec_win_dark_cons.setLayers(win_layers_dark) count_changed_win = 0 model.getSubSurfaces.each do |sub_surface| # puts "sub_surface #{sub_surface} type: #{sub_surface.subSurfaceType}" # skip subsurfaces that are not exterior windows, i.e., only change exterior window to electrochromic windows next unless (sub_surface.outsideBoundaryCondition == 'Outdoors' && sub_surface.subSurfaceType.downcase.include?('window')) sub_surface.setConstruction(new_elec_win_light_cons) count_changed_win += 1 end model.getSpaces.each do |space| # ext_win_list = [] ext_win_list = OpenStudio::Model::SubSurfaceVector.new space.surfaces.each do |surf| surf.subSurfaces.each do |sub_surface| ext_win_list << sub_surface if (sub_surface.outsideBoundaryCondition == 'Outdoors' && sub_surface.subSurfaceType.downcase.include?('window')) end end # add WindowShadingControl if there is exterior window in the space unless ext_win_list.empty? shade_control = OpenStudio::Model::ShadingControl.new(new_elec_win_dark_cons) shade_control.setShadingType('SwitchableGlazing') shade_control.setShadingControlType(ctrl_type) shade_control.setSubSurfaces(ext_win_list) case ctrl_type when 'OnIfHighGlare' shade_control.setGlareControlIsActive(true) when 'OnIfHighSolarOnWindow' shade_control.setSetpoint(solar_rad_stp) end if space.daylightingControls.empty? # create daylighting control if no existing daylight_ctrl = OpenStudio::Model::DaylightingControl.new(model) daylight_ctrl.setName(space.name.to_s + " daylighting control") daylight_ctrl.setSpace(space) # get space center point position x,y = 0,0 space.floorPrint.each do |pt| x += pt.x y += pt.y end num_pt = space.floorPrint.length x /= (num_pt*1.0) y /= (num_pt*1.0) z = 0.8 # working plane daylight_ctrl.setPosition(OpenStudio::Point3d.new(x,y,z)) # Set the rest of parameters daylight_ctrl.setMaximumAllowableDiscomfortGlareIndex(glare_stp) daylight_ctrl.setIlluminanceSetpoint(illum_stp) else # modify existing daylighting control if any space.daylightingControls.each do |daylight_ctrl| case ctrl_type when 'OnIfHighGlare' daylight_ctrl.setMaximumAllowableDiscomfortGlareIndex(glare_stp) when 'MeetDaylightIlluminanceSetpoint' daylight_ctrl.setIlluminanceSetpoint(illum_stp) end end end zone = space.thermalZone if zone.is_initialized zone = zone.get # set primary daylighting control unless zone.primaryDaylightingControl.is_initialized if space.daylightingControls.length == 1 zone.setPrimaryDaylightingControl(space.daylightingControls[0]) zone.setFractionofZoneControlledbyPrimaryDaylightingControl(1.0) else zone.setPrimaryDaylightingControl(space.daylightingControls[0]) zone.setFractionofZoneControlledbyPrimaryDaylightingControl(0.5) zone.setSecondaryDaylightingControl(space.daylightingControls[1]) zone.setFractionofZoneControlledbySecondaryDaylightingControl(0.5) end end else runner.registerWarning("No thermal zone defined for space #{space.name}, can't assign daylighting control.") end end end # report final condition of model runner.registerFinalCondition("#{count_changed_win} exterior windows are replaced with electrochromic window.") return true end end # register the measure to be used by the application AddElectrochromicWindow.new.registerWithApplication