// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "api.h" #include "bootstrapper.h" #include "debug.h" #include "execution.h" #include "messages.h" #include "platform.h" #include "simulator.h" #include "string-stream.h" #include "vm-state-inl.h" // TODO(isolates): move to isolate.cc. This stuff is kept here to // simplify merging. namespace v8 { namespace internal { v8::TryCatch* ThreadLocalTop::TryCatchHandler() { return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address()); } void ThreadLocalTop::Initialize() { c_entry_fp_ = 0; handler_ = 0; #ifdef USE_SIMULATOR #ifdef V8_TARGET_ARCH_ARM simulator_ = Simulator::current(Isolate::Current()); #elif V8_TARGET_ARCH_MIPS simulator_ = Simulator::current(Isolate::Current()); #endif #endif #ifdef ENABLE_LOGGING_AND_PROFILING js_entry_sp_ = NULL; external_callback_ = NULL; #endif #ifdef ENABLE_VMSTATE_TRACKING current_vm_state_ = EXTERNAL; #endif try_catch_handler_address_ = NULL; context_ = NULL; int id = Isolate::Current()->thread_manager()->CurrentId(); thread_id_ = (id == 0) ? ThreadManager::kInvalidId : id; external_caught_exception_ = false; failed_access_check_callback_ = NULL; save_context_ = NULL; catcher_ = NULL; } Address Isolate::get_address_from_id(Isolate::AddressId id) { return isolate_addresses_[id]; } char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) { ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage); Iterate(v, thread); return thread_storage + sizeof(ThreadLocalTop); } void Isolate::IterateThread(ThreadVisitor* v) { v->VisitThread(thread_local_top()); } void Isolate::IterateThread(ThreadVisitor* v, char* t) { ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t); v->VisitThread(thread); } void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) { // Visit the roots from the top for a given thread. Object* pending; // The pending exception can sometimes be a failure. We can't show // that to the GC, which only understands objects. if (thread->pending_exception_->ToObject(&pending)) { v->VisitPointer(&pending); thread->pending_exception_ = pending; // In case GC updated it. } v->VisitPointer(&(thread->pending_message_obj_)); v->VisitPointer(BitCast<Object**>(&(thread->pending_message_script_))); v->VisitPointer(BitCast<Object**>(&(thread->context_))); Object* scheduled; if (thread->scheduled_exception_->ToObject(&scheduled)) { v->VisitPointer(&scheduled); thread->scheduled_exception_ = scheduled; } for (v8::TryCatch* block = thread->TryCatchHandler(); block != NULL; block = TRY_CATCH_FROM_ADDRESS(block->next_)) { v->VisitPointer(BitCast<Object**>(&(block->exception_))); v->VisitPointer(BitCast<Object**>(&(block->message_))); } // Iterate over pointers on native execution stack. for (StackFrameIterator it(thread); !it.done(); it.Advance()) { it.frame()->Iterate(v); } } void Isolate::Iterate(ObjectVisitor* v) { ThreadLocalTop* current_t = thread_local_top(); Iterate(v, current_t); } void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) { // The ARM simulator has a separate JS stack. We therefore register // the C++ try catch handler with the simulator and get back an // address that can be used for comparisons with addresses into the // JS stack. When running without the simulator, the address // returned will be the address of the C++ try catch handler itself. Address address = reinterpret_cast<Address>( SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that))); thread_local_top()->set_try_catch_handler_address(address); } void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) { ASSERT(thread_local_top()->TryCatchHandler() == that); thread_local_top()->set_try_catch_handler_address( reinterpret_cast<Address>(that->next_)); thread_local_top()->catcher_ = NULL; SimulatorStack::UnregisterCTryCatch(); } Handle<String> Isolate::StackTraceString() { if (stack_trace_nesting_level_ == 0) { stack_trace_nesting_level_++; HeapStringAllocator allocator; StringStream::ClearMentionedObjectCache(); StringStream accumulator(&allocator); incomplete_message_ = &accumulator; PrintStack(&accumulator); Handle<String> stack_trace = accumulator.ToString(); incomplete_message_ = NULL; stack_trace_nesting_level_ = 0; return stack_trace; } else if (stack_trace_nesting_level_ == 1) { stack_trace_nesting_level_++; OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message_->OutputToStdOut(); return factory()->empty_symbol(); } else { OS::Abort(); // Unreachable return factory()->empty_symbol(); } } Handle<JSArray> Isolate::CaptureCurrentStackTrace( int frame_limit, StackTrace::StackTraceOptions options) { // Ensure no negative values. int limit = Max(frame_limit, 0); Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit); Handle<String> column_key = factory()->LookupAsciiSymbol("column"); Handle<String> line_key = factory()->LookupAsciiSymbol("lineNumber"); Handle<String> script_key = factory()->LookupAsciiSymbol("scriptName"); Handle<String> name_or_source_url_key = factory()->LookupAsciiSymbol("nameOrSourceURL"); Handle<String> script_name_or_source_url_key = factory()->LookupAsciiSymbol("scriptNameOrSourceURL"); Handle<String> function_key = factory()->LookupAsciiSymbol("functionName"); Handle<String> eval_key = factory()->LookupAsciiSymbol("isEval"); Handle<String> constructor_key = factory()->LookupAsciiSymbol("isConstructor"); StackTraceFrameIterator it; int frames_seen = 0; while (!it.done() && (frames_seen < limit)) { JavaScriptFrame* frame = it.frame(); List<FrameSummary> frames(3); // Max 2 levels of inlining. frame->Summarize(&frames); for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) { // Create a JSObject to hold the information for the StackFrame. Handle<JSObject> stackFrame = factory()->NewJSObject(object_function()); Handle<JSFunction> fun = frames[i].function(); Handle<Script> script(Script::cast(fun->shared()->script())); if (options & StackTrace::kLineNumber) { int script_line_offset = script->line_offset()->value(); int position = frames[i].code()->SourcePosition(frames[i].pc()); int line_number = GetScriptLineNumber(script, position); // line_number is already shifted by the script_line_offset. int relative_line_number = line_number - script_line_offset; if (options & StackTrace::kColumnOffset && relative_line_number >= 0) { Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends())); int start = (relative_line_number == 0) ? 0 : Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1; int column_offset = position - start; if (relative_line_number == 0) { // For the case where the code is on the same line as the script // tag. column_offset += script->column_offset()->value(); } SetLocalPropertyNoThrow(stackFrame, column_key, Handle<Smi>(Smi::FromInt(column_offset + 1))); } SetLocalPropertyNoThrow(stackFrame, line_key, Handle<Smi>(Smi::FromInt(line_number + 1))); } if (options & StackTrace::kScriptName) { Handle<Object> script_name(script->name(), this); SetLocalPropertyNoThrow(stackFrame, script_key, script_name); } if (options & StackTrace::kScriptNameOrSourceURL) { Handle<Object> script_name(script->name(), this); Handle<JSValue> script_wrapper = GetScriptWrapper(script); Handle<Object> property = GetProperty(script_wrapper, name_or_source_url_key); ASSERT(property->IsJSFunction()); Handle<JSFunction> method = Handle<JSFunction>::cast(property); bool caught_exception; Handle<Object> result = Execution::TryCall(method, script_wrapper, 0, NULL, &caught_exception); if (caught_exception) { result = factory()->undefined_value(); } SetLocalPropertyNoThrow(stackFrame, script_name_or_source_url_key, result); } if (options & StackTrace::kFunctionName) { Handle<Object> fun_name(fun->shared()->name(), this); if (fun_name->ToBoolean()->IsFalse()) { fun_name = Handle<Object>(fun->shared()->inferred_name(), this); } SetLocalPropertyNoThrow(stackFrame, function_key, fun_name); } if (options & StackTrace::kIsEval) { int type = Smi::cast(script->compilation_type())->value(); Handle<Object> is_eval = (type == Script::COMPILATION_TYPE_EVAL) ? factory()->true_value() : factory()->false_value(); SetLocalPropertyNoThrow(stackFrame, eval_key, is_eval); } if (options & StackTrace::kIsConstructor) { Handle<Object> is_constructor = (frames[i].is_constructor()) ? factory()->true_value() : factory()->false_value(); SetLocalPropertyNoThrow(stackFrame, constructor_key, is_constructor); } FixedArray::cast(stack_trace->elements())->set(frames_seen, *stackFrame); frames_seen++; } it.Advance(); } stack_trace->set_length(Smi::FromInt(frames_seen)); return stack_trace; } void Isolate::PrintStack() { if (stack_trace_nesting_level_ == 0) { stack_trace_nesting_level_++; StringAllocator* allocator; if (preallocated_message_space_ == NULL) { allocator = new HeapStringAllocator(); } else { allocator = preallocated_message_space_; } StringStream::ClearMentionedObjectCache(); StringStream accumulator(allocator); incomplete_message_ = &accumulator; PrintStack(&accumulator); accumulator.OutputToStdOut(); accumulator.Log(); incomplete_message_ = NULL; stack_trace_nesting_level_ = 0; if (preallocated_message_space_ == NULL) { // Remove the HeapStringAllocator created above. delete allocator; } } else if (stack_trace_nesting_level_ == 1) { stack_trace_nesting_level_++; OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message_->OutputToStdOut(); } } static void PrintFrames(StringStream* accumulator, StackFrame::PrintMode mode) { StackFrameIterator it; for (int i = 0; !it.done(); it.Advance()) { it.frame()->Print(accumulator, mode, i++); } } void Isolate::PrintStack(StringStream* accumulator) { if (!IsInitialized()) { accumulator->Add( "\n==== Stack trace is not available ==========================\n\n"); accumulator->Add( "\n==== Isolate for the thread is not initialized =============\n\n"); return; } // The MentionedObjectCache is not GC-proof at the moment. AssertNoAllocation nogc; ASSERT(StringStream::IsMentionedObjectCacheClear()); // Avoid printing anything if there are no frames. if (c_entry_fp(thread_local_top()) == 0) return; accumulator->Add( "\n==== Stack trace ============================================\n\n"); PrintFrames(accumulator, StackFrame::OVERVIEW); accumulator->Add( "\n==== Details ================================================\n\n"); PrintFrames(accumulator, StackFrame::DETAILS); accumulator->PrintMentionedObjectCache(); accumulator->Add("=====================\n\n"); } void Isolate::SetFailedAccessCheckCallback( v8::FailedAccessCheckCallback callback) { thread_local_top()->failed_access_check_callback_ = callback; } void Isolate::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) { if (!thread_local_top()->failed_access_check_callback_) return; ASSERT(receiver->IsAccessCheckNeeded()); ASSERT(context()); // Get the data object from access check info. JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); if (!constructor->shared()->IsApiFunction()) return; Object* data_obj = constructor->shared()->get_api_func_data()->access_check_info(); if (data_obj == heap_.undefined_value()) return; HandleScope scope; Handle<JSObject> receiver_handle(receiver); Handle<Object> data(AccessCheckInfo::cast(data_obj)->data()); thread_local_top()->failed_access_check_callback_( v8::Utils::ToLocal(receiver_handle), type, v8::Utils::ToLocal(data)); } enum MayAccessDecision { YES, NO, UNKNOWN }; static MayAccessDecision MayAccessPreCheck(Isolate* isolate, JSObject* receiver, v8::AccessType type) { // During bootstrapping, callback functions are not enabled yet. if (isolate->bootstrapper()->IsActive()) return YES; if (receiver->IsJSGlobalProxy()) { Object* receiver_context = JSGlobalProxy::cast(receiver)->context(); if (!receiver_context->IsContext()) return NO; // Get the global context of current top context. // avoid using Isolate::global_context() because it uses Handle. Context* global_context = isolate->context()->global()->global_context(); if (receiver_context == global_context) return YES; if (Context::cast(receiver_context)->security_token() == global_context->security_token()) return YES; } return UNKNOWN; } bool Isolate::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) { ASSERT(receiver->IsAccessCheckNeeded()); // The callers of this method are not expecting a GC. AssertNoAllocation no_gc; // Skip checks for hidden properties access. Note, we do not // require existence of a context in this case. if (key == heap_.hidden_symbol()) return true; // Check for compatibility between the security tokens in the // current lexical context and the accessed object. ASSERT(context()); MayAccessDecision decision = MayAccessPreCheck(this, receiver, type); if (decision != UNKNOWN) return decision == YES; // Get named access check callback JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); if (!constructor->shared()->IsApiFunction()) return false; Object* data_obj = constructor->shared()->get_api_func_data()->access_check_info(); if (data_obj == heap_.undefined_value()) return false; Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback(); v8::NamedSecurityCallback callback = v8::ToCData<v8::NamedSecurityCallback>(fun_obj); if (!callback) return false; HandleScope scope(this); Handle<JSObject> receiver_handle(receiver, this); Handle<Object> key_handle(key, this); Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); LOG(this, ApiNamedSecurityCheck(key)); bool result = false; { // Leaving JavaScript. VMState state(this, EXTERNAL); result = callback(v8::Utils::ToLocal(receiver_handle), v8::Utils::ToLocal(key_handle), type, v8::Utils::ToLocal(data)); } return result; } bool Isolate::MayIndexedAccess(JSObject* receiver, uint32_t index, v8::AccessType type) { ASSERT(receiver->IsAccessCheckNeeded()); // Check for compatibility between the security tokens in the // current lexical context and the accessed object. ASSERT(context()); MayAccessDecision decision = MayAccessPreCheck(this, receiver, type); if (decision != UNKNOWN) return decision == YES; // Get indexed access check callback JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); if (!constructor->shared()->IsApiFunction()) return false; Object* data_obj = constructor->shared()->get_api_func_data()->access_check_info(); if (data_obj == heap_.undefined_value()) return false; Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback(); v8::IndexedSecurityCallback callback = v8::ToCData<v8::IndexedSecurityCallback>(fun_obj); if (!callback) return false; HandleScope scope(this); Handle<JSObject> receiver_handle(receiver, this); Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); LOG(this, ApiIndexedSecurityCheck(index)); bool result = false; { // Leaving JavaScript. VMState state(this, EXTERNAL); result = callback(v8::Utils::ToLocal(receiver_handle), index, type, v8::Utils::ToLocal(data)); } return result; } const char* const Isolate::kStackOverflowMessage = "Uncaught RangeError: Maximum call stack size exceeded"; Failure* Isolate::StackOverflow() { HandleScope scope; Handle<String> key = factory()->stack_overflow_symbol(); Handle<JSObject> boilerplate = Handle<JSObject>::cast(GetProperty(js_builtins_object(), key)); Handle<Object> exception = Copy(boilerplate); // TODO(1240995): To avoid having to call JavaScript code to compute // the message for stack overflow exceptions which is very likely to // double fault with another stack overflow exception, we use a // precomputed message. DoThrow(*exception, NULL, kStackOverflowMessage); return Failure::Exception(); } Failure* Isolate::TerminateExecution() { DoThrow(heap_.termination_exception(), NULL, NULL); return Failure::Exception(); } Failure* Isolate::Throw(Object* exception, MessageLocation* location) { DoThrow(exception, location, NULL); return Failure::Exception(); } Failure* Isolate::ReThrow(MaybeObject* exception, MessageLocation* location) { bool can_be_caught_externally = false; ShouldReportException(&can_be_caught_externally, is_catchable_by_javascript(exception)); thread_local_top()->catcher_ = can_be_caught_externally ? try_catch_handler() : NULL; // Set the exception being re-thrown. set_pending_exception(exception); return Failure::Exception(); } Failure* Isolate::ThrowIllegalOperation() { return Throw(heap_.illegal_access_symbol()); } void Isolate::ScheduleThrow(Object* exception) { // When scheduling a throw we first throw the exception to get the // error reporting if it is uncaught before rescheduling it. Throw(exception); thread_local_top()->scheduled_exception_ = pending_exception(); thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); } Failure* Isolate::PromoteScheduledException() { MaybeObject* thrown = scheduled_exception(); clear_scheduled_exception(); // Re-throw the exception to avoid getting repeated error reporting. return ReThrow(thrown); } void Isolate::PrintCurrentStackTrace(FILE* out) { StackTraceFrameIterator it; while (!it.done()) { HandleScope scope; // Find code position if recorded in relocation info. JavaScriptFrame* frame = it.frame(); int pos = frame->LookupCode(this)->SourcePosition(frame->pc()); Handle<Object> pos_obj(Smi::FromInt(pos)); // Fetch function and receiver. Handle<JSFunction> fun(JSFunction::cast(frame->function())); Handle<Object> recv(frame->receiver()); // Advance to the next JavaScript frame and determine if the // current frame is the top-level frame. it.Advance(); Handle<Object> is_top_level = it.done() ? factory()->true_value() : factory()->false_value(); // Generate and print stack trace line. Handle<String> line = Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level); if (line->length() > 0) { line->PrintOn(out); fprintf(out, "\n"); } } } void Isolate::ComputeLocation(MessageLocation* target) { *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1); StackTraceFrameIterator it; if (!it.done()) { JavaScriptFrame* frame = it.frame(); JSFunction* fun = JSFunction::cast(frame->function()); Object* script = fun->shared()->script(); if (script->IsScript() && !(Script::cast(script)->source()->IsUndefined())) { int pos = frame->LookupCode(this)->SourcePosition(frame->pc()); // Compute the location from the function and the reloc info. Handle<Script> casted_script(Script::cast(script)); *target = MessageLocation(casted_script, pos, pos + 1); } } } bool Isolate::ShouldReportException(bool* can_be_caught_externally, bool catchable_by_javascript) { // Find the top-most try-catch handler. StackHandler* handler = StackHandler::FromAddress(Isolate::handler(thread_local_top())); while (handler != NULL && !handler->is_try_catch()) { handler = handler->next(); } // Get the address of the external handler so we can compare the address to // determine which one is closer to the top of the stack. Address external_handler_address = thread_local_top()->try_catch_handler_address(); // The exception has been externally caught if and only if there is // an external handler which is on top of the top-most try-catch // handler. *can_be_caught_externally = external_handler_address != NULL && (handler == NULL || handler->address() > external_handler_address || !catchable_by_javascript); if (*can_be_caught_externally) { // Only report the exception if the external handler is verbose. return try_catch_handler()->is_verbose_; } else { // Report the exception if it isn't caught by JavaScript code. return handler == NULL; } } void Isolate::DoThrow(MaybeObject* exception, MessageLocation* location, const char* message) { ASSERT(!has_pending_exception()); HandleScope scope; Object* exception_object = Smi::FromInt(0); bool is_object = exception->ToObject(&exception_object); Handle<Object> exception_handle(exception_object); // Determine reporting and whether the exception is caught externally. bool catchable_by_javascript = is_catchable_by_javascript(exception); // Only real objects can be caught by JS. ASSERT(!catchable_by_javascript || is_object); bool can_be_caught_externally = false; bool should_report_exception = ShouldReportException(&can_be_caught_externally, catchable_by_javascript); bool report_exception = catchable_by_javascript && should_report_exception; #ifdef ENABLE_DEBUGGER_SUPPORT // Notify debugger of exception. if (catchable_by_javascript) { debugger_->OnException(exception_handle, report_exception); } #endif // Generate the message. Handle<Object> message_obj; MessageLocation potential_computed_location; bool try_catch_needs_message = can_be_caught_externally && try_catch_handler()->capture_message_; if (report_exception || try_catch_needs_message) { if (location == NULL) { // If no location was specified we use a computed one instead ComputeLocation(&potential_computed_location); location = &potential_computed_location; } if (!bootstrapper()->IsActive()) { // It's not safe to try to make message objects or collect stack // traces while the bootstrapper is active since the infrastructure // may not have been properly initialized. Handle<String> stack_trace; if (FLAG_trace_exception) stack_trace = StackTraceString(); Handle<JSArray> stack_trace_object; if (report_exception && capture_stack_trace_for_uncaught_exceptions_) { stack_trace_object = CaptureCurrentStackTrace( stack_trace_for_uncaught_exceptions_frame_limit_, stack_trace_for_uncaught_exceptions_options_); } ASSERT(is_object); // Can't use the handle unless there's a real object. message_obj = MessageHandler::MakeMessageObject("uncaught_exception", location, HandleVector<Object>(&exception_handle, 1), stack_trace, stack_trace_object); } } // Save the message for reporting if the the exception remains uncaught. thread_local_top()->has_pending_message_ = report_exception; thread_local_top()->pending_message_ = message; if (!message_obj.is_null()) { thread_local_top()->pending_message_obj_ = *message_obj; if (location != NULL) { thread_local_top()->pending_message_script_ = *location->script(); thread_local_top()->pending_message_start_pos_ = location->start_pos(); thread_local_top()->pending_message_end_pos_ = location->end_pos(); } } // Do not forget to clean catcher_ if currently thrown exception cannot // be caught. If necessary, ReThrow will update the catcher. thread_local_top()->catcher_ = can_be_caught_externally ? try_catch_handler() : NULL; // NOTE: Notifying the debugger or generating the message // may have caused new exceptions. For now, we just ignore // that and set the pending exception to the original one. if (is_object) { set_pending_exception(*exception_handle); } else { // Failures are not on the heap so they neither need nor work with handles. ASSERT(exception_handle->IsFailure()); set_pending_exception(exception); } } bool Isolate::IsExternallyCaught() { ASSERT(has_pending_exception()); if ((thread_local_top()->catcher_ == NULL) || (try_catch_handler() != thread_local_top()->catcher_)) { // When throwing the exception, we found no v8::TryCatch // which should care about this exception. return false; } if (!is_catchable_by_javascript(pending_exception())) { return true; } // Get the address of the external handler so we can compare the address to // determine which one is closer to the top of the stack. Address external_handler_address = thread_local_top()->try_catch_handler_address(); ASSERT(external_handler_address != NULL); // The exception has been externally caught if and only if there is // an external handler which is on top of the top-most try-finally // handler. // There should be no try-catch blocks as they would prohibit us from // finding external catcher in the first place (see catcher_ check above). // // Note, that finally clause would rethrow an exception unless it's // aborted by jumps in control flow like return, break, etc. and we'll // have another chances to set proper v8::TryCatch. StackHandler* handler = StackHandler::FromAddress(Isolate::handler(thread_local_top())); while (handler != NULL && handler->address() < external_handler_address) { ASSERT(!handler->is_try_catch()); if (handler->is_try_finally()) return false; handler = handler->next(); } return true; } void Isolate::ReportPendingMessages() { ASSERT(has_pending_exception()); // If the pending exception is OutOfMemoryException set out_of_memory in // the global context. Note: We have to mark the global context here // since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to // set it. bool external_caught = IsExternallyCaught(); thread_local_top()->external_caught_exception_ = external_caught; HandleScope scope(this); if (thread_local_top()->pending_exception_ == Failure::OutOfMemoryException()) { context()->mark_out_of_memory(); } else if (thread_local_top()->pending_exception_ == heap_.termination_exception()) { if (external_caught) { try_catch_handler()->can_continue_ = false; try_catch_handler()->exception_ = heap_.null_value(); } } else { // At this point all non-object (failure) exceptions have // been dealt with so this shouldn't fail. Object* pending_exception_object = pending_exception()->ToObjectUnchecked(); Handle<Object> exception(pending_exception_object); thread_local_top()->external_caught_exception_ = false; if (external_caught) { try_catch_handler()->can_continue_ = true; try_catch_handler()->exception_ = thread_local_top()->pending_exception_; if (!thread_local_top()->pending_message_obj_->IsTheHole()) { try_catch_handler()->message_ = thread_local_top()->pending_message_obj_; } } if (thread_local_top()->has_pending_message_) { thread_local_top()->has_pending_message_ = false; if (thread_local_top()->pending_message_ != NULL) { MessageHandler::ReportMessage(thread_local_top()->pending_message_); } else if (!thread_local_top()->pending_message_obj_->IsTheHole()) { Handle<Object> message_obj(thread_local_top()->pending_message_obj_); if (thread_local_top()->pending_message_script_ != NULL) { Handle<Script> script(thread_local_top()->pending_message_script_); int start_pos = thread_local_top()->pending_message_start_pos_; int end_pos = thread_local_top()->pending_message_end_pos_; MessageLocation location(script, start_pos, end_pos); MessageHandler::ReportMessage(&location, message_obj); } else { MessageHandler::ReportMessage(NULL, message_obj); } } } thread_local_top()->external_caught_exception_ = external_caught; set_pending_exception(*exception); } clear_pending_message(); } void Isolate::TraceException(bool flag) { FLAG_trace_exception = flag; // TODO(isolates): This is an unfortunate use. } bool Isolate::OptionalRescheduleException(bool is_bottom_call) { // Allways reschedule out of memory exceptions. if (!is_out_of_memory()) { bool is_termination_exception = pending_exception() == heap_.termination_exception(); // Do not reschedule the exception if this is the bottom call. bool clear_exception = is_bottom_call; if (is_termination_exception) { if (is_bottom_call) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); return false; } } else if (thread_local_top()->external_caught_exception_) { // If the exception is externally caught, clear it if there are no // JavaScript frames on the way to the C++ frame that has the // external handler. ASSERT(thread_local_top()->try_catch_handler_address() != NULL); Address external_handler_address = thread_local_top()->try_catch_handler_address(); JavaScriptFrameIterator it; if (it.done() || (it.frame()->sp() > external_handler_address)) { clear_exception = true; } } // Clear the exception if needed. if (clear_exception) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); return false; } } // Reschedule the exception. thread_local_top()->scheduled_exception_ = pending_exception(); clear_pending_exception(); return true; } void Isolate::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { capture_stack_trace_for_uncaught_exceptions_ = capture; stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit; stack_trace_for_uncaught_exceptions_options_ = options; } bool Isolate::is_out_of_memory() { if (has_pending_exception()) { MaybeObject* e = pending_exception(); if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { return true; } } if (has_scheduled_exception()) { MaybeObject* e = scheduled_exception(); if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { return true; } } return false; } Handle<Context> Isolate::global_context() { GlobalObject* global = thread_local_top()->context_->global(); return Handle<Context>(global->global_context()); } Handle<Context> Isolate::GetCallingGlobalContext() { JavaScriptFrameIterator it; #ifdef ENABLE_DEBUGGER_SUPPORT if (debug_->InDebugger()) { while (!it.done()) { JavaScriptFrame* frame = it.frame(); Context* context = Context::cast(frame->context()); if (context->global_context() == *debug_->debug_context()) { it.Advance(); } else { break; } } } #endif // ENABLE_DEBUGGER_SUPPORT if (it.done()) return Handle<Context>::null(); JavaScriptFrame* frame = it.frame(); Context* context = Context::cast(frame->context()); return Handle<Context>(context->global_context()); } char* Isolate::ArchiveThread(char* to) { if (RuntimeProfiler::IsEnabled() && current_vm_state() == JS) { RuntimeProfiler::IsolateExitedJS(this); } memcpy(to, reinterpret_cast<char*>(thread_local_top()), sizeof(ThreadLocalTop)); InitializeThreadLocal(); return to + sizeof(ThreadLocalTop); } char* Isolate::RestoreThread(char* from) { memcpy(reinterpret_cast<char*>(thread_local_top()), from, sizeof(ThreadLocalTop)); // This might be just paranoia, but it seems to be needed in case a // thread_local_ is restored on a separate OS thread. #ifdef USE_SIMULATOR #ifdef V8_TARGET_ARCH_ARM thread_local_top()->simulator_ = Simulator::current(this); #elif V8_TARGET_ARCH_MIPS thread_local_top()->simulator_ = Simulator::current(this); #endif #endif if (RuntimeProfiler::IsEnabled() && current_vm_state() == JS) { RuntimeProfiler::IsolateEnteredJS(this); } return from + sizeof(ThreadLocalTop); } } } // namespace v8::internal