Sha256: 54ae88bc421492605600a4b3296d9556ecef7d698cdcdd80aeeea127c72905f4
Contents?: true
Size: 1.6 KB
Versions: 2
Compression:
Stored size: 1.6 KB
Contents
require 'svmkit/base/base_estimator' require 'svmkit/base/transformer' module SVMKit # This module consists of the classes that perform preprocessings. module Preprocessing # Normalize samples to unit L2-norm. # # @example # normalizer = SVMKit::Preprocessing::StandardScaler.new # new_samples = normalizer.fit_transform(samples) class L2Normalizer include Base::BaseEstimator include Base::Transformer # Return the vector consists of L2-norm for each sample. # @return [NMatrix] (shape: [1, n_samples]) attr_reader :norm_vec # :nodoc: # Create a new normalizer for normaliing to unit L2-norm. # # @overload new() -> L2Normalizer def initialize(_params = {}) @norm_vec = nil end # Calculate L2-norms of each sample. # # @overload fit(x) -> L2Normalizer # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate L2-norms. # @return [L2Normalizer] def fit(x, _y = nil) n_samples, = x.shape @norm_vec = NMatrix.new([1, n_samples], Array.new(n_samples) { |n| x.row(n).norm2 }) self end # Calculate L2-norms of each sample, and then normalize samples to unit L2-norm. # # @overload fit_transform(x) -> NMatrix # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate L2-norms. # @return [NMatrix] The normalized samples. def fit_transform(x, _y = nil) fit(x) x / @norm_vec.transpose.repeat(x.shape[1], 1) end end end end
Version data entries
2 entries across 2 versions & 1 rubygems
Version | Path |
---|---|
svmkit-0.1.3 | lib/svmkit/preprocessing/l2_normalizer.rb |
svmkit-0.1.2 | lib/svmkit/preprocessing/l2_normalizer.rb |