(function (global, factory) { if (typeof define === "function" && define.amd) { define(["exports", "three"], factory); } else if (typeof exports !== "undefined") { factory(exports, require("three")); } else { var mod = { exports: {} }; factory(mod.exports, global.three); global.LineMaterial = mod.exports; } })(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports, _three) { "use strict"; Object.defineProperty(_exports, "__esModule", { value: true }); _exports.LineMaterial = void 0; function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } Object.defineProperty(subClass, "prototype", { value: Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }), writable: false }); if (superClass) _setPrototypeOf(subClass, superClass); } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; } function _possibleConstructorReturn(self, call) { if (call && (typeof call === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized(self); } function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } } function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); } _three.UniformsLib.line = { worldUnits: { value: 1 }, linewidth: { value: 1 }, resolution: { value: new _three.Vector2(1, 1) }, dashOffset: { value: 0 }, dashScale: { value: 1 }, dashSize: { value: 1 }, gapSize: { value: 1 } // todo FIX - maybe change to totalSize }; _three.ShaderLib['line'] = { uniforms: _three.UniformsUtils.merge([_three.UniformsLib.common, _three.UniformsLib.fog, _three.UniformsLib.line]), vertexShader: /* glsl */ "\n\t\t#include <common>\n\t\t#include <color_pars_vertex>\n\t\t#include <fog_pars_vertex>\n\t\t#include <logdepthbuf_pars_vertex>\n\t\t#include <clipping_planes_pars_vertex>\n\n\t\tuniform float linewidth;\n\t\tuniform vec2 resolution;\n\n\t\tattribute vec3 instanceStart;\n\t\tattribute vec3 instanceEnd;\n\n\t\tattribute vec3 instanceColorStart;\n\t\tattribute vec3 instanceColorEnd;\n\n\t\t#ifdef WORLD_UNITS\n\n\t\t\tvarying vec4 worldPos;\n\t\t\tvarying vec3 worldStart;\n\t\t\tvarying vec3 worldEnd;\n\n\t\t\t#ifdef USE_DASH\n\n\t\t\t\tvarying vec2 vUv;\n\n\t\t\t#endif\n\n\t\t#else\n\n\t\t\tvarying vec2 vUv;\n\n\t\t#endif\n\n\t\t#ifdef USE_DASH\n\n\t\t\tuniform float dashScale;\n\t\t\tattribute float instanceDistanceStart;\n\t\t\tattribute float instanceDistanceEnd;\n\t\t\tvarying float vLineDistance;\n\n\t\t#endif\n\n\t\tvoid trimSegment( const in vec4 start, inout vec4 end ) {\n\n\t\t\t// trim end segment so it terminates between the camera plane and the near plane\n\n\t\t\t// conservative estimate of the near plane\n\t\t\tfloat a = projectionMatrix[ 2 ][ 2 ]; // 3nd entry in 3th column\n\t\t\tfloat b = projectionMatrix[ 3 ][ 2 ]; // 3nd entry in 4th column\n\t\t\tfloat nearEstimate = - 0.5 * b / a;\n\n\t\t\tfloat alpha = ( nearEstimate - start.z ) / ( end.z - start.z );\n\n\t\t\tend.xyz = mix( start.xyz, end.xyz, alpha );\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\t#ifdef USE_COLOR\n\n\t\t\t\tvColor.xyz = ( position.y < 0.5 ) ? instanceColorStart : instanceColorEnd;\n\n\t\t\t#endif\n\n\t\t\t#ifdef USE_DASH\n\n\t\t\t\tvLineDistance = ( position.y < 0.5 ) ? dashScale * instanceDistanceStart : dashScale * instanceDistanceEnd;\n\t\t\t\tvUv = uv;\n\n\t\t\t#endif\n\n\t\t\tfloat aspect = resolution.x / resolution.y;\n\n\t\t\t// camera space\n\t\t\tvec4 start = modelViewMatrix * vec4( instanceStart, 1.0 );\n\t\t\tvec4 end = modelViewMatrix * vec4( instanceEnd, 1.0 );\n\n\t\t\t#ifdef WORLD_UNITS\n\n\t\t\t\tworldStart = start.xyz;\n\t\t\t\tworldEnd = end.xyz;\n\n\t\t\t#else\n\n\t\t\t\tvUv = uv;\n\n\t\t\t#endif\n\n\t\t\t// special case for perspective projection, and segments that terminate either in, or behind, the camera plane\n\t\t\t// clearly the gpu firmware has a way of addressing this issue when projecting into ndc space\n\t\t\t// but we need to perform ndc-space calculations in the shader, so we must address this issue directly\n\t\t\t// perhaps there is a more elegant solution -- WestLangley\n\n\t\t\tbool perspective = ( projectionMatrix[ 2 ][ 3 ] == - 1.0 ); // 4th entry in the 3rd column\n\n\t\t\tif ( perspective ) {\n\n\t\t\t\tif ( start.z < 0.0 && end.z >= 0.0 ) {\n\n\t\t\t\t\ttrimSegment( start, end );\n\n\t\t\t\t} else if ( end.z < 0.0 && start.z >= 0.0 ) {\n\n\t\t\t\t\ttrimSegment( end, start );\n\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\t// clip space\n\t\t\tvec4 clipStart = projectionMatrix * start;\n\t\t\tvec4 clipEnd = projectionMatrix * end;\n\n\t\t\t// ndc space\n\t\t\tvec3 ndcStart = clipStart.xyz / clipStart.w;\n\t\t\tvec3 ndcEnd = clipEnd.xyz / clipEnd.w;\n\n\t\t\t// direction\n\t\t\tvec2 dir = ndcEnd.xy - ndcStart.xy;\n\n\t\t\t// account for clip-space aspect ratio\n\t\t\tdir.x *= aspect;\n\t\t\tdir = normalize( dir );\n\n\t\t\t#ifdef WORLD_UNITS\n\n\t\t\t\t// get the offset direction as perpendicular to the view vector\n\t\t\t\tvec3 worldDir = normalize( end.xyz - start.xyz );\n\t\t\t\tvec3 offset;\n\t\t\t\tif ( position.y < 0.5 ) {\n\n\t\t\t\t\toffset = normalize( cross( start.xyz, worldDir ) );\n\n\t\t\t\t} else {\n\n\t\t\t\t\toffset = normalize( cross( end.xyz, worldDir ) );\n\n\t\t\t\t}\n\n\t\t\t\t// sign flip\n\t\t\t\tif ( position.x < 0.0 ) offset *= - 1.0;\n\n\t\t\t\tfloat forwardOffset = dot( worldDir, vec3( 0.0, 0.0, 1.0 ) );\n\n\t\t\t\t// don't extend the line if we're rendering dashes because we\n\t\t\t\t// won't be rendering the endcaps\n\t\t\t\t#ifndef USE_DASH\n\n\t\t\t\t\t// extend the line bounds to encompass endcaps\n\t\t\t\t\tstart.xyz += - worldDir * linewidth * 0.5;\n\t\t\t\t\tend.xyz += worldDir * linewidth * 0.5;\n\n\t\t\t\t\t// shift the position of the quad so it hugs the forward edge of the line\n\t\t\t\t\toffset.xy -= dir * forwardOffset;\n\t\t\t\t\toffset.z += 0.5;\n\n\t\t\t\t#endif\n\n\t\t\t\t// endcaps\n\t\t\t\tif ( position.y > 1.0 || position.y < 0.0 ) {\n\n\t\t\t\t\toffset.xy += dir * 2.0 * forwardOffset;\n\n\t\t\t\t}\n\n\t\t\t\t// adjust for linewidth\n\t\t\t\toffset *= linewidth * 0.5;\n\n\t\t\t\t// set the world position\n\t\t\t\tworldPos = ( position.y < 0.5 ) ? start : end;\n\t\t\t\tworldPos.xyz += offset;\n\n\t\t\t\t// project the worldpos\n\t\t\t\tvec4 clip = projectionMatrix * worldPos;\n\n\t\t\t\t// shift the depth of the projected points so the line\n\t\t\t\t// segements overlap neatly\n\t\t\t\tvec3 clipPose = ( position.y < 0.5 ) ? ndcStart : ndcEnd;\n\t\t\t\tclip.z = clipPose.z * clip.w;\n\n\t\t\t#else\n\n\t\t\t\tvec2 offset = vec2( dir.y, - dir.x );\n\t\t\t\t// undo aspect ratio adjustment\n\t\t\t\tdir.x /= aspect;\n\t\t\t\toffset.x /= aspect;\n\n\t\t\t\t// sign flip\n\t\t\t\tif ( position.x < 0.0 ) offset *= - 1.0;\n\n\t\t\t\t// endcaps\n\t\t\t\tif ( position.y < 0.0 ) {\n\n\t\t\t\t\toffset += - dir;\n\n\t\t\t\t} else if ( position.y > 1.0 ) {\n\n\t\t\t\t\toffset += dir;\n\n\t\t\t\t}\n\n\t\t\t\t// adjust for linewidth\n\t\t\t\toffset *= linewidth;\n\n\t\t\t\t// adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ...\n\t\t\t\toffset /= resolution.y;\n\n\t\t\t\t// select end\n\t\t\t\tvec4 clip = ( position.y < 0.5 ) ? clipStart : clipEnd;\n\n\t\t\t\t// back to clip space\n\t\t\t\toffset *= clip.w;\n\n\t\t\t\tclip.xy += offset;\n\n\t\t\t#endif\n\n\t\t\tgl_Position = clip;\n\n\t\t\tvec4 mvPosition = ( position.y < 0.5 ) ? start : end; // this is an approximation\n\n\t\t\t#include <logdepthbuf_vertex>\n\t\t\t#include <clipping_planes_vertex>\n\t\t\t#include <fog_vertex>\n\n\t\t}\n\t\t", fragmentShader: /* glsl */ "\n\t\tuniform vec3 diffuse;\n\t\tuniform float opacity;\n\t\tuniform float linewidth;\n\n\t\t#ifdef USE_DASH\n\n\t\t\tuniform float dashOffset;\n\t\t\tuniform float dashSize;\n\t\t\tuniform float gapSize;\n\n\t\t#endif\n\n\t\tvarying float vLineDistance;\n\n\t\t#ifdef WORLD_UNITS\n\n\t\t\tvarying vec4 worldPos;\n\t\t\tvarying vec3 worldStart;\n\t\t\tvarying vec3 worldEnd;\n\n\t\t\t#ifdef USE_DASH\n\n\t\t\t\tvarying vec2 vUv;\n\n\t\t\t#endif\n\n\t\t#else\n\n\t\t\tvarying vec2 vUv;\n\n\t\t#endif\n\n\t\t#include <common>\n\t\t#include <color_pars_fragment>\n\t\t#include <fog_pars_fragment>\n\t\t#include <logdepthbuf_pars_fragment>\n\t\t#include <clipping_planes_pars_fragment>\n\n\t\tvec2 closestLineToLine(vec3 p1, vec3 p2, vec3 p3, vec3 p4) {\n\n\t\t\tfloat mua;\n\t\t\tfloat mub;\n\n\t\t\tvec3 p13 = p1 - p3;\n\t\t\tvec3 p43 = p4 - p3;\n\n\t\t\tvec3 p21 = p2 - p1;\n\n\t\t\tfloat d1343 = dot( p13, p43 );\n\t\t\tfloat d4321 = dot( p43, p21 );\n\t\t\tfloat d1321 = dot( p13, p21 );\n\t\t\tfloat d4343 = dot( p43, p43 );\n\t\t\tfloat d2121 = dot( p21, p21 );\n\n\t\t\tfloat denom = d2121 * d4343 - d4321 * d4321;\n\n\t\t\tfloat numer = d1343 * d4321 - d1321 * d4343;\n\n\t\t\tmua = numer / denom;\n\t\t\tmua = clamp( mua, 0.0, 1.0 );\n\t\t\tmub = ( d1343 + d4321 * ( mua ) ) / d4343;\n\t\t\tmub = clamp( mub, 0.0, 1.0 );\n\n\t\t\treturn vec2( mua, mub );\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\t#include <clipping_planes_fragment>\n\n\t\t\t#ifdef USE_DASH\n\n\t\t\t\tif ( vUv.y < - 1.0 || vUv.y > 1.0 ) discard; // discard endcaps\n\n\t\t\t\tif ( mod( vLineDistance + dashOffset, dashSize + gapSize ) > dashSize ) discard; // todo - FIX\n\n\t\t\t#endif\n\n\t\t\tfloat alpha = opacity;\n\n\t\t\t#ifdef WORLD_UNITS\n\n\t\t\t\t// Find the closest points on the view ray and the line segment\n\t\t\t\tvec3 rayEnd = normalize( worldPos.xyz ) * 1e5;\n\t\t\t\tvec3 lineDir = worldEnd - worldStart;\n\t\t\t\tvec2 params = closestLineToLine( worldStart, worldEnd, vec3( 0.0, 0.0, 0.0 ), rayEnd );\n\n\t\t\t\tvec3 p1 = worldStart + lineDir * params.x;\n\t\t\t\tvec3 p2 = rayEnd * params.y;\n\t\t\t\tvec3 delta = p1 - p2;\n\t\t\t\tfloat len = length( delta );\n\t\t\t\tfloat norm = len / linewidth;\n\n\t\t\t\t#ifndef USE_DASH\n\n\t\t\t\t\t#ifdef USE_ALPHA_TO_COVERAGE\n\n\t\t\t\t\t\tfloat dnorm = fwidth( norm );\n\t\t\t\t\t\talpha = 1.0 - smoothstep( 0.5 - dnorm, 0.5 + dnorm, norm );\n\n\t\t\t\t\t#else\n\n\t\t\t\t\t\tif ( norm > 0.5 ) {\n\n\t\t\t\t\t\t\tdiscard;\n\n\t\t\t\t\t\t}\n\n\t\t\t\t\t#endif\n\n\t\t\t\t#endif\n\n\t\t\t#else\n\n\t\t\t\t#ifdef USE_ALPHA_TO_COVERAGE\n\n\t\t\t\t\t// artifacts appear on some hardware if a derivative is taken within a conditional\n\t\t\t\t\tfloat a = vUv.x;\n\t\t\t\t\tfloat b = ( vUv.y > 0.0 ) ? vUv.y - 1.0 : vUv.y + 1.0;\n\t\t\t\t\tfloat len2 = a * a + b * b;\n\t\t\t\t\tfloat dlen = fwidth( len2 );\n\n\t\t\t\t\tif ( abs( vUv.y ) > 1.0 ) {\n\n\t\t\t\t\t\talpha = 1.0 - smoothstep( 1.0 - dlen, 1.0 + dlen, len2 );\n\n\t\t\t\t\t}\n\n\t\t\t\t#else\n\n\t\t\t\t\tif ( abs( vUv.y ) > 1.0 ) {\n\n\t\t\t\t\t\tfloat a = vUv.x;\n\t\t\t\t\t\tfloat b = ( vUv.y > 0.0 ) ? vUv.y - 1.0 : vUv.y + 1.0;\n\t\t\t\t\t\tfloat len2 = a * a + b * b;\n\n\t\t\t\t\t\tif ( len2 > 1.0 ) discard;\n\n\t\t\t\t\t}\n\n\t\t\t\t#endif\n\n\t\t\t#endif\n\n\t\t\tvec4 diffuseColor = vec4( diffuse, alpha );\n\n\t\t\t#include <logdepthbuf_fragment>\n\t\t\t#include <color_fragment>\n\n\t\t\tgl_FragColor = vec4( diffuseColor.rgb, alpha );\n\n\t\t\t#include <tonemapping_fragment>\n\t\t\t#include <encodings_fragment>\n\t\t\t#include <fog_fragment>\n\t\t\t#include <premultiplied_alpha_fragment>\n\n\t\t}\n\t\t" }; var LineMaterial = /*#__PURE__*/function (_ShaderMaterial) { _inherits(LineMaterial, _ShaderMaterial); var _super = _createSuper(LineMaterial); function LineMaterial(parameters) { var _this; _classCallCheck(this, LineMaterial); _this = _super.call(this, { type: 'LineMaterial', uniforms: _three.UniformsUtils.clone(_three.ShaderLib['line'].uniforms), vertexShader: _three.ShaderLib['line'].vertexShader, fragmentShader: _three.ShaderLib['line'].fragmentShader, clipping: true // required for clipping support }); Object.defineProperties(_assertThisInitialized(_this), { color: { enumerable: true, get: function get() { return this.uniforms.diffuse.value; }, set: function set(value) { this.uniforms.diffuse.value = value; } }, worldUnits: { enumerable: true, get: function get() { return 'WORLD_UNITS' in this.defines; }, set: function set(value) { if (value === true) { this.defines.WORLD_UNITS = ''; } else { delete this.defines.WORLD_UNITS; } } }, linewidth: { enumerable: true, get: function get() { return this.uniforms.linewidth.value; }, set: function set(value) { this.uniforms.linewidth.value = value; } }, dashed: { enumerable: true, get: function get() { return Boolean('USE_DASH' in this.defines); }, set: function set(value) { if (Boolean(value) !== Boolean('USE_DASH' in this.defines)) { this.needsUpdate = true; } if (value === true) { this.defines.USE_DASH = ''; } else { delete this.defines.USE_DASH; } } }, dashScale: { enumerable: true, get: function get() { return this.uniforms.dashScale.value; }, set: function set(value) { this.uniforms.dashScale.value = value; } }, dashSize: { enumerable: true, get: function get() { return this.uniforms.dashSize.value; }, set: function set(value) { this.uniforms.dashSize.value = value; } }, dashOffset: { enumerable: true, get: function get() { return this.uniforms.dashOffset.value; }, set: function set(value) { this.uniforms.dashOffset.value = value; } }, gapSize: { enumerable: true, get: function get() { return this.uniforms.gapSize.value; }, set: function set(value) { this.uniforms.gapSize.value = value; } }, opacity: { enumerable: true, get: function get() { return this.uniforms.opacity.value; }, set: function set(value) { this.uniforms.opacity.value = value; } }, resolution: { enumerable: true, get: function get() { return this.uniforms.resolution.value; }, set: function set(value) { this.uniforms.resolution.value.copy(value); } }, alphaToCoverage: { enumerable: true, get: function get() { return Boolean('USE_ALPHA_TO_COVERAGE' in this.defines); }, set: function set(value) { if (Boolean(value) !== Boolean('USE_ALPHA_TO_COVERAGE' in this.defines)) { this.needsUpdate = true; } if (value === true) { this.defines.USE_ALPHA_TO_COVERAGE = ''; this.extensions.derivatives = true; } else { delete this.defines.USE_ALPHA_TO_COVERAGE; this.extensions.derivatives = false; } } } }); _this.setValues(parameters); return _this; } return _createClass(LineMaterial); }(_three.ShaderMaterial); _exports.LineMaterial = LineMaterial; LineMaterial.prototype.isLineMaterial = true; });