/* * L.LineUtil contains different utility functions for line segments * and polylines (clipping, simplification, distances, etc.) */ L.LineUtil = { // Simplify polyline with vertex reduction and Douglas-Peucker simplification. // Improves rendering performance dramatically by lessening the number of points to draw. simplify: function (/*Point[]*/ points, /*Number*/ tolerance) { if (!tolerance || !points.length) { return points.slice(); } // stage 1: vertex reduction points = this.reducePoints(points, tolerance); // stage 2: Douglas-Peucker simplification points = this.simplifyDP(points, tolerance); return points; }, // distance from a point to a segment between two points pointToSegmentDistance: function (/*Point*/ p, /*Point*/ p1, /*Point*/ p2) { return Math.sqrt(this._sqPointToSegmentDist(p, p1, p2)); }, closestPointOnSegment: function (/*Point*/ p, /*Point*/ p1, /*Point*/ p2) { var point = this._sqClosestPointOnSegment(p, p1, p2); point.distance = Math.sqrt(point._sqDist); return point; }, // Douglas-Peucker simplification, see http://en.wikipedia.org/wiki/Douglas-Peucker_algorithm simplifyDP: function (points, tol) { var maxDist2 = 0, index = 0, t2 = tol * tol, len = points.length, i, dist2; if (len < 3) { return points; } for (i = 0; i < len - 1; i++) { dist2 = this._sqPointToSegmentDist(points[i], points[0], points[len - 1]); if (dist2 > maxDist2) { index = i; maxDist2 = dist2; } } var part1, part2; if (maxDist2 >= t2) { part1 = points.slice(0, index); part2 = points.slice(index); part1 = this.simplifyDP(part1, tol); part2 = this.simplifyDP(part2, tol); return part1.concat(part2); } else { return [points[0], points[len - 1]]; } }, // reduce points that are too close to each other to a single point reducePoints: function (points, tol) { var reducedPoints = [points[0]], t2 = tol * tol; for (var i = 1, prev = 0, len = points.length; i < len; i++) { if (this._sqDist(points[i], points[prev]) < t2) { continue; } reducedPoints.push(points[i]); prev = i; } if (prev < len - 1) { reducedPoints.push(points[len - 1]); } return reducedPoints; }, /*jshint bitwise:false */ // temporarily allow bitwise oprations // Cohen-Sutherland line clipping algorithm. // Used to avoid rendering parts of a polyline that are not currently visible. clipSegment: function (a, b, bounds, useLastCode) { var min = bounds.min, max = bounds.max; var codeA = useLastCode ? this._lastCode : this._getBitCode(a, bounds), codeB = this._getBitCode(b, bounds); // save 2nd code to avoid calculating it on the next segment this._lastCode = codeB; while (true) { // if a,b is inside the clip window (trivial accept) if (!(codeA | codeB)) { return [a, b]; // if a,b is outside the clip window (trivial reject) } else if (codeA & codeB) { return false; // other cases } else { var codeOut = codeA || codeB, p = this._getEdgeIntersection(a, b, codeOut, bounds), newCode = this._getBitCode(p, bounds); if (codeOut === codeA) { a = p; codeA = newCode; } else { b = p; codeB = newCode; } } } }, _getEdgeIntersection: function (a, b, code, bounds) { var dx = b.x - a.x, dy = b.y - a.y, min = bounds.min, max = bounds.max; if (code & 8) { // top return new L.Point(a.x + dx * (max.y - a.y) / dy, max.y); } else if (code & 4) { // bottom return new L.Point(a.x + dx * (min.y - a.y) / dy, min.y); } else if (code & 2) { // right return new L.Point(max.x, a.y + dy * (max.x - a.x) / dx); } else if (code & 1) { // left return new L.Point(min.x, a.y + dy * (min.x - a.x) / dx); } }, _getBitCode: function (/*Point*/ p, bounds) { var code = 0; if (p.x < bounds.min.x) { // left code |= 1; } else if (p.x > bounds.max.x) { // right code |= 2; } if (p.y < bounds.min.y) { // bottom code |= 4; } else if (p.y > bounds.max.y) { // top code |= 8; } return code; }, /*jshint bitwise:true */ // square distance (to avoid unnecessary Math.sqrt calls) _sqDist: function (p1, p2) { var dx = p2.x - p1.x, dy = p2.y - p1.y; return dx * dx + dy * dy; }, // return closest point on segment with attribute _sqDist - square distance to segment _sqClosestPointOnSegment: function (p, p1, p2) { var x2 = p2.x - p1.x, y2 = p2.y - p1.y, apoint = p1; if (x2 || y2) { var dot = (p.x - p1.x) * x2 + (p.y - p1.y) * y2, t = dot / this._sqDist(p1, p2); if (t > 1) { apoint = p2; } else if (t > 0) { apoint = new L.Point(p1.x + x2 * t, p1.y + y2 * t); } } apoint._sqDist = this._sqDist(p, apoint); return apoint; }, // distance from a point to a segment between two points _sqPointToSegmentDist: function (p, p1, p2) { return this._sqClosestPointOnSegment(p, p1, p2)._sqDist; } };