require File.dirname(__FILE__) + '/example_helper' require 'enumerator' # Solves the sudoku problem using sets. The model used is a fairly direct # translation of the corresponding Gecode example: # http://www.gecode.org/gecode-doc-latest/sudoku-set_8cc-source.html . class SudokuSet include Gecode::Mixin # Takes a 9x9 matrix of values in the initial sudoku, 0 if the square is # empty. def initialize(predefined_values) # Verify that the input is of a valid size. @size = n = predefined_values.row_size block_size = Math.sqrt(n).round unless predefined_values.square? and block_size**2 == n raise ArgumentError, 'Incorrect value matrix size.' end sub_count = block_size # Create one set per assignable number (i.e. 1..9). Each set contains the # position of all squares that the number is located in. The squares are # given numbers from 1 to 81. Each set therefore has an empty lower bound # (since we have no guarantees where a number will end up) and 1..81 as # upper bound (as it may potentially occurr in any square). We know that # each assignable number must occurr 9 times in a solved sudoku, so we # set the cardinality to 9..9 . sets_is_an set_var_array(n, [], 1..n*n, n..n) predefined_values.row_size.times do |i| predefined_values.column_size.times do |j| unless predefined_values[i,j].zero? # We add the constraint that the square position must occurr in the # set corresponding to the predefined value. sets[predefined_values[i,j] - 1].must_be.superset_of [i*n + j+1] end end end # Build arrays containing the square positions of each row and column. rows = [] columns = [] n.times do |i| rows << ((i*n + 1)..(i*n + n)) columns << (0...n).map{ |e| e*n + 1 + i } end # Build arrays containing the square positions of each block. blocks = [] # The square numbers of the first block. first_block = (0...block_size).map do |e| ((n*e+1)..(n*e+block_size)).to_a end.flatten block_size.times do |i| block_size.times do |j| blocks << first_block.map{ |e| e + (j*n*block_size)+(i*block_size) } end end # All sets must be pairwise disjoint since two numbers can't be assigned to # the same square. n.times do |i| (i + 1).upto(n - 1) do |j| sets[i].must_be.disjoint_with sets[j] end end # The sets must intersect in exactly one element with each row column and # block. I.e. an assignable number must be assigned exactly once in each # row, column and block. sets.each do |set| rows.each do |row| set.intersection(row).size.must == 1 end columns.each do |column| set.intersection(column).size.must == 1 end blocks.each do |block| set.intersection(block).size.must == 1 end end # Branching. branch_on sets, :variable => :none, :value => :min end # Outputs the assigned numbers in a grid. def to_s squares = [] sets.values.each_with_index do |positions, i| positions.each{ |square_position| squares[square_position - 1] = i + 1 } end squares.enum_slice(@size).map{ |slice| slice.join(' ') }.join("\n") end end predefined_squares = Matrix[ [0,0,0, 2,0,5, 0,0,0], [0,9,0, 0,0,0, 7,3,0], [0,0,2, 0,0,9, 0,6,0], [2,0,0, 0,0,0, 4,0,9], [0,0,0, 0,7,0, 0,0,0], [6,0,9, 0,0,0, 0,0,1], [0,8,0, 4,0,0, 1,0,0], [0,6,3, 0,0,0, 0,8,0], [0,0,0, 6,0,8, 0,0,0]] puts SudokuSet.new(predefined_squares).solve!.to_s