# encoding: utf-8 require 'fast-stemmer' require 'highscore' module Ebooks module NLP # We deliberately limit our punctuation handling to stuff we can do consistently # It'll just be a part of another token if we don't split it out, and that's fine PUNCTUATION = ".?!," # Lazy-load NLP libraries and resources # Some of this stuff is pretty heavy and we don't necessarily need # to be using it all of the time def self.stopwords @stopwords ||= File.read(File.join(DATA_PATH, 'stopwords.txt')).split end def self.nouns @nouns ||= File.read(File.join(DATA_PATH, 'nouns.txt')).split end def self.adjectives @adjectives ||= File.read(File.join(DATA_PATH, 'adjectives.txt')).split end # POS tagger def self.tagger require 'engtagger' @tagger ||= EngTagger.new end # Gingerice text correction service def self.gingerice require 'gingerice' Gingerice::Parser.new # No caching for this one end # For decoding html entities def self.htmlentities require 'htmlentities' @htmlentities ||= HTMLEntities.new end ### Utility functions # We don't really want to deal with all this weird unicode punctuation def self.normalize(text) htmlentities.decode text.gsub('“', '"').gsub('”', '"').gsub('’', "'").gsub('…', '...') end # Split text into sentences # We use ad hoc approach because fancy libraries do not deal # especially well with tweet formatting, and we can fake solving # the quote problem during generation def self.sentences(text) text.split(/\n+|(?<=[.?!])\s+/) end # Split a sentence into word-level tokens # As above, this is ad hoc because tokenization libraries # do not behave well wrt. things like emoticons and timestamps def self.tokenize(sentence) regex = /\s+|(?<=[#{PUNCTUATION}])(?=[a-zA-Z])|(?<=[a-zA-Z])(?=[#{PUNCTUATION}]+)/ sentence.split(regex) end def self.stem(word) Stemmer::stem_word(word.downcase) end def self.keywords(sentences) # Preprocess to remove stopwords (highscore's blacklist is v. slow) text = sentences.flatten.reject { |t| stopword?(t) }.join(' ') text = Highscore::Content.new(text) text.configure do #set :multiplier, 2 #set :upper_case, 3 #set :long_words, 2 #set :long_words_threshold, 15 #set :vowels, 1 # => default: 0 = not considered #set :consonants, 5 # => default: 0 = not considered #set :ignore_case, true # => default: false set :word_pattern, /(? default: /\w+/ #set :stemming, true # => default: false end text.keywords end # Takes a list of tokens and builds a nice-looking sentence def self.reconstruct(tokens) text = "" last_token = nil tokens.each do |token| next if token == INTERIM text += ' ' if last_token && space_between?(last_token, token) text += token last_token = token end text end # Determine if we need to insert a space between two tokens def self.space_between?(token1, token2) p1 = self.punctuation?(token1) p2 = self.punctuation?(token2) if p1 && p2 # "foo?!" false elsif !p1 && p2 # "foo." false elsif p1 && !p2 # "foo. rah" true else # "foo rah" true end end def self.punctuation?(token) (token.chars.to_set - PUNCTUATION.chars.to_set).empty? end def self.stopword?(token) @stopword_set ||= stopwords.map(&:downcase).to_set @stopword_set.include?(token.downcase) end # Determine if a sample of text contains unmatched brackets or quotes # This is one of the more frequent and noticeable failure modes for # the markov generator; we can just tell it to retry def self.unmatched_enclosers?(text) enclosers = ['**', '""', '()', '[]', '``', "''"] enclosers.each do |pair| starter = Regexp.new('(\W|^)' + Regexp.escape(pair[0]) + '\S') ender = Regexp.new('\S' + Regexp.escape(pair[1]) + '(\W|$)') opened = 0 tokenize(text).each do |token| opened += 1 if token.match(starter) opened -= 1 if token.match(ender) return true if opened < 0 # Too many ends! end return true if opened != 0 # Mismatch somewhere. end false end end end