#include "prism/util/pm_integer.h" /** * Pull out the length and values from the integer, regardless of the form in * which the length/values are stored. */ #define INTEGER_EXTRACT(integer, length_variable, values_variable) \ if ((integer)->values == NULL) { \ length_variable = 1; \ values_variable = &(integer)->value; \ } else { \ length_variable = (integer)->length; \ values_variable = (integer)->values; \ } /** * Adds two positive pm_integer_t with the given base. * Return pm_integer_t with values allocated. Not normalized. */ static void big_add(pm_integer_t *destination, pm_integer_t *left, pm_integer_t *right, uint64_t base) { size_t left_length; uint32_t *left_values; INTEGER_EXTRACT(left, left_length, left_values) size_t right_length; uint32_t *right_values; INTEGER_EXTRACT(right, right_length, right_values) size_t length = left_length < right_length ? right_length : left_length; uint32_t *values = (uint32_t *) xmalloc(sizeof(uint32_t) * (length + 1)); if (values == NULL) return; uint64_t carry = 0; for (size_t index = 0; index < length; index++) { uint64_t sum = carry + (index < left_length ? left_values[index] : 0) + (index < right_length ? right_values[index] : 0); values[index] = (uint32_t) (sum % base); carry = sum / base; } if (carry > 0) { values[length] = (uint32_t) carry; length++; } *destination = (pm_integer_t) { 0, length, values, false }; } /** * Internal use for karatsuba_multiply. Calculates `a - b - c` with the given * base. Assume a, b, c, a - b - c all to be poitive. * Return pm_integer_t with values allocated. Not normalized. */ static void big_sub2(pm_integer_t *destination, pm_integer_t *a, pm_integer_t *b, pm_integer_t *c, uint64_t base) { size_t a_length; uint32_t *a_values; INTEGER_EXTRACT(a, a_length, a_values) size_t b_length; uint32_t *b_values; INTEGER_EXTRACT(b, b_length, b_values) size_t c_length; uint32_t *c_values; INTEGER_EXTRACT(c, c_length, c_values) uint32_t *values = (uint32_t*) xmalloc(sizeof(uint32_t) * a_length); int64_t carry = 0; for (size_t index = 0; index < a_length; index++) { int64_t sub = ( carry + a_values[index] - (index < b_length ? b_values[index] : 0) - (index < c_length ? c_values[index] : 0) ); if (sub >= 0) { values[index] = (uint32_t) sub; carry = 0; } else { sub += 2 * (int64_t) base; values[index] = (uint32_t) ((uint64_t) sub % base); carry = sub / (int64_t) base - 2; } } while (a_length > 1 && values[a_length - 1] == 0) a_length--; *destination = (pm_integer_t) { 0, a_length, values, false }; } /** * Multiply two positive integers with the given base using karatsuba algorithm. * Return pm_integer_t with values allocated. Not normalized. */ static void karatsuba_multiply(pm_integer_t *destination, pm_integer_t *left, pm_integer_t *right, uint64_t base) { size_t left_length; uint32_t *left_values; INTEGER_EXTRACT(left, left_length, left_values) size_t right_length; uint32_t *right_values; INTEGER_EXTRACT(right, right_length, right_values) if (left_length > right_length) { size_t temporary_length = left_length; left_length = right_length; right_length = temporary_length; uint32_t *temporary_values = left_values; left_values = right_values; right_values = temporary_values; } if (left_length <= 10) { size_t length = left_length + right_length; uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t)); if (values == NULL) return; for (size_t left_index = 0; left_index < left_length; left_index++) { uint32_t carry = 0; for (size_t right_index = 0; right_index < right_length; right_index++) { uint64_t product = (uint64_t) left_values[left_index] * right_values[right_index] + values[left_index + right_index] + carry; values[left_index + right_index] = (uint32_t) (product % base); carry = (uint32_t) (product / base); } values[left_index + right_length] = carry; } while (length > 1 && values[length - 1] == 0) length--; *destination = (pm_integer_t) { 0, length, values, false }; return; } if (left_length * 2 <= right_length) { uint32_t *values = (uint32_t *) xcalloc(left_length + right_length, sizeof(uint32_t)); for (size_t start_offset = 0; start_offset < right_length; start_offset += left_length) { size_t end_offset = start_offset + left_length; if (end_offset > right_length) end_offset = right_length; pm_integer_t sliced_left = { .value = 0, .length = left_length, .values = left_values, .negative = false }; pm_integer_t sliced_right = { .value = 0, .length = end_offset - start_offset, .values = right_values + start_offset, .negative = false }; pm_integer_t product; karatsuba_multiply(&product, &sliced_left, &sliced_right, base); uint32_t carry = 0; for (size_t index = 0; index < product.length; index++) { uint64_t sum = (uint64_t) values[start_offset + index] + product.values[index] + carry; values[start_offset + index] = (uint32_t) (sum % base); carry = (uint32_t) (sum / base); } if (carry > 0) values[start_offset + product.length] += carry; pm_integer_free(&product); } *destination = (pm_integer_t) { 0, left_length + right_length, values, false }; return; } size_t half = left_length / 2; pm_integer_t x0 = { 0, half, left_values, false }; pm_integer_t x1 = { 0, left_length - half, left_values + half, false }; pm_integer_t y0 = { 0, half, right_values, false }; pm_integer_t y1 = { 0, right_length - half, right_values + half, false }; pm_integer_t z0 = { 0 }; karatsuba_multiply(&z0, &x0, &y0, base); pm_integer_t z2 = { 0 }; karatsuba_multiply(&z2, &x1, &y1, base); // For simplicity to avoid considering negative values, // use `z1 = (x0 + x1) * (y0 + y1) - z0 - z2` instead of original karatsuba algorithm. pm_integer_t x01 = { 0 }; big_add(&x01, &x0, &x1, base); pm_integer_t y01 = { 0 }; big_add(&y01, &y0, &y1, base); pm_integer_t xy = { 0 }; karatsuba_multiply(&xy, &x01, &y01, base); pm_integer_t z1; big_sub2(&z1, &xy, &z0, &z2, base); size_t length = left_length + right_length; uint32_t *values = (uint32_t*) xcalloc(length, sizeof(uint32_t)); assert(z0.values != NULL); memcpy(values, z0.values, sizeof(uint32_t) * z0.length); assert(z2.values != NULL); memcpy(values + 2 * half, z2.values, sizeof(uint32_t) * z2.length); uint32_t carry = 0; for(size_t index = 0; index < z1.length; index++) { uint64_t sum = (uint64_t) carry + values[index + half] + z1.values[index]; values[index + half] = (uint32_t) (sum % base); carry = (uint32_t) (sum / base); } for(size_t index = half + z1.length; carry > 0; index++) { uint64_t sum = (uint64_t) carry + values[index]; values[index] = (uint32_t) (sum % base); carry = (uint32_t) (sum / base); } while (length > 1 && values[length - 1] == 0) length--; pm_integer_free(&z0); pm_integer_free(&z1); pm_integer_free(&z2); pm_integer_free(&x01); pm_integer_free(&y01); pm_integer_free(&xy); *destination = (pm_integer_t) { 0, length, values, false }; } /** * The values of a hexadecimal digit, where the index is the ASCII character. * Note that there's an odd exception here where _ is mapped to 0. This is * because it's possible for us to end up trying to parse a number that has * already had an error attached to it, and we want to provide _something_ to * the user. */ static const int8_t pm_integer_parse_digit_values[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 1x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 2x 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // 3x -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 4x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, // 5x -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 6x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 7x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 8x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 9x -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Ax -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Bx -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Cx -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Dx -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Ex -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Fx }; /** * Return the value of a hexadecimal digit in a uint8_t. */ static uint8_t pm_integer_parse_digit(const uint8_t character) { int8_t value = pm_integer_parse_digit_values[character]; assert(value != -1 && "invalid digit"); return (uint8_t) value; } /** * Create a pm_integer_t from uint64_t with the given base. It is assumed that * the memory for the pm_integer_t pointer has been zeroed. */ static void pm_integer_from_uint64(pm_integer_t *integer, uint64_t value, uint64_t base) { if (value < base) { integer->value = (uint32_t) value; return; } size_t length = 0; uint64_t length_value = value; while (length_value > 0) { length++; length_value /= base; } uint32_t *values = (uint32_t *) xmalloc(sizeof(uint32_t) * length); if (values == NULL) return; for (size_t value_index = 0; value_index < length; value_index++) { values[value_index] = (uint32_t) (value % base); value /= base; } integer->length = length; integer->values = values; } /** * Normalize pm_integer_t. * Heading zero values will be removed. If the integer fits into uint32_t, * values is set to NULL, length is set to 0, and value field will be used. */ static void pm_integer_normalize(pm_integer_t *integer) { if (integer->values == NULL) { return; } while (integer->length > 1 && integer->values[integer->length - 1] == 0) { integer->length--; } if (integer->length > 1) { return; } uint32_t value = integer->values[0]; bool negative = integer->negative && value != 0; pm_integer_free(integer); *integer = (pm_integer_t) { .value = value, .length = 0, .values = NULL, .negative = negative }; } /** * Convert base of the integer. * In practice, it converts 10**9 to 1<<32 or 1<<32 to 10**9. */ static void pm_integer_convert_base(pm_integer_t *destination, const pm_integer_t *source, uint64_t base_from, uint64_t base_to) { size_t source_length; const uint32_t *source_values; INTEGER_EXTRACT(source, source_length, source_values) size_t bigints_length = (source_length + 1) / 2; assert(bigints_length > 0); pm_integer_t *bigints = (pm_integer_t *) xcalloc(bigints_length, sizeof(pm_integer_t)); if (bigints == NULL) return; for (size_t index = 0; index < source_length; index += 2) { uint64_t value = source_values[index] + base_from * (index + 1 < source_length ? source_values[index + 1] : 0); pm_integer_from_uint64(&bigints[index / 2], value, base_to); } pm_integer_t base = { 0 }; pm_integer_from_uint64(&base, base_from, base_to); while (bigints_length > 1) { pm_integer_t next_base; karatsuba_multiply(&next_base, &base, &base, base_to); pm_integer_free(&base); base = next_base; size_t next_length = (bigints_length + 1) / 2; pm_integer_t *next_bigints = (pm_integer_t *) xcalloc(next_length, sizeof(pm_integer_t)); for (size_t bigints_index = 0; bigints_index < bigints_length; bigints_index += 2) { if (bigints_index + 1 == bigints_length) { next_bigints[bigints_index / 2] = bigints[bigints_index]; } else { pm_integer_t multiplied = { 0 }; karatsuba_multiply(&multiplied, &base, &bigints[bigints_index + 1], base_to); big_add(&next_bigints[bigints_index / 2], &bigints[bigints_index], &multiplied, base_to); pm_integer_free(&bigints[bigints_index]); pm_integer_free(&bigints[bigints_index + 1]); pm_integer_free(&multiplied); } } xfree(bigints); bigints = next_bigints; bigints_length = next_length; } *destination = bigints[0]; destination->negative = source->negative; pm_integer_normalize(destination); xfree(bigints); pm_integer_free(&base); } #undef INTEGER_EXTRACT /** * Convert digits to integer with the given power-of-two base. */ static void pm_integer_parse_powof2(pm_integer_t *integer, uint32_t base, const uint8_t *digits, size_t digits_length) { size_t bit = 1; while (base > (uint32_t) (1 << bit)) bit++; size_t length = (digits_length * bit + 31) / 32; uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t)); for (size_t digit_index = 0; digit_index < digits_length; digit_index++) { size_t bit_position = bit * (digits_length - digit_index - 1); uint32_t value = digits[digit_index]; size_t index = bit_position / 32; size_t shift = bit_position % 32; values[index] |= value << shift; if (32 - shift < bit) values[index + 1] |= value >> (32 - shift); } while (length > 1 && values[length - 1] == 0) length--; *integer = (pm_integer_t) { .value = 0, .length = length, .values = values, .negative = false }; pm_integer_normalize(integer); } /** * Convert decimal digits to pm_integer_t. */ static void pm_integer_parse_decimal(pm_integer_t *integer, const uint8_t *digits, size_t digits_length) { const size_t batch = 9; size_t length = (digits_length + batch - 1) / batch; uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t)); uint32_t value = 0; for (size_t digits_index = 0; digits_index < digits_length; digits_index++) { value = value * 10 + digits[digits_index]; size_t reverse_index = digits_length - digits_index - 1; if (reverse_index % batch == 0) { values[reverse_index / batch] = value; value = 0; } } // Convert base from 10**9 to 1<<32. pm_integer_convert_base(integer, &((pm_integer_t) { .value = 0, .length = length, .values = values, .negative = false }), 1000000000, ((uint64_t) 1 << 32)); xfree(values); } /** * Parse a large integer from a string that does not fit into uint32_t. */ static void pm_integer_parse_big(pm_integer_t *integer, uint32_t multiplier, const uint8_t *start, const uint8_t *end) { // Allocate an array to store digits. uint8_t *digits = xmalloc(sizeof(uint8_t) * (size_t) (end - start)); size_t digits_length = 0; for (; start < end; start++) { if (*start == '_') continue; digits[digits_length++] = pm_integer_parse_digit(*start); } // Construct pm_integer_t from the digits. if (multiplier == 10) { pm_integer_parse_decimal(integer, digits, digits_length); } else { pm_integer_parse_powof2(integer, multiplier, digits, digits_length); } xfree(digits); } /** * Parse an integer from a string. This assumes that the format of the integer * has already been validated, as internal validation checks are not performed * here. */ PRISM_EXPORTED_FUNCTION void pm_integer_parse(pm_integer_t *integer, pm_integer_base_t base, const uint8_t *start, const uint8_t *end) { // Ignore unary +. Unary + is parsed differently and will not end up here. // Instead, it will modify the parsed integer later. if (*start == '+') start++; // Determine the multiplier from the base, and skip past any prefixes. uint32_t multiplier = 10; switch (base) { case PM_INTEGER_BASE_BINARY: start += 2; // 0b multiplier = 2; break; case PM_INTEGER_BASE_OCTAL: start++; // 0 if (*start == '_' || *start == 'o' || *start == 'O') start++; // o multiplier = 8; break; case PM_INTEGER_BASE_DECIMAL: if (*start == '0' && (end - start) > 1) start += 2; // 0d break; case PM_INTEGER_BASE_HEXADECIMAL: start += 2; // 0x multiplier = 16; break; case PM_INTEGER_BASE_UNKNOWN: if (*start == '0' && (end - start) > 1) { switch (start[1]) { case '_': start += 2; multiplier = 8; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': start++; multiplier = 8; break; case 'b': case 'B': start += 2; multiplier = 2; break; case 'o': case 'O': start += 2; multiplier = 8; break; case 'd': case 'D': start += 2; break; case 'x': case 'X': start += 2; multiplier = 16; break; default: assert(false && "unreachable"); break; } } break; } // It's possible that we've consumed everything at this point if there is an // invalid integer. If this is the case, we'll just return 0. if (start >= end) return; const uint8_t *cursor = start; uint64_t value = (uint64_t) pm_integer_parse_digit(*cursor++); for (; cursor < end; cursor++) { if (*cursor == '_') continue; value = value * multiplier + (uint64_t) pm_integer_parse_digit(*cursor); if (value > UINT32_MAX) { // If the integer is too large to fit into a single uint32_t, then // we'll parse it as a big integer. pm_integer_parse_big(integer, multiplier, start, end); return; } } integer->value = (uint32_t) value; } /** * Return the memory size of the integer. */ size_t pm_integer_memsize(const pm_integer_t *integer) { return sizeof(pm_integer_t) + integer->length * sizeof(uint32_t); } /** * Compare two integers. This function returns -1 if the left integer is less * than the right integer, 0 if they are equal, and 1 if the left integer is * greater than the right integer. */ int pm_integer_compare(const pm_integer_t *left, const pm_integer_t *right) { if (left->negative != right->negative) return left->negative ? -1 : 1; int negative = left->negative ? -1 : 1; if (left->values == NULL && right->values == NULL) { if (left->value < right->value) return -1 * negative; if (left->value > right->value) return 1 * negative; return 0; } if (left->values == NULL || left->length < right->length) return -1 * negative; if (right->values == NULL || left->length > right->length) return 1 * negative; for (size_t index = 0; index < left->length; index++) { size_t value_index = left->length - index - 1; uint32_t left_value = left->values[value_index]; uint32_t right_value = right->values[value_index]; if (left_value < right_value) return -1 * negative; if (left_value > right_value) return 1 * negative; } return 0; } /** * Convert an integer to a decimal string. */ PRISM_EXPORTED_FUNCTION void pm_integer_string(pm_buffer_t *buffer, const pm_integer_t *integer) { if (integer->negative) { pm_buffer_append_byte(buffer, '-'); } // If the integer fits into a single uint32_t, then we can just append the // value directly to the buffer. if (integer->values == NULL) { pm_buffer_append_format(buffer, "%" PRIu32, integer->value); return; } // If the integer is two uint32_t values, then we can | them together and // append the result to the buffer. if (integer->length == 2) { const uint64_t value = ((uint64_t) integer->values[0]) | ((uint64_t) integer->values[1] << 32); pm_buffer_append_format(buffer, "%" PRIu64, value); return; } // Otherwise, first we'll convert the base from 1<<32 to 10**9. pm_integer_t converted = { 0 }; pm_integer_convert_base(&converted, integer, (uint64_t) 1 << 32, 1000000000); if (converted.values == NULL) { pm_buffer_append_format(buffer, "%" PRIu32, converted.value); pm_integer_free(&converted); return; } // Allocate a buffer that we'll copy the decimal digits into. size_t digits_length = converted.length * 9; char *digits = xcalloc(digits_length, sizeof(char)); if (digits == NULL) return; // Pack bigdecimal to digits. for (size_t value_index = 0; value_index < converted.length; value_index++) { uint32_t value = converted.values[value_index]; for (size_t digit_index = 0; digit_index < 9; digit_index++) { digits[digits_length - 9 * value_index - digit_index - 1] = (char) ('0' + value % 10); value /= 10; } } size_t start_offset = 0; while (start_offset < digits_length - 1 && digits[start_offset] == '0') start_offset++; // Finally, append the string to the buffer and free the digits. pm_buffer_append_string(buffer, digits + start_offset, digits_length - start_offset); xfree(digits); pm_integer_free(&converted); } /** * Free the internal memory of an integer. This memory will only be allocated if * the integer exceeds the size of a single uint32_t. */ PRISM_EXPORTED_FUNCTION void pm_integer_free(pm_integer_t *integer) { if (integer->values) { xfree(integer->values); } }