# frozen_string_literal: true module Mopti # NelderMead is a class that implements multivariate optimization using the Nelder-Mead simplex method. # # @example # require 'numo/narray' # require 'mopti' # # args = Numo::DFloat[2, 3] # # f = proc { |x, a| (8 * (x - a)**2).sum } # # x0 = Numo::DFloat.zeros(2) # # optimizer = Mopti::NelderMead.new(fnc: f, x_init: x0, args: args) # result = optimizer.map { |params| params }.last # # pp result # # # {:x=>Numo::DFloat(view)#shape=[2] # # [2, 3], # # :n_fev=>165, # # :n_iter=>84, # # :fnc=>5.694864987422661e-13} # # *Reference* # 1. Gao, F. and Han, L., "Implementing the Nelder-Mead simplex algorithm with adaptive parameters," Computational Optimization and Applications, vol. 51 (1), pp. 259--277, 2012. class NelderMead include Enumerable # Create a new optimizer with the Nelder-Mead simplex method. # # @param fnc [Method/Proc] Method for calculating the objective function to be minimized. # @param args [Array/Hash] Arguments pass to the 'fnc' and 'jcb'. # @param x_init [Numo::NArray] Initial point. # @param max_iter [Integer] Maximum number of iterations. # If nil is given, max_iter sets to 200 * number of dimensions. # @param xtol [Float] Tolerance for termination for the optimal vector norm. # @param ftol [Float] Tolerance for termination for the objective function value. def initialize(fnc:, x_init:, args: nil, max_iter: nil, xtol: 1e-6, ftol: 1e-6) @fnc = fnc @args = args @x_init = x_init @max_iter = max_iter @xtol = xtol @ftol = ftol end # Iteration for optimization. # # @overload each(&block) -> Object # @yield [Hash] { x:, n_fev:, n_jev:, n_iter:, fnc:, jcb: } # - x [Numo::NArray] Updated vector by optimization. # - n_fev [Interger] Number of calls of the objective function. # - n_iter [Integer] Number of iterations. # - fnc [Float] Value of the objective function. # @return [Enumerator] If block is not given, this method returns Enumerator. def each return to_enum(__method__) unless block_given? x = @x_init.dup n = x.size max_iter = @max_iter || (200 * n) alpha = 1.0 beta = n > 1 ? 1 + 2.fdiv(n) : 2.0 gamma = n > 1 ? 0.75 - 1.fdiv(2 * n) : 0.5 delta = n > 1 ? 1 - 1.fdiv(n) : 0.5 sim = x.class.zeros(n + 1, n) sim[0, true] = x n.times do |k| y = x.dup y[k] = (y[k]).zero? ? ZERO_TAU : (1 + NON_ZERO_TAU) * y[k] sim[k + 1, true] = y end fsim = Numo::DFloat.zeros(n + 1) (n + 1).times { |k| fsim[k] = func(sim[k, true], @args) } n_fev = n + 1 ind = fsim.sort_index fsim = fsim[ind].dup sim = sim[ind, true].dup n_iter = 0 while n_iter < max_iter break if ((sim[1..-1, true] - sim[0, true]).abs.flatten.max <= @xtol) && ((fsim[0] - fsim[1..-1]).abs.max <= @ftol) xbar = sim[0...-1, true].sum(0) / n xr = xbar + (alpha * (xbar - sim[-1, true])) fr = func(xr, @args) n_fev += 1 shrink = true if fr < fsim[0] xe = xbar + (beta * (xr - xbar)) fe = func(xe, @args) n_fev += 1 shrink = false if fe < fr sim[-1, true] = xe fsim[-1] = fe else sim[-1, true] = xr fsim[-1] = fr end elsif fr < fsim[-2] shrink = false sim[-1, true] = xr fsim[-1] = fr elsif fr < fsim[-1] xoc = xbar + (gamma * (xr - xbar)) foc = func(xoc, @args) n_fev += 1 if foc <= fr shrink = false sim[-1, true] = xoc fsim[-1] = foc end else xic = xbar - (gamma * (xr - xbar)) fic = func(xic, @args) n_fev += 1 if fic < fsim[-1] shrink = false sim[-1, true] = xic fsim[-1] = fic end end if shrink (1..n).to_a.each do |j| sim[j, true] = sim[0, true] + (delta * (sim[j, true] - sim[0, true])) fsim[j] = func(sim[j, true], @args) n_fev += 1 end end ind = fsim.sort_index sim = sim[ind, true].dup fsim = fsim[ind].dup n_iter += 1 yield({ x: sim[0, true], n_fev: n_fev, n_iter: n_iter, fnc: fsim.min }) end end NON_ZERO_TAU = 0.05 ZERO_TAU = 0.00025 private_constant :NON_ZERO_TAU, :ZERO_TAU private def func(x, args) if args.is_a?(Hash) @fnc.call(x, **args) elsif args.is_a?(Array) @fnc.call(x, *args) elsif args.nil? @fnc.call(x) else @fnc.call(x, args) end end end end