;; aarch64 instruction selection and CLIF-to-MachInst lowering. ;; The main lowering constructor term: takes a clif `Inst` and returns the ;; register(s) within which the lowered instruction's result values live. (spec (lower arg) (provide (= result arg))) (decl partial lower (Inst) InstOutput) ;; Variant of the main lowering constructor term, which receives an ;; additional argument (a vector of branch targets to be used) for ;; implementing branches. ;; For two-branch instructions, the first target is `taken` and the second ;; `not_taken`, even if it is a Fallthrough instruction: because we reorder ;; blocks while we lower, the fallthrough in the new order is not (necessarily) ;; the same as the fallthrough in CLIF. So, we use the explicitly-provided ;; target. (decl partial lower_branch (Inst MachLabelSlice) Unit) ;;;; Rules for `iconst` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule iconst (lower (has_type ty (iconst (u64_from_imm64 n)))) (imm ty (ImmExtend.Zero) n)) ;;;; Rules for `f16const` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (f16const (u16_from_ieee16 n))) (constant_f16 n)) ;;;; Rules for `f32const` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (f32const (u32_from_ieee32 n))) (constant_f32 n)) ;;;; Rules for `f64const` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (f64const (u64_from_ieee64 n))) (constant_f64 n)) ;;;; Rules for `f128const` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $F128 (f128const (u128_from_constant n)))) (constant_f128 n)) ;;;; Rules for `nop` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (nop)) (invalid_reg)) ;;;; Rules for `iadd` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; `i64` and smaller ;; Base case, simply adding things in registers. (rule iadd_base_case -1 (lower (has_type (fits_in_64 ty) (iadd x y))) (add ty x y)) ;; Special cases for when one operand is an immediate that fits in 12 bits. (rule iadd_imm12_right 4 (lower (has_type (fits_in_64 ty) (iadd x (imm12_from_value y)))) (add_imm ty x y)) (rule iadd_imm12_left 5 (lower (has_type (fits_in_64 ty) (iadd (imm12_from_value x) y))) (add_imm ty y x)) ;; Same as the previous special cases, except we can switch the addition to a ;; subtraction if the negated immediate fits in 12 bits. (rule iadd_imm12_neg_right 2 (lower (has_type (fits_in_64 ty) (iadd x y))) (if-let imm12_neg (imm12_from_negated_value y)) (sub_imm ty x imm12_neg)) (rule iadd_imm12_neg_left 3 (lower (has_type (fits_in_64 ty) (iadd x y))) (if-let imm12_neg (imm12_from_negated_value x)) (sub_imm ty y imm12_neg)) ;; Special cases for when we're adding an extended register where the extending ;; operation can get folded into the add itself. (rule iadd_extend_right 0 (lower (has_type (fits_in_64 ty) (iadd x (extended_value_from_value y)))) (add_extend ty x y)) (rule iadd_extend_left 1 (lower (has_type (fits_in_64 ty) (iadd (extended_value_from_value x) y))) (add_extend ty y x)) ;; Special cases for when we're adding the shift of a different ;; register by a constant amount and the shift can get folded into the add. (rule iadd_ishl_right 7 (lower (has_type (fits_in_64 ty) (iadd x (ishl y (iconst k))))) (if-let amt (lshl_from_imm64 ty k)) (add_shift ty x y amt)) (rule iadd_ishl_left 6 (lower (has_type (fits_in_64 ty) (iadd (ishl x (iconst k)) y))) (if-let amt (lshl_from_imm64 ty k)) (add_shift ty y x amt)) ;; Fold an `iadd` and `imul` combination into a `madd` instruction. (rule iadd_imul_right 7 (lower (has_type (fits_in_64 ty) (iadd x (imul y z)))) (madd ty y z x)) (rule iadd_imul_left 6 (lower (has_type (fits_in_64 ty) (iadd (imul x y) z))) (madd ty x y z)) ;; Fold an `isub` and `imul` combination into a `msub` instruction. (rule isub_imul (lower (has_type (fits_in_64 ty) (isub x (imul y z)))) (msub ty y z x)) ;; vectors (rule -2 (lower (has_type ty @ (multi_lane _ _) (iadd x y))) (add_vec x y (vector_size ty))) ;; `i128` (rule -3 (lower (has_type $I128 (iadd x y))) (let ;; Get the high/low registers for `x`. ((x_regs ValueRegs x) (x_lo Reg (value_regs_get x_regs 0)) (x_hi Reg (value_regs_get x_regs 1)) ;; Get the high/low registers for `y`. (y_regs ValueRegs y) (y_lo Reg (value_regs_get y_regs 0)) (y_hi Reg (value_regs_get y_regs 1))) ;; the actual addition is `adds` followed by `adc` which comprises the ;; low/high bits of the result (with_flags (add_with_flags_paired $I64 x_lo y_lo) (adc_paired $I64 x_hi y_hi)))) ;;;; Rules for `shuffle` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; When a single element of one vector is broadcast to all the destination ;; lanes then the `dup` instruction can be used for this operation. Note that ;; for now this only matches lane selection from the first vector `a`, but ;; if necessary in the future rules can be added to select from `b` as well. (rule 6 (lower (shuffle a b (shuffle_dup8_from_imm n))) (vec_dup_from_fpu a (VectorSize.Size8x16) n)) (rule 5 (lower (shuffle a b (shuffle_dup16_from_imm n))) (vec_dup_from_fpu a (VectorSize.Size16x8) n)) (rule 4 (lower (shuffle a b (shuffle_dup32_from_imm n))) (vec_dup_from_fpu a (VectorSize.Size32x4) n)) (rule 3 (lower (shuffle a b (shuffle_dup64_from_imm n))) (vec_dup_from_fpu a (VectorSize.Size64x2) n)) ;; If the `Immediate` specified to the extractor looks like a duplication of the ;; `n`th lane of the first vector of size K-byte lanes, then each extractor ;; returns the `n` value as a `u8` to be used as part of a `vec_dup_from_fpu` ;; instruction. Note that there's a different extractor for each bit-width of ;; lane. (decl shuffle_dup8_from_imm (u8) Immediate) (extern extractor shuffle_dup8_from_imm shuffle_dup8_from_imm) (decl shuffle_dup16_from_imm (u8) Immediate) (extern extractor shuffle_dup16_from_imm shuffle_dup16_from_imm) (decl shuffle_dup32_from_imm (u8) Immediate) (extern extractor shuffle_dup32_from_imm shuffle_dup32_from_imm) (decl shuffle_dup64_from_imm (u8) Immediate) (extern extractor shuffle_dup64_from_imm shuffle_dup64_from_imm) ;; When the shuffle looks like "concatenate `a` and `b` and shift right by n*8 ;; bytes", that's an `ext` instruction. (rule 2 (lower (shuffle a b (vec_extract_imm4_from_immediate n))) (vec_extract a b n)) ;; Attempts to extract `n` from the specified shuffle `Immediate` where each ;; byte of the `Immediate` is a consecutive sequence starting from `n`. This ;; value of `n` is used as part of the `vec_extract` instruction which extracts ;; consecutive bytes from two vectors into one final vector, offset by `n` ;; bytes. (decl vec_extract_imm4_from_immediate (u8) Immediate) (extern extractor vec_extract_imm4_from_immediate vec_extract_imm4_from_immediate) ;; Rules for the `uzp1` and `uzp2` instructions which gather even-numbered lanes ;; or odd-numbered lanes (rule 1 (lower (shuffle a b (u128_from_immediate 0x1e1c_1a18_1614_1210_0e0c_0a08_0604_0200))) (vec_uzp1 a b (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1d_1b19_1715_1311_0f0d_0b09_0705_0301))) (vec_uzp2 a b (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1d1c_1918_1514_1110_0d0c_0908_0504_0100))) (vec_uzp1 a b (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e_1b1a_1716_1312_0f0e_0b0a_0706_0302))) (vec_uzp2 a b (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1b1a1918_13121110_0b0a0908_03020100))) (vec_uzp1 a b (VectorSize.Size32x4))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e1d1c_17161514_0f0e0d0c_07060504))) (vec_uzp2 a b (VectorSize.Size32x4))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1716151413121110_0706050403020100))) (vec_uzp1 a b (VectorSize.Size64x2))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e1d1c1b1a1918_0f0e0d0c0b0a0908))) (vec_uzp2 a b (VectorSize.Size64x2))) ;; Rules for the `zip1` and `zip2` instructions which interleave lanes in the ;; low or high halves of the two input vectors. (rule 1 (lower (shuffle a b (u128_from_immediate 0x1707_1606_1505_1404_1303_1202_1101_1000))) (vec_zip1 a b (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f0f_1e0e_1d0d_1c0c_1b0b_1a0a_1909_1808))) (vec_zip2 a b (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1716_0706_1514_0504_1312_0302_1110_0100))) (vec_zip1 a b (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e_0f0e_1d1c_0d0c_1b1a_0b0a_1918_0908))) (vec_zip2 a b (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x17161514_07060504_13121110_03020100))) (vec_zip1 a b (VectorSize.Size32x4))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e1d1c_0f0e0d0c_1b1a1918_0b0a0908))) (vec_zip2 a b (VectorSize.Size32x4))) ;; Note that zip1/zip2 for i64x2 vectors is omitted since it's already covered ;; by the i64x2 cases of uzp1/uzp2 above where both zip and uzp have the same ;; semantics for 64-bit lanes. ;; Rules for the `trn1` and `trn2` instructions which interleave odd or even ;; lanes in the two input vectors. (rule 1 (lower (shuffle a b (u128_from_immediate 0x1e0e_1c0c_1a0a_1808_1606_1404_1202_1000))) (vec_trn1 a b (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f0f_1d0d_1b0b_1909_1707_1505_1303_1101))) (vec_trn2 a b (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1d1c_0d0c_1918_0908_1514_0504_1110_0100))) (vec_trn1 a b (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e_0f0e_1b1a_0b0a_1716_0706_1312_0302))) (vec_trn2 a b (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1b1a1918_0b0a0908_13121110_03020100))) (vec_trn1 a b (VectorSize.Size32x4))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x1f1e1d1c_0f0e0d0c_17161514_07060504))) (vec_trn2 a b (VectorSize.Size32x4))) ;; Note that trn1/trn2 for i64x2 vectors is omitted since it's already covered ;; by the i64x2 cases of uzp1/uzp2 above where both trn and uzp have the same ;; semantics for 64-bit lanes. ;; Rules for the `rev{16,32,64}` instructions where reversals happen at either ;; the byte level, the 16-bit level, or 32-bit level. Note that all of these ;; patterns only match reversals in the first operand, but they can ;; theoretically be extended if necessary to reversals in the second operand. (rule 1 (lower (shuffle a b (u128_from_immediate 0x0e0f_0c0d_0a0b_0809_0607_0405_0203_0001))) (rev16 a (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x0c0d0e0f_08090a0b_04050607_00010203))) (rev32 a (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x0d0c0f0e_09080b0a_05040706_01000302))) (rev32 a (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x08090a0b0c0d0e0f_0001020304050607))) (rev64 a (VectorSize.Size8x16))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x09080b0a0d0c0f0e_0100030205040706))) (rev64 a (VectorSize.Size16x8))) (rule 1 (lower (shuffle a b (u128_from_immediate 0x0b0a09080f0e0d0c_0302010007060504))) (rev64 a (VectorSize.Size32x4))) (rule (lower (has_type ty (shuffle rn rn2 (u128_from_immediate mask)))) (let ((mask_reg Reg (constant_f128 mask))) (vec_tbl2 rn rn2 mask_reg ty))) ;;;; Rules for `swizzle` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type vec_i128_ty (swizzle rn rm))) (vec_tbl rn rm)) ;;;; Rules for `isplit` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (isplit x @ (value_type $I128))) (let ((x_regs ValueRegs x) (x_lo ValueRegs (value_regs_get x_regs 0)) (x_hi ValueRegs (value_regs_get x_regs 1))) (output_pair x_lo x_hi))) ;; Special-case the lowering of an `isplit` of a 128-bit multiply where the ;; lower bits of the result are discarded and the operands are sign or zero ;; extended. This maps directly to `umulh` and `smulh`. (rule 1 (lower i @ (isplit (has_type $I128 (imul (uextend x) (uextend y))))) (if-let (first_result lo) i) (if-let true (value_is_unused lo)) (output_pair (invalid_reg) (umulh $I64 (put_in_reg_zext64 x) (put_in_reg_zext64 y)))) (rule 1 (lower i @ (isplit (has_type $I128 (imul (sextend x) (sextend y))))) (if-let (first_result lo) i) (if-let true (value_is_unused lo)) (output_pair (invalid_reg) (smulh $I64 (put_in_reg_sext64 x) (put_in_reg_sext64 y)))) ;;;; Rules for `iconcat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $I128 (iconcat lo hi))) (output (value_regs lo hi))) ;;;; Rules for `scalar_to_vector` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $F32X4 (scalar_to_vector x))) (fpu_extend x (ScalarSize.Size32))) (rule (lower (has_type $F64X2 (scalar_to_vector x))) (fpu_extend x (ScalarSize.Size64))) (rule -1 (lower (scalar_to_vector x @ (value_type $I64))) (mov_to_fpu x (ScalarSize.Size64))) (rule -2 (lower (scalar_to_vector x @ (value_type (int_fits_in_32 _)))) (mov_to_fpu (put_in_reg_zext32 x) (ScalarSize.Size32))) ;;;; Rules for `vall_true` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; cmeq vtmp.2d, vm.2d, #0 ;; addp dtmp, vtmp.2d ;; fcmp dtmp, dtmp ;; cset xd, eq ;; ;; Note that after the ADDP the value of the temporary register will be either ;; 0 when all input elements are true, i.e. non-zero, or a NaN otherwise ;; (either -1 or -2 when represented as an integer); NaNs are the only ;; floating-point numbers that compare unequal to themselves. (rule (lower (vall_true x @ (value_type (multi_lane 64 2)))) (let ((x1 Reg (cmeq0 x (VectorSize.Size64x2))) (x2 Reg (addp x1 x1 (VectorSize.Size64x2)))) (with_flags (fpu_cmp (ScalarSize.Size64) x2 x2) (materialize_bool_result (Cond.Eq))))) (rule (lower (vall_true x @ (value_type (multi_lane 32 2)))) (let ((x1 Reg (mov_from_vec x 0 (ScalarSize.Size64)))) (with_flags (cmp_rr_shift (OperandSize.Size64) (zero_reg) x1 32) (ccmp_imm (OperandSize.Size32) x1 (u8_into_uimm5 0) (nzcv false true false false) (Cond.Ne))))) ;; This operation is implemented by using uminv to create a scalar value, which ;; is then compared against zero. ;; ;; uminv bn, vm.16b ;; mov xm, vn.d[0] ;; cmp xm, #0 ;; cset xm, ne (rule -1 (lower (vall_true x @ (value_type (lane_fits_in_32 ty)))) (if (not_vec32x2 ty)) (let ((x1 Reg (vec_lanes (VecLanesOp.Uminv) x (vector_size ty))) (x2 Reg (mov_from_vec x1 0 (ScalarSize.Size64)))) (with_flags (cmp_imm (OperandSize.Size64) x2 (u8_into_imm12 0)) (materialize_bool_result (Cond.Ne))))) ;;;; Rules for `vany_true` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (vany_true x @ (value_type in_ty))) (with_flags (vanytrue x in_ty) (materialize_bool_result (Cond.Ne)))) ;;;; Rules for `iadd_pairwise` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; special case for the `i16x8.extadd_pairwise_i8x16_s` wasm instruction (rule (lower (has_type $I16X8 (iadd_pairwise (swiden_low x) (swiden_high x)))) (saddlp8 x)) ;; special case for the `i32x4.extadd_pairwise_i16x8_s` wasm instruction (rule (lower (has_type $I32X4 (iadd_pairwise (swiden_low x) (swiden_high x)))) (saddlp16 x)) ;; special case for the `i16x8.extadd_pairwise_i8x16_u` wasm instruction (rule (lower (has_type $I16X8 (iadd_pairwise (uwiden_low x) (uwiden_high x)))) (uaddlp8 x)) ;; special case for the `i32x4.extadd_pairwise_i16x8_u` wasm instruction (rule (lower (has_type $I32X4 (iadd_pairwise (uwiden_low x) (uwiden_high x)))) (uaddlp16 x)) (rule -1 (lower (has_type ty (iadd_pairwise x y))) (addp x y (vector_size ty))) ;;;; Rules for `iabs` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (iabs x))) (vec_abs x (vector_size ty))) (rule iabs_64 2 (lower (has_type $I64 (iabs x))) (abs (OperandSize.Size64) x)) (rule iabs_8_16_32 1 (lower (has_type (fits_in_32 ty) (iabs x))) (abs (OperandSize.Size32) (put_in_reg_sext32 x))) ; `rustc` implementation. ; - create a bitmask of all 1s if negative, or 0s if positive. ; - xor all bits by bitmask. then subtract bitmask from xor'd values. ; - if `x` is positive, the xor'd bits = x and the mask = 0, so we end up with ; `x - 0`. ; - if `x` is negative, the xor'd bits = ~x and the mask = -1, so we end up with ; `~x - (-1) = ~x + 1`, which is exactly `abs(x)`. (rule (lower (has_type $I128 (iabs x))) (let ((x_regs ValueRegs x) (x_lo Reg (value_regs_get x_regs 0)) (x_hi Reg (value_regs_get x_regs 1)) (asr_reg Reg (asr_imm $I64 x_hi (imm_shift_from_u8 63))) (eor_hi Reg (eor $I64 x_hi asr_reg)) (eor_lo Reg (eor $I64 x_lo asr_reg)) (subs_lo ProducesFlags (sub_with_flags_paired $I64 eor_lo asr_reg)) (sbc_hi ConsumesFlags (sbc_paired $I64 eor_hi asr_reg))) (with_flags subs_lo sbc_hi))) ;;;; Rules for `avg_round` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $I64X2 (avg_round x y))) (let ((one Reg (splat_const 1 (VectorSize.Size64x2))) (c Reg (orr_vec x y (VectorSize.Size64x2))) (c Reg (and_vec c one (VectorSize.Size64x2))) (x Reg (ushr_vec_imm x 1 (VectorSize.Size64x2))) (y Reg (ushr_vec_imm y 1 (VectorSize.Size64x2))) (sum Reg (add_vec x y (VectorSize.Size64x2)))) (add_vec c sum (VectorSize.Size64x2)))) (rule -1 (lower (has_type (lane_fits_in_32 ty) (avg_round x y))) (vec_rrr (VecALUOp.Urhadd) x y (vector_size ty))) ;;;; Rules for `sqmul_round_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type ty @ (multi_lane _ _) (sqmul_round_sat x y))) (vec_rrr (VecALUOp.Sqrdmulh) x y (vector_size ty))) ;;;; Rules for `fadd` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fadd rn rm))) (vec_rrr (VecALUOp.Fadd) rn rm (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fadd rn rm))) (fpu_rrr (FPUOp2.Add) rn rm (scalar_size ty))) ;;;; Rules for `fsub` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fsub rn rm))) (vec_rrr (VecALUOp.Fsub) rn rm (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fsub rn rm))) (fpu_rrr (FPUOp2.Sub) rn rm (scalar_size ty))) ;;;; Rules for `fmul` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fmul rn rm))) (vec_rrr (VecALUOp.Fmul) rn rm (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fmul rn rm))) (fpu_rrr (FPUOp2.Mul) rn rm (scalar_size ty))) ;;;; Rules for `fdiv` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fdiv rn rm))) (vec_rrr (VecALUOp.Fdiv) rn rm (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fdiv rn rm))) (fpu_rrr (FPUOp2.Div) rn rm (scalar_size ty))) ;;;; Rules for `fmin` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fmin rn rm))) (vec_rrr (VecALUOp.Fmin) rn rm (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fmin rn rm))) (fpu_rrr (FPUOp2.Min) rn rm (scalar_size ty))) ;;;; Rules for `fmax` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fmax rn rm))) (vec_rrr (VecALUOp.Fmax) rn rm (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fmax rn rm))) (fpu_rrr (FPUOp2.Max) rn rm (scalar_size ty))) ;;;; Rules for `sqrt` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (sqrt x))) (vec_misc (VecMisc2.Fsqrt) x (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (sqrt x))) (fpu_rr (FPUOp1.Sqrt) x (scalar_size ty))) ;;;; Rules for `fneg` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fneg x))) (vec_misc (VecMisc2.Fneg) x (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fneg x))) (fpu_rr (FPUOp1.Neg) x (scalar_size ty))) ;;;; Rules for `fabs` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (fabs x))) (vec_misc (VecMisc2.Fabs) x (vector_size ty))) (rule (lower (has_type (ty_scalar_float ty) (fabs x))) (fpu_rr (FPUOp1.Abs) x (scalar_size ty))) ;;;; Rules for `fpromote` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $F64 (fpromote x))) (fpu_rr (FPUOp1.Cvt32To64) x (ScalarSize.Size32))) ;;;; Rules for `fdemote` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $F32 (fdemote x))) (fpu_rr (FPUOp1.Cvt64To32) x (ScalarSize.Size64))) ;;;; Rules for `ceil` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (ceil x))) (vec_misc (VecMisc2.Frintp) x (vector_size ty))) (rule (lower (has_type $F32 (ceil x))) (fpu_round (FpuRoundMode.Plus32) x)) (rule (lower (has_type $F64 (ceil x))) (fpu_round (FpuRoundMode.Plus64) x)) ;;;; Rules for `floor` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (floor x))) (vec_misc (VecMisc2.Frintm) x (vector_size ty))) (rule (lower (has_type $F32 (floor x))) (fpu_round (FpuRoundMode.Minus32) x)) (rule (lower (has_type $F64 (floor x))) (fpu_round (FpuRoundMode.Minus64) x)) ;;;; Rules for `trunc` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (trunc x))) (vec_misc (VecMisc2.Frintz) x (vector_size ty))) (rule (lower (has_type $F32 (trunc x))) (fpu_round (FpuRoundMode.Zero32) x)) (rule (lower (has_type $F64 (trunc x))) (fpu_round (FpuRoundMode.Zero64) x)) ;;;; Rules for `nearest` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane _ _) (nearest x))) (vec_misc (VecMisc2.Frintn) x (vector_size ty))) (rule (lower (has_type $F32 (nearest x))) (fpu_round (FpuRoundMode.Nearest32) x)) (rule (lower (has_type $F64 (nearest x))) (fpu_round (FpuRoundMode.Nearest64) x)) ;;;; Rules for `fma` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (type IsFneg (enum (Result (negate u64) (value Value)))) (decl pure is_fneg (Value) IsFneg) (rule 1 (is_fneg (fneg n)) (IsFneg.Result 1 n)) (rule 0 (is_fneg n) (IsFneg.Result 0 n)) (decl pure is_fneg_neg (IsFneg) u64) (rule (is_fneg_neg (IsFneg.Result n _)) n) (decl pure get_fneg_value (IsFneg) Value) (rule (get_fneg_value (IsFneg.Result _ v)) v) (decl fmadd_series (Type u64 u64 Value Value Value) InstOutput) ;; MAdd: + x * y + z (rule 0 (fmadd_series (ty_scalar_float ty) 0 0 x y z) (fpu_rrrr (FPUOp3.MAdd) (scalar_size ty) x y z)) ;; MSub: - x * y + z (rule 0 (fmadd_series (ty_scalar_float ty) 1 0 x y z) (fpu_rrrr (FPUOp3.MSub) (scalar_size ty) x y z)) ;; NMAdd: - x * y - z (rule 0 (fmadd_series (ty_scalar_float ty) 1 1 x y z) (fpu_rrrr (FPUOp3.NMAdd) (scalar_size ty) x y z)) ;; NMSub: + x * y - z (rule 0 (fmadd_series (ty_scalar_float ty) 0 1 x y z) (fpu_rrrr (FPUOp3.NMSub) (scalar_size ty) x y z)) (rule (lower (has_type (ty_scalar_float ty) (fma x_src y_src z_src))) (let ((x_res IsFneg (is_fneg x_src)) (y_res IsFneg (is_fneg y_src)) (z_res IsFneg (is_fneg z_src))) (fmadd_series ty (u64_xor (is_fneg_neg x_res) (is_fneg_neg y_res)) (is_fneg_neg z_res) (get_fneg_value x_res) (get_fneg_value y_res) (get_fneg_value z_res)))) ;; Delegate vector-based lowerings to helpers below (rule 1 (lower (has_type ty @ (multi_lane _ _) (fma x y z))) (lower_fmla (VecALUModOp.Fmla) x y z (vector_size ty))) ;; Lowers a fused-multiply-add operation handling various forms of the ;; instruction to get maximal coverage of what's available on AArch64. (decl lower_fmla (VecALUModOp Value Value Value VectorSize) Reg) ;; Base case, emit the op requested. (rule (lower_fmla op x y z size) (vec_rrr_mod op z x y size)) ;; Special case: if one of the multiplicands are a splat then the element-based ;; fma can be used instead with 0 as the element index. (rule 1 (lower_fmla op (splat x) y z size) (vec_fmla_elem op z y x size 0)) (rule 2 (lower_fmla op x (splat y) z size) (vec_fmla_elem op z x y size 0)) ;; Special case: if one of the multiplicands is a shuffle to broadcast a ;; single element of a vector then the element-based fma can be used like splat ;; above. ;; ;; Note that in Cranelift shuffle always has i8x16 inputs and outputs so ;; a `bitcast` is matched here explicitly since that's the main way a shuffle ;; output will be fed into this instruction. (rule 3 (lower_fmla op (bitcast _ (shuffle x x (shuffle32_from_imm n n n n))) y z size @ (VectorSize.Size32x4)) (if-let true (u64_lt n 4)) (vec_fmla_elem op z y x size n)) (rule 4 (lower_fmla op x (bitcast _ (shuffle y y (shuffle32_from_imm n n n n))) z size @ (VectorSize.Size32x4)) (if-let true (u64_lt n 4)) (vec_fmla_elem op z x y size n)) (rule 3 (lower_fmla op (bitcast _ (shuffle x x (shuffle64_from_imm n n))) y z size @ (VectorSize.Size64x2)) (if-let true (u64_lt n 2)) (vec_fmla_elem op z y x size n)) (rule 4 (lower_fmla op x (bitcast _ (shuffle y y (shuffle64_from_imm n n))) z size @ (VectorSize.Size64x2)) (if-let true (u64_lt n 2)) (vec_fmla_elem op z x y size n)) ;; Special case: if one of the multiplicands is `fneg` then peel that away, ;; reverse the operation being performed, and then recurse on `lower_fmla` ;; again to generate the actual instruction. ;; ;; Note that these are the highest priority cases for `lower_fmla` to peel ;; away as many `fneg` operations as possible. (rule 5 (lower_fmla op (fneg x) y z size) (lower_fmla (neg_fmla op) x y z size)) (rule 6 (lower_fmla op x (fneg y) z size) (lower_fmla (neg_fmla op) x y z size)) (decl neg_fmla (VecALUModOp) VecALUModOp) (rule (neg_fmla (VecALUModOp.Fmla)) (VecALUModOp.Fmls)) (rule (neg_fmla (VecALUModOp.Fmls)) (VecALUModOp.Fmla)) ;;;; Rules for `fcopysign` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type ty (fcopysign x y))) (fcopy_sign x y ty)) ;;;; Rules for `fcvt_to_uint` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_uint x @ (value_type $F32)))) (fpu_to_int_cvt (FpuToIntOp.F32ToU32) x false $F32 out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_uint x @ (value_type $F32)))) (fpu_to_int_cvt (FpuToIntOp.F32ToU64) x false $F32 $I64)) (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_uint x @ (value_type $F64)))) (fpu_to_int_cvt (FpuToIntOp.F64ToU32) x false $F64 out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_uint x @ (value_type $F64)))) (fpu_to_int_cvt (FpuToIntOp.F64ToU64) x false $F64 $I64)) ;;;; Rules for `fcvt_to_sint` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_sint x @ (value_type $F32)))) (fpu_to_int_cvt (FpuToIntOp.F32ToI32) x true $F32 out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_sint x @ (value_type $F32)))) (fpu_to_int_cvt (FpuToIntOp.F32ToI64) x true $F32 $I64)) (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_sint x @ (value_type $F64)))) (fpu_to_int_cvt (FpuToIntOp.F64ToI32) x true $F64 out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_sint x @ (value_type $F64)))) (fpu_to_int_cvt (FpuToIntOp.F64ToI64) x true $F64 $I64)) ;;;; Rules for `fcvt_from_uint` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane 32 _) (fcvt_from_uint x @ (value_type (multi_lane 32 _))))) (vec_misc (VecMisc2.Ucvtf) x (vector_size ty))) (rule -1 (lower (has_type ty @ (multi_lane 64 _) (fcvt_from_uint x @ (value_type (multi_lane 64 _))))) (vec_misc (VecMisc2.Ucvtf) x (vector_size ty))) (rule (lower (has_type $F32 (fcvt_from_uint x @ (value_type (fits_in_32 _))))) (int_to_fpu (IntToFpuOp.U32ToF32) (put_in_reg_zext32 x))) (rule (lower (has_type $F64 (fcvt_from_uint x @ (value_type (fits_in_32 _))))) (int_to_fpu (IntToFpuOp.U32ToF64) (put_in_reg_zext32 x))) (rule 1 (lower (has_type $F32 (fcvt_from_uint x @ (value_type $I64)))) (int_to_fpu (IntToFpuOp.U64ToF32) x)) (rule 1 (lower (has_type $F64 (fcvt_from_uint x @ (value_type $I64)))) (int_to_fpu (IntToFpuOp.U64ToF64) x)) ;;;; Rules for `fcvt_from_sint` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane 32 _) (fcvt_from_sint x @ (value_type (multi_lane 32 _))))) (vec_misc (VecMisc2.Scvtf) x (vector_size ty))) (rule -1 (lower (has_type ty @ (multi_lane 64 _) (fcvt_from_sint x @ (value_type (multi_lane 64 _))))) (vec_misc (VecMisc2.Scvtf) x (vector_size ty))) (rule (lower (has_type $F32 (fcvt_from_sint x @ (value_type (fits_in_32 _))))) (int_to_fpu (IntToFpuOp.I32ToF32) (put_in_reg_sext32 x))) (rule (lower (has_type $F64 (fcvt_from_sint x @ (value_type (fits_in_32 _))))) (int_to_fpu (IntToFpuOp.I32ToF64) (put_in_reg_sext32 x))) (rule 1 (lower (has_type $F32 (fcvt_from_sint x @ (value_type $I64)))) (int_to_fpu (IntToFpuOp.I64ToF32) x)) (rule 1 (lower (has_type $F64 (fcvt_from_sint x @ (value_type $I64)))) (int_to_fpu (IntToFpuOp.I64ToF64) x)) ;;;; Rules for `fcvt_to_uint_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane 32 _) (fcvt_to_uint_sat x @ (value_type (multi_lane 32 _))))) (vec_misc (VecMisc2.Fcvtzu) x (vector_size ty))) (rule -1 (lower (has_type ty @ (multi_lane 64 _) (fcvt_to_uint_sat x @ (value_type (multi_lane 64 _))))) (vec_misc (VecMisc2.Fcvtzu) x (vector_size ty))) (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_uint_sat x @ (value_type $F32)))) (fpu_to_int_cvt_sat (FpuToIntOp.F32ToU32) x false out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_uint_sat x @ (value_type $F32)))) (fpu_to_int_cvt_sat (FpuToIntOp.F32ToU64) x false $I64)) (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_uint_sat x @ (value_type $F64)))) (fpu_to_int_cvt_sat (FpuToIntOp.F64ToU32) x false out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_uint_sat x @ (value_type $F64)))) (fpu_to_int_cvt_sat (FpuToIntOp.F64ToU64) x false $I64)) ;;;; Rules for `fcvt_to_sint_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty @ (multi_lane 32 _) (fcvt_to_sint_sat x @ (value_type (multi_lane 32 _))))) (vec_misc (VecMisc2.Fcvtzs) x (vector_size ty))) (rule -1 (lower (has_type ty @ (multi_lane 64 _) (fcvt_to_sint_sat x @ (value_type (multi_lane 64 _))))) (vec_misc (VecMisc2.Fcvtzs) x (vector_size ty))) (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_sint_sat x @ (value_type $F32)))) (fpu_to_int_cvt_sat (FpuToIntOp.F32ToI32) x true out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_sint_sat x @ (value_type $F32)))) (fpu_to_int_cvt_sat (FpuToIntOp.F32ToI64) x true $I64)) (rule (lower (has_type (fits_in_32 out_ty) (fcvt_to_sint_sat x @ (value_type $F64)))) (fpu_to_int_cvt_sat (FpuToIntOp.F64ToI32) x true out_ty)) (rule 1 (lower (has_type $I64 (fcvt_to_sint_sat x @ (value_type $F64)))) (fpu_to_int_cvt_sat (FpuToIntOp.F64ToI64) x true $I64)) ;;;; Rules for `isub` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; `i64` and smaller ;; Base case, simply subtracting things in registers. (rule isub_base_case -4 (lower (has_type (fits_in_64 ty) (isub x y))) (sub ty x y)) ;; Special case for when one operand is an immediate that fits in 12 bits. (rule isub_imm12 0 (lower (has_type (fits_in_64 ty) (isub x (imm12_from_value y)))) (sub_imm ty x y)) ;; Same as the previous special case, except we can switch the subtraction to an ;; addition if the negated immediate fits in 12 bits. (rule isub_imm12_neg 2 (lower (has_type (fits_in_64 ty) (isub x y))) (if-let imm12_neg (imm12_from_negated_value y)) (add_imm ty x imm12_neg)) ;; Special cases for when we're subtracting an extended register where the ;; extending operation can get folded into the sub itself. (rule isub_extend 1 (lower (has_type (fits_in_64 ty) (isub x (extended_value_from_value y)))) (sub_extend ty x y)) ;; Finally a special case for when we're subtracting the shift of a different ;; register by a constant amount and the shift can get folded into the sub. (rule isub_ishl -3 (lower (has_type (fits_in_64 ty) (isub x (ishl y (iconst k))))) (if-let amt (lshl_from_imm64 ty k)) (sub_shift ty x y amt)) ;; vectors (rule -2 (lower (has_type ty @ (multi_lane _ _) (isub x y))) (sub_vec x y (vector_size ty))) ;; `i128` (rule -1 (lower (has_type $I128 (isub x y))) (sub_i128 x y)) ;;;; Rules for `uadd_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (ty_vec128 ty) (uadd_sat x y))) (uqadd x y (vector_size ty))) ;;;; Rules for `sadd_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (ty_vec128 ty) (sadd_sat x y))) (sqadd x y (vector_size ty))) ;;;; Rules for `usub_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (ty_vec128 ty) (usub_sat x y))) (uqsub x y (vector_size ty))) ;;;; Rules for `ssub_sat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (ty_vec128 ty) (ssub_sat x y))) (sqsub x y (vector_size ty))) ;;;; Rules for `ineg` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; `i64` and smaller. (rule ineg_base_case 1 (lower (has_type (fits_in_64 ty) (ineg x))) (sub ty (zero_reg) x)) ;; `i128` (rule 2 (lower (has_type $I128 (ineg x))) (sub_i128 (value_regs_zero) x)) ;; vectors. (rule (lower (has_type (ty_vec128 ty) (ineg x))) (neg x (vector_size ty))) ;;;; Rules for `imul` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; `i64` and smaller. (rule imul_base_case -3 (lower (has_type (fits_in_64 ty) (imul x y))) (madd ty x y (zero_reg))) ;; `i128`. (rule -1 (lower (has_type $I128 (imul x y))) (let ;; Get the high/low registers for `x`. ((x_regs ValueRegs x) (x_lo Reg (value_regs_get x_regs 0)) (x_hi Reg (value_regs_get x_regs 1)) ;; Get the high/low registers for `y`. (y_regs ValueRegs y) (y_lo Reg (value_regs_get y_regs 0)) (y_hi Reg (value_regs_get y_regs 1)) ;; 128bit mul formula: ;; dst_lo = x_lo * y_lo ;; dst_hi = umulhi(x_lo, y_lo) + (x_lo * y_hi) + (x_hi * y_lo) ;; ;; We can convert the above formula into the following ;; umulh dst_hi, x_lo, y_lo ;; madd dst_hi, x_lo, y_hi, dst_hi ;; madd dst_hi, x_hi, y_lo, dst_hi ;; madd dst_lo, x_lo, y_lo, zero (dst_hi1 Reg (umulh $I64 x_lo y_lo)) (dst_hi2 Reg (madd $I64 x_lo y_hi dst_hi1)) (dst_hi Reg (madd $I64 x_hi y_lo dst_hi2)) (dst_lo Reg (madd $I64 x_lo y_lo (zero_reg)))) (value_regs dst_lo dst_hi))) ;; Special cases where the upper bits are sign-or-zero extended of the lower bits ;; so the calculation here is much simpler with just a `umulh` or `smulh` ;; instead of the additions above as well. (rule (lower (has_type $I128 (imul (uextend x) (uextend y)))) (let ( (x Reg (put_in_reg_zext64 x)) (y Reg (put_in_reg_zext64 y)) ) (value_regs (madd $I64 x y (zero_reg)) (umulh $I64 x y)))) (rule (lower (has_type $I128 (imul (sextend x) (sextend y)))) (let ( (x Reg (put_in_reg_sext64 x)) (y Reg (put_in_reg_sext64 y)) ) (value_regs (madd $I64 x y (zero_reg)) (smulh $I64 x y)))) ;; Case for i8x16, i16x8, and i32x4. (rule -2 (lower (has_type (ty_vec128 ty @ (not_i64x2)) (imul x y))) (mul x y (vector_size ty))) ;; Special lowering for i64x2. ;; ;; This I64X2 multiplication is performed with several 32-bit ;; operations. ;; ;; 64-bit numbers x and y, can be represented as: ;; x = a + 2^32(b) ;; y = c + 2^32(d) ;; ;; A 64-bit multiplication is: ;; x * y = ac + 2^32(ad + bc) + 2^64(bd) ;; note: `2^64(bd)` can be ignored, the value is too large to fit in ;; 64 bits. ;; ;; This sequence implements a I64X2 multiply, where the registers ;; `rn` and `rm` are split up into 32-bit components: ;; rn = |d|c|b|a| ;; rm = |h|g|f|e| ;; ;; rn * rm = |cg + 2^32(ch + dg)|ae + 2^32(af + be)| ;; ;; The sequence is: ;; rev64 rd.4s, rm.4s ;; mul rd.4s, rd.4s, rn.4s ;; xtn tmp1.2s, rn.2d ;; addp rd.4s, rd.4s, rd.4s ;; xtn tmp2.2s, rm.2d ;; shll rd.2d, rd.2s, #32 ;; umlal rd.2d, tmp2.2s, tmp1.2s (rule -1 (lower (has_type $I64X2 (imul x y))) (let ((rn Reg x) (rm Reg y) ;; Reverse the 32-bit elements in the 64-bit words. ;; rd = |g|h|e|f| (rev Reg (rev64 rm (VectorSize.Size32x4))) ;; Calculate the high half components. ;; rd = |dg|ch|be|af| ;; ;; Note that this 32-bit multiply of the high half ;; discards the bits that would overflow, same as ;; if 64-bit operations were used. Also the Shll ;; below would shift out the overflow bits anyway. (mul Reg (mul rev rn (VectorSize.Size32x4))) ;; Extract the low half components of rn. ;; tmp1 = |c|a| (tmp1 Reg (xtn rn (ScalarSize.Size32))) ;; Sum the respective high half components. ;; rd = |dg+ch|be+af||dg+ch|be+af| (sum Reg (addp mul mul (VectorSize.Size32x4))) ;; Extract the low half components of rm. ;; tmp2 = |g|e| (tmp2 Reg (xtn rm (ScalarSize.Size32))) ;; Shift the high half components, into the high half. ;; rd = |dg+ch << 32|be+af << 32| (shift Reg (shll32 sum false)) ;; Multiply the low components together, and accumulate with the high ;; half. ;; rd = |rd[1] + cg|rd[0] + ae| (result Reg (umlal32 shift tmp2 tmp1 false))) result)) ;; Special case for `i16x8.extmul_low_i8x16_s`. (rule (lower (has_type $I16X8 (imul (swiden_low x @ (value_type $I8X16)) (swiden_low y @ (value_type $I8X16))))) (smull8 x y false)) ;; Special case for `i16x8.extmul_high_i8x16_s`. (rule (lower (has_type $I16X8 (imul (swiden_high x @ (value_type $I8X16)) (swiden_high y @ (value_type $I8X16))))) (smull8 x y true)) ;; Special case for `i16x8.extmul_low_i8x16_u`. (rule (lower (has_type $I16X8 (imul (uwiden_low x @ (value_type $I8X16)) (uwiden_low y @ (value_type $I8X16))))) (umull8 x y false)) ;; Special case for `i16x8.extmul_high_i8x16_u`. (rule (lower (has_type $I16X8 (imul (uwiden_high x @ (value_type $I8X16)) (uwiden_high y @ (value_type $I8X16))))) (umull8 x y true)) ;; Special case for `i32x4.extmul_low_i16x8_s`. (rule (lower (has_type $I32X4 (imul (swiden_low x @ (value_type $I16X8)) (swiden_low y @ (value_type $I16X8))))) (smull16 x y false)) ;; Special case for `i32x4.extmul_high_i16x8_s`. (rule (lower (has_type $I32X4 (imul (swiden_high x @ (value_type $I16X8)) (swiden_high y @ (value_type $I16X8))))) (smull16 x y true)) ;; Special case for `i32x4.extmul_low_i16x8_u`. (rule (lower (has_type $I32X4 (imul (uwiden_low x @ (value_type $I16X8)) (uwiden_low y @ (value_type $I16X8))))) (umull16 x y false)) ;; Special case for `i32x4.extmul_high_i16x8_u`. (rule (lower (has_type $I32X4 (imul (uwiden_high x @ (value_type $I16X8)) (uwiden_high y @ (value_type $I16X8))))) (umull16 x y true)) ;; Special case for `i64x2.extmul_low_i32x4_s`. (rule (lower (has_type $I64X2 (imul (swiden_low x @ (value_type $I32X4)) (swiden_low y @ (value_type $I32X4))))) (smull32 x y false)) ;; Special case for `i64x2.extmul_high_i32x4_s`. (rule (lower (has_type $I64X2 (imul (swiden_high x @ (value_type $I32X4)) (swiden_high y @ (value_type $I32X4))))) (smull32 x y true)) ;; Special case for `i64x2.extmul_low_i32x4_u`. (rule (lower (has_type $I64X2 (imul (uwiden_low x @ (value_type $I32X4)) (uwiden_low y @ (value_type $I32X4))))) (umull32 x y false)) ;; Special case for `i64x2.extmul_high_i32x4_u`. (rule (lower (has_type $I64X2 (imul (uwiden_high x @ (value_type $I32X4)) (uwiden_high y @ (value_type $I32X4))))) (umull32 x y true)) ;;;; Rules for `smulhi` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type $I64 (smulhi x y))) (smulh $I64 x y)) (rule (lower (has_type (fits_in_32 ty) (smulhi x y))) (let ((x64 Reg (put_in_reg_sext64 x)) (y64 Reg (put_in_reg_sext64 y)) (mul Reg (madd $I64 x64 y64 (zero_reg))) (result Reg (asr_imm $I64 mul (imm_shift_from_u8 (ty_bits ty))))) result)) ;;;; Rules for `umulhi` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type $I64 (umulhi x y))) (umulh $I64 x y)) (rule (lower (has_type (fits_in_32 ty) (umulhi x y))) (let ( (x64 Reg (put_in_reg_zext64 x)) (y64 Reg (put_in_reg_zext64 y)) (mul Reg (madd $I64 x64 y64 (zero_reg))) (result Reg (lsr_imm $I64 mul (imm_shift_from_u8 (ty_bits ty)))) ) (value_reg result))) ;;;; Rules for `udiv` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Enum representing the types of extensions (type ExtType (enum (Signed) (Unsigned))) ;; Helper for placing a `Value` into a `Reg` and validating that it's nonzero. ;; It takes a value and extension type, and performs the appropriate checks. ;; TODO: restore spec ; (spec (put_nonzero_in_reg_sext64 x) ; (provide (= (sign_ext 64 x) result)) ; (require (not (= #x0000000000000000 result)))) (decl put_nonzero_in_reg (Value ExtType Type) Reg) ;; Special case where if a `Value` is known to be nonzero we can trivially ;; move it into a register. ;; zero-extend non-zero constant (rule (put_nonzero_in_reg (iconst (nonzero_u64_from_imm64 n)) (ExtType.Unsigned) ty) (imm ty (ImmExtend.Zero) n)) ;; sign-extend non-zero constant (rule (put_nonzero_in_reg (iconst (nonzero_u64_from_imm64 n)) (ExtType.Signed) ty) (imm ty (ImmExtend.Sign) n)) (rule -1 (put_nonzero_in_reg val _ $I64) (trap_if_zero_divisor (put_in_reg val) (operand_size $I64))) (rule -2 (put_nonzero_in_reg val (ExtType.Signed) (fits_in_32 _)) (trap_if_zero_divisor (put_in_reg_sext32 val) (operand_size $I32))) (rule -2 (put_nonzero_in_reg val (ExtType.Unsigned) (fits_in_32 _)) (trap_if_zero_divisor (put_in_reg_zext32 val) (operand_size $I32))) ;; Note that aarch64's `udiv` doesn't trap so to respect the semantics of ;; CLIF's `udiv` the check for zero needs to be manually performed. (rule udiv 1 (lower (has_type $I64 (udiv x y))) (a64_udiv $I64 (put_in_reg x) (put_nonzero_in_reg y (ExtType.Unsigned) $I64))) (rule udiv (lower (has_type (fits_in_32 ty) (udiv x y))) (a64_udiv $I32 (put_in_reg_zext32 x) (put_nonzero_in_reg y (ExtType.Unsigned) ty))) ;;;; Rules for `sdiv` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; TODO: Add SDiv32 to implement 32-bit directly, rather ;; than extending the input. ;; ;; The sequence of checks here should look like this for 32 or 64 bits: ;; ;; cbnz rm, #8 ;; udf ; divide by zero ;; cmn rm, 1 ;; ccmp rn, 1, #nzcv, eq ;; b.vc #8 ;; udf ; signed overflow ;; ;; In the narrow 8 or 16 bit case, we need to insert an additional left-shift ;; to check for the minimum value using the 32-bit ccmp instruction. ;; ;; Note The div instruction does not trap on divide by zero or overflow, so ;; checks need to be manually inserted. ;; ;; TODO: if `y` is -1 then a check that `x` is not INT_MIN is all that's ;; necessary, but right now `y` is checked to not be -1 as well. (rule sdiv_base_case (lower (has_type $I64 (sdiv x y))) (let ((x64 Reg (put_in_reg_sext64 x)) (y64 Reg (put_nonzero_in_reg y (ExtType.Signed) $I64)) (intmin_check_x Reg (intmin_check $I64 x64)) (valid_x64 Reg (trap_if_div_overflow $I64 intmin_check_x x64 y64)) (result Reg (a64_sdiv $I64 valid_x64 y64))) result)) (rule sdiv_base_case -1 (lower (has_type (fits_in_32 ty) (sdiv x y))) (let ((x32 Reg (put_in_reg_sext32 x)) (y32 Reg (put_nonzero_in_reg y (ExtType.Signed) ty)) (intmin_check_x Reg (intmin_check ty x32)) (valid_x32 Reg (trap_if_div_overflow ty intmin_check_x x32 y32)) (result Reg (a64_sdiv ty valid_x32 y32))) result)) ;; Special case for `sdiv` where no checks are needed due to division by a ;; constant meaning the checks are always passed. (rule sdiv_safe_divisor 2 (lower (has_type $I64 (sdiv x (iconst imm)))) (if-let y (safe_divisor_from_imm64 $I64 imm)) (a64_sdiv $I64 (put_in_reg_sext64 x) (imm $I64 (ImmExtend.Sign) y))) (rule sdiv_safe_divisor 1 (lower (has_type (fits_in_32 ty) (sdiv x (iconst imm)))) (if-let y (safe_divisor_from_imm64 ty imm)) (a64_sdiv ty (put_in_reg_sext32 x) (imm ty (ImmExtend.Sign) y))) ;; Helper for placing a `Value` into a `Reg` and validating that it's nonzero. ;;;; Rules for `urem` and `srem` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Remainder (x % y) is implemented as: ;; ;; tmp = x / y ;; result = x - (tmp*y) ;; ;; use 'result' for tmp and you have: ;; ;; cbnz y, #8 ; branch over trap ;; udf ; divide by zero ;; div rd, x, y ; rd = x / y ;; msub rd, rd, y, x ; rd = x - rd * y ;; TODO: we can avoid a 0 check, if the dividend is a non-0 constant (rule urem (lower (has_type $I64 (urem x y))) (let ((x64 Reg (put_in_reg_zext64 x)) (y64 Reg (put_nonzero_in_reg y (ExtType.Unsigned) $I64)) (div Reg (a64_udiv $I64 x64 y64)) (result Reg (msub $I64 div y64 x64))) result)) (rule urem -1 (lower (has_type (fits_in_32 ty) (urem x y))) (let ((x64 Reg (put_in_reg_zext32 x)) (y64 Reg (put_nonzero_in_reg y (ExtType.Unsigned) ty)) (div Reg (a64_udiv ty x64 y64)) (result Reg (msub ty div y64 x64))) result)) (rule srem (lower (has_type $I64 (srem x y))) (let ((x64 Reg (put_in_reg_sext64 x)) (y64 Reg (put_nonzero_in_reg y (ExtType.Signed) $I64)) (div Reg (a64_sdiv $I64 x64 y64)) (result Reg (msub $I64 div y64 x64))) result)) (rule srem -1 (lower (has_type (fits_in_32 ty) (srem x y))) (let ((x64 Reg (put_in_reg_sext32 x)) (y64 Reg (put_nonzero_in_reg y (ExtType.Signed) ty)) (div Reg (a64_sdiv ty x64 y64)) (result Reg (msub ty div y64 x64))) result)) ;;; Rules for integer min/max: umin, smin, umax, smax ;;;;;;;;;;;;;;;;;;;;;;;;; ;; `i64` and smaller. ;; cmp $x, $y ;; csel .., $x, $y, $cc (spec (cmp_and_choose ty cc signed x y) (provide (= result (switch cc (#x03 (if (bvule x y) x y)) (#x08 (if (bvuge x y) x y)) (#x0b (if (bvsle x y) x y)) (#x0c (if (bvsge x y) x y))))) (require (or (= ty 8) (= ty 16) (= ty 32) (= ty 64)) (or (= cc #x03) (= cc #x08) (= cc #x0b) (= cc #x0c)) (if signed (or (= cc #x0b) (= cc #x0c)) (or (= cc #x03) (= cc #x08))))) (decl cmp_and_choose (Type Cond bool Value Value) ValueRegs) (rule (cmp_and_choose (fits_in_64 ty) cc _ x y) (let ((x Reg (put_in_reg x)) (y Reg (put_in_reg y))) (with_flags_reg (cmp (operand_size ty) x y) (csel cc x y)))) ;; `i16` and `i8` min/max require sign extension as ;; the comparison operates on (at least) 32 bits. (rule 1 (cmp_and_choose (fits_in_16 ty) cc signed x y) (let ((x Reg (extend (put_in_reg x) signed (ty_bits ty) 32)) (y Reg (extend (put_in_reg y) signed (ty_bits ty) 32))) (with_flags_reg (cmp (operand_size ty) x y) (csel cc x y)))) (rule umin 2 (lower (has_type (and (fits_in_64 ty) (ty_int _)) (umin x y))) (cmp_and_choose ty (Cond.Lo) false x y)) (rule smin 2 (lower (has_type (and (fits_in_64 ty) (ty_int _)) (smin x y))) (cmp_and_choose ty (Cond.Lt) true x y)) (rule umax 2 (lower (has_type (and (fits_in_64 ty) (ty_int _)) (umax x y))) (cmp_and_choose ty (Cond.Hi) false x y)) (rule smax 2 (lower (has_type (and (fits_in_64 ty) (ty_int _)) (smax x y))) (cmp_and_choose ty (Cond.Gt) true x y)) ;; Vector types. (rule (lower (has_type ty @ (not_i64x2) (smin x y))) (vec_rrr (VecALUOp.Smin) x y (vector_size ty))) (rule 1 (lower (has_type $I64X2 (smin x y))) (bsl $I64X2 (vec_rrr (VecALUOp.Cmgt) y x (VectorSize.Size64x2)) x y)) (rule (lower (has_type ty @ (not_i64x2) (umin x y))) (vec_rrr (VecALUOp.Umin) x y (vector_size ty))) (rule 1 (lower (has_type $I64X2 (umin x y))) (bsl $I64X2 (vec_rrr (VecALUOp.Cmhi) y x (VectorSize.Size64x2)) x y)) (rule (lower (has_type ty @ (not_i64x2) (smax x y))) (vec_rrr (VecALUOp.Smax) x y (vector_size ty))) (rule 1 (lower (has_type $I64X2 (smax x y))) (bsl $I64X2 (vec_rrr (VecALUOp.Cmgt) x y (VectorSize.Size64x2)) x y)) (rule (lower (has_type ty @ (not_i64x2) (umax x y))) (vec_rrr (VecALUOp.Umax) x y (vector_size ty))) (rule 1 (lower (has_type $I64X2 (umax x y))) (bsl $I64X2 (vec_rrr (VecALUOp.Cmhi) x y (VectorSize.Size64x2)) x y)) ;;;; Rules for `uextend` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; General rule for extending input to an output which fits in a single ;; register. (rule uextend -2 (lower (has_type (fits_in_64 out) (uextend x @ (value_type in)))) (extend x false (ty_bits in) (ty_bits out))) ;; Extraction of a vector lane automatically extends as necessary, so we can ;; skip an explicit extending instruction. (rule 1 (lower (has_type (fits_in_64 out) (uextend (extractlane vec @ (value_type in) (u8_from_uimm8 lane))))) (mov_from_vec (put_in_reg vec) lane (lane_size in))) ;; Atomic loads will also automatically zero their upper bits so the `uextend` ;; instruction can effectively get skipped here. (rule 1 (lower (has_type (fits_in_64 out) (uextend x @ (and (value_type in) (atomic_load flags _))))) (if-let mem_op (is_sinkable_inst x)) (load_acquire in flags (sink_atomic_load mem_op))) ;; Conversion to 128-bit needs a zero-extension of the lower bits and the upper ;; bits are all zero. (rule -1 (lower (has_type $I128 (uextend x))) (value_regs (put_in_reg_zext64 x) (imm $I64 (ImmExtend.Zero) 0))) ;; Like above where vector extraction automatically zero-extends extending to ;; i128 only requires generating a 0 constant for the upper bits. (rule (lower (has_type $I128 (uextend (extractlane vec @ (value_type in) (u8_from_uimm8 lane))))) (value_regs (mov_from_vec (put_in_reg vec) lane (lane_size in)) (imm $I64 (ImmExtend.Zero) 0))) ;; Zero extensions from a load can be encoded in the load itself (rule (lower (has_type (fits_in_64 _) (uextend x @ (has_type in_ty (load flags address offset))))) (if-let inst (is_sinkable_inst x)) (let ((_ Unit (sink_inst inst))) (aarch64_uload in_ty (amode in_ty address offset) flags))) (decl aarch64_uload (Type AMode MemFlags) Reg) (rule (aarch64_uload $I8 amode flags) (aarch64_uload8 amode flags)) (rule (aarch64_uload $I16 amode flags) (aarch64_uload16 amode flags)) (rule (aarch64_uload $I32 amode flags) (aarch64_uload32 amode flags)) ;;;; Rules for `sextend` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; General rule for extending input to an output which fits in a single ;; register. (rule sextend -4 (lower (has_type (fits_in_64 out) (sextend x @ (value_type in)))) (extend x true (ty_bits in) (ty_bits out))) ;; Extraction of a vector lane automatically extends as necessary, so we can ;; skip an explicit extending instruction. (rule -3 (lower (has_type (fits_in_64 out) (sextend (extractlane vec @ (value_type in) (u8_from_uimm8 lane))))) (mov_from_vec_signed (put_in_reg vec) lane (vector_size in) (size_from_ty out))) ;; 64-bit to 128-bit only needs to sign-extend the input to the upper bits. (rule -2 (lower (has_type $I128 (sextend x))) (let ((lo Reg (put_in_reg_sext64 x)) (hi Reg (asr_imm $I64 lo (imm_shift_from_u8 63)))) (value_regs lo hi))) ;; Like above where vector extraction automatically zero-extends extending to ;; i128 only requires generating a 0 constant for the upper bits. ;; ;; Note that `mov_from_vec_signed` doesn't exist for i64x2, so that's ;; specifically excluded here. (rule (lower (has_type $I128 (sextend (extractlane vec @ (value_type in @ (not_i64x2)) (u8_from_uimm8 lane))))) (let ((lo Reg (mov_from_vec_signed (put_in_reg vec) lane (vector_size in) (size_from_ty $I64))) (hi Reg (asr_imm $I64 lo (imm_shift_from_u8 63)))) (value_regs lo hi))) ;; Extension from an extraction of i64x2 into i128. (rule -1 (lower (has_type $I128 (sextend (extractlane vec @ (value_type $I64X2) (u8_from_uimm8 lane))))) (let ((lo Reg (mov_from_vec (put_in_reg vec) lane (ScalarSize.Size64))) (hi Reg (asr_imm $I64 lo (imm_shift_from_u8 63)))) (value_regs lo hi))) ;; Signed extensions from a load can be encoded in the load itself (rule (lower (has_type (fits_in_64 _) (sextend x @ (has_type in_ty (load flags address offset))))) (if-let inst (is_sinkable_inst x)) (let ((_ Unit (sink_inst inst))) (aarch64_sload in_ty (amode in_ty address offset) flags))) (decl aarch64_sload (Type AMode MemFlags) Reg) (rule (aarch64_sload $I8 amode flags) (aarch64_sload8 amode flags)) (rule (aarch64_sload $I16 amode flags) (aarch64_sload16 amode flags)) (rule (aarch64_sload $I32 amode flags) (aarch64_sload32 amode flags)) ;;;; Rules for `bnot` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Base case using `orn` between two registers. ;; ;; Note that bitwise negation is implemented here as ;; ;; NOT rd, rm ==> ORR_NOT rd, zero, rm (rule bnot_base_case -1 (lower (has_type (fits_in_64 ty) (bnot x))) (orr_not ty (zero_reg) x)) ;; Special case to use `orr_not_shift` if it's a `bnot` of a const-left-shifted ;; value. (rule bnot_ishl 1 (lower (has_type (fits_in_64 ty) (bnot (ishl x (iconst k))))) (if-let amt (lshl_from_imm64 ty k)) (orr_not_shift ty (zero_reg) x amt)) ;; Implementation of `bnot` for `i128`. (rule (lower (has_type $I128 (bnot x))) (let ((x_regs ValueRegs x) (x_lo Reg (value_regs_get x_regs 0)) (x_hi Reg (value_regs_get x_regs 1)) (new_lo Reg (orr_not $I64 (zero_reg) x_lo)) (new_hi Reg (orr_not $I64 (zero_reg) x_hi))) (value_regs new_lo new_hi))) ;; Implementation of `bnot` for vector types. (rule -2 (lower (has_type (ty_vec128 ty) (bnot x))) (not x (vector_size ty))) ;; Special-cases for fusing a bnot with bxor (rule 2 (lower (has_type (fits_in_64 ty) (bnot (bxor x y)))) (alu_rs_imm_logic (ALUOp.EorNot) ty x y)) (rule 3 (lower (has_type $I128 (bnot (bxor x y)))) (i128_alu_bitop (ALUOp.EorNot) $I64 x y)) ;;;; Rules for `band` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule band_fits_in_64 -1 (lower (has_type (fits_in_64 ty) (band x y))) (alu_rs_imm_logic_commutative (ALUOp.And) ty x y)) (rule (lower (has_type $I128 (band x y))) (i128_alu_bitop (ALUOp.And) $I64 x y)) (rule -2 (lower (has_type (ty_vec128 ty) (band x y))) (and_vec x y (vector_size ty))) ;; Specialized lowerings for `(band x (bnot y))` which is additionally produced ;; by Cranelift's `band_not` instruction that is legalized into the simpler ;; forms early on. (rule band_not_right 1 (lower (has_type (fits_in_64 ty) (band x (bnot y)))) (alu_rs_imm_logic (ALUOp.AndNot) ty x y)) (rule band_not_left 2 (lower (has_type (fits_in_64 ty) (band (bnot y) x))) (alu_rs_imm_logic (ALUOp.AndNot) ty x y)) (rule 3 (lower (has_type $I128 (band x (bnot y)))) (i128_alu_bitop (ALUOp.AndNot) $I64 x y)) (rule 4 (lower (has_type $I128 (band (bnot y) x))) (i128_alu_bitop (ALUOp.AndNot) $I64 x y)) (rule 5 (lower (has_type (ty_vec128 ty) (band x (bnot y)))) (bic_vec x y (vector_size ty))) (rule 6 (lower (has_type (ty_vec128 ty) (band (bnot y) x))) (bic_vec x y (vector_size ty))) ;;;; Rules for `bor` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule bor_fits_in_64 -1 (lower (has_type (fits_in_64 ty) (bor x y))) (alu_rs_imm_logic_commutative (ALUOp.Orr) ty x y)) (rule (lower (has_type $I128 (bor x y))) (i128_alu_bitop (ALUOp.Orr) $I64 x y)) (rule -2 (lower (has_type (ty_vec128 ty) (bor x y))) (orr_vec x y (vector_size ty))) ;; Specialized lowerings for `(bor x (bnot y))` which is additionally produced ;; by Cranelift's `bor_not` instruction that is legalized into the simpler ;; forms early on. (rule bor_not_right 1 (lower (has_type (fits_in_64 ty) (bor x (bnot y)))) (alu_rs_imm_logic (ALUOp.OrrNot) ty x y)) (rule bor_not_left 2 (lower (has_type (fits_in_64 ty) (bor (bnot y) x))) (alu_rs_imm_logic (ALUOp.OrrNot) ty x y)) (rule 3 (lower (has_type $I128 (bor x (bnot y)))) (i128_alu_bitop (ALUOp.OrrNot) $I64 x y)) (rule 4 (lower (has_type $I128 (bor (bnot y) x))) (i128_alu_bitop (ALUOp.OrrNot) $I64 x y)) ;;;; Rules for `bxor` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule bxor_fits_in_64 -1 (lower (has_type (fits_in_64 ty) (bxor x y))) (alu_rs_imm_logic_commutative (ALUOp.Eor) ty x y)) (rule (lower (has_type $I128 (bxor x y))) (i128_alu_bitop (ALUOp.Eor) $I64 x y)) (rule -2 (lower (has_type (ty_vec128 ty) (bxor x y))) (eor_vec x y (vector_size ty))) ;; Specialized lowerings for `(bxor x (bnot y))` which is additionally produced ;; by Cranelift's `bxor_not` instruction that is legalized into the simpler ;; forms early on. (rule bxor_not_right 1 (lower (has_type (fits_in_64 ty) (bxor x (bnot y)))) (alu_rs_imm_logic (ALUOp.EorNot) ty x y)) (rule bxor_not_left 2 (lower (has_type (fits_in_64 ty) (bxor (bnot y) x))) (alu_rs_imm_logic (ALUOp.EorNot) ty x y)) (rule 3 (lower (has_type $I128 (bxor x (bnot y)))) (i128_alu_bitop (ALUOp.EorNot) $I64 x y)) (rule 4 (lower (has_type $I128 (bxor (bnot y) x))) (i128_alu_bitop (ALUOp.EorNot) $I64 x y)) ;;;; Rules for `ishl` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Shift for i8/i16/i32. (rule ishl_fits_in_32 -1 (lower (has_type (fits_in_32 ty) (ishl x y))) (do_shift (ALUOp.Lsl) ty x y)) ;; Shift for i64. (rule ishl_64 (lower (has_type $I64 (ishl x y))) (do_shift (ALUOp.Lsl) $I64 x y)) ;; Shift for i128. (rule (lower (has_type $I128 (ishl x y))) (lower_shl128 x (value_regs_get y 0))) ;; lsl lo_lshift, src_lo, amt ;; lsl hi_lshift, src_hi, amt ;; mvn inv_amt, amt ;; lsr lo_rshift, src_lo, #1 ;; lsr lo_rshift, lo_rshift, inv_amt ;; orr maybe_hi, hi_lshift, lo_rshift ;; tst amt, #0x40 ;; csel dst_hi, lo_lshift, maybe_hi, ne ;; csel dst_lo, xzr, lo_lshift, ne (decl lower_shl128 (ValueRegs Reg) ValueRegs) (rule (lower_shl128 src amt) (let ((src_lo Reg (value_regs_get src 0)) (src_hi Reg (value_regs_get src 1)) (lo_lshift Reg (lsl $I64 src_lo amt)) (hi_lshift Reg (lsl $I64 src_hi amt)) (inv_amt Reg (orr_not $I32 (zero_reg) amt)) (lo_rshift Reg (lsr $I64 (lsr_imm $I64 src_lo (imm_shift_from_u8 1)) inv_amt)) (maybe_hi Reg (orr $I64 hi_lshift lo_rshift)) ) (with_flags (tst_imm $I64 amt (u64_into_imm_logic $I64 64)) (consumes_flags_concat (csel (Cond.Ne) (zero_reg) lo_lshift) (csel (Cond.Ne) lo_lshift maybe_hi))))) ;; Shift for vector types. (rule -3 (lower (has_type (ty_vec128 ty) (ishl x y))) (let ((size VectorSize (vector_size ty)) (masked_shift_amt Reg (and_imm $I32 y (shift_mask ty))) (shift Reg (vec_dup masked_shift_amt size))) (sshl x shift size))) (rule -2 (lower (has_type (ty_vec128 ty) (ishl x (iconst (u64_from_imm64 n))))) (ushl_vec_imm x (shift_masked_imm ty n) (vector_size ty))) (decl pure shift_masked_imm (Type u64) u8) (extern constructor shift_masked_imm shift_masked_imm) ;; Helper function to emit a shift operation with the opcode specified and ;; the output type specified. The `Reg` provided is shifted by the `Value` ;; given. ;; ;; Note that this automatically handles the clif semantics of masking the ;; shift amount where necessary. (spec (do_shift op t a b) (provide (= result (switch op ((ALUOp.Lsr) (conv_to 64 (bvlshr (conv_to t a) (conv_to t (zero_ext 64 (bvand (conv_to (widthof b) (bvsub (int2bv 64 (widthof b)) #x0000000000000001)) b)))))) ((ALUOp.Asr) (conv_to 64 (bvashr (conv_to t a) (conv_to t (zero_ext 64 (bvand (conv_to (widthof b) (bvsub (int2bv 64 (widthof b)) #x0000000000000001)) b)))))) ((ALUOp.Lsl) (conv_to 64 (bvshl (conv_to t a) (conv_to t (zero_ext 64 (bvand (conv_to (widthof b) (bvsub (int2bv 64 (widthof b)) #x0000000000000001)) b))))))))) (require (or (= op (ALUOp.Lsr)) (= op (ALUOp.Asr)) (= op (ALUOp.Lsl))) (= t (widthof b)) (or (= t 8) (= t 16) (= t 32) (= t 64)) (switch op ((ALUOp.Lsr) (switch t (8 (= (extract 31 0 a) (zero_ext 32 (extract 7 0 a)))) (16 (= (extract 31 0 a) (zero_ext 32 (extract 15 0 a)))) (32 true) (64 true))) ((ALUOp.Asr) (switch t (8 (= (extract 31 0 a) (sign_ext 32 (extract 7 0 a)))) (16 (= (extract 31 0 a) (sign_ext 32 (extract 15 0 a)))) (32 true) (64 true))) ((ALUOp.Lsl) true)))) (instantiate do_shift ((args (bv 8) Int (bv 64) (bv 8)) (ret (bv 64)) (canon (bv 8))) ((args (bv 8) Int (bv 64) (bv 16)) (ret (bv 64)) (canon (bv 16))) ((args (bv 8) Int (bv 64) (bv 32)) (ret (bv 64)) (canon (bv 32))) ((args (bv 8) Int (bv 64) (bv 64)) (ret (bv 64)) (canon (bv 64))) ) (decl do_shift (ALUOp Type Reg Value) Reg) ;; 8/16-bit shift base case. ;; ;; When shifting for amounts larger than the size of the type, the CLIF shift ;; instructions implement a "wrapping" behaviour, such that an i8 << 8 is ;; equivalent to i8 << 0 ;; ;; On i32 and i64 types this matches what the aarch64 spec does, but on smaller ;; types (i16, i8) we need to do this manually, so we wrap the shift amount ;; with an AND instruction (rule do_shift_fits_in_16 -1 (do_shift op (fits_in_16 ty) x y) (let ((shift_amt Reg (value_regs_get y 0)) (masked_shift_amt Reg (and_imm $I32 shift_amt (shift_mask ty)))) (alu_rrr op $I32 x masked_shift_amt))) (spec (shift_mask t) (provide (= (bvsub (int2bv 64 t) #x0000000000000001) result))) (decl shift_mask (Type) ImmLogic) (extern constructor shift_mask shift_mask) ;; 32/64-bit shift base cases. (rule do_shift_32_base_case (do_shift op $I32 x y) (alu_rrr op $I32 x (value_regs_get y 0))) (rule do_shift_64_base_case (do_shift op $I64 x y) (alu_rrr op $I64 x (value_regs_get y 0))) ;; Special case for shifting by a constant value where the value can fit into an ;; `ImmShift`. ;; ;; Note that this rule explicitly has a higher priority than the others ;; to ensure it's attempted first, otherwise the type-based filters on the ;; previous rules seem to take priority over this rule. (rule do_shift_imm 1 (do_shift op ty x (iconst k)) (if-let shift (imm_shift_from_imm64 ty k)) (alu_rr_imm_shift op ty x shift)) ;;;; Rules for `ushr` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Shift for i8/i16/i32. (rule ushr_fits_in_32 -1 (lower (has_type (fits_in_32 ty) (ushr x y))) (do_shift (ALUOp.Lsr) ty (put_in_reg_zext32 x) y)) ;; Shift for i64. (rule ushr_64 (lower (has_type $I64 (ushr x y))) (do_shift (ALUOp.Lsr) $I64 (put_in_reg_zext64 x) y)) ;; Shift for i128. (rule (lower (has_type $I128 (ushr x y))) (lower_ushr128 x (value_regs_get y 0))) ;; Vector shifts. ;; ;; Note that for constant shifts a 0-width shift can't be emitted so it's ;; special cased to pass through the input as-is since a 0-shift doesn't modify ;; the input anyway. (rule -4 (lower (has_type (ty_vec128 ty) (ushr x y))) (let ((size VectorSize (vector_size ty)) (masked_shift_amt Reg (and_imm $I32 y (shift_mask ty))) (shift Reg (vec_dup (sub $I64 (zero_reg) masked_shift_amt) size))) (ushl x shift size))) (rule -3 (lower (has_type (ty_vec128 ty) (ushr x (iconst (u64_from_imm64 n))))) (ushr_vec_imm x (shift_masked_imm ty n) (vector_size ty))) (rule -2 (lower (has_type (ty_vec128 ty) (ushr x (iconst (u64_from_imm64 n))))) (if-let 0 (shift_masked_imm ty n)) x) ;; lsr lo_rshift, src_lo, amt ;; lsr hi_rshift, src_hi, amt ;; mvn inv_amt, amt ;; lsl hi_lshift, src_hi, #1 ;; lsl hi_lshift, hi_lshift, inv_amt ;; tst amt, #0x40 ;; orr maybe_lo, lo_rshift, hi_lshift ;; csel dst_hi, xzr, hi_rshift, ne ;; csel dst_lo, hi_rshift, maybe_lo, ne (decl lower_ushr128 (ValueRegs Reg) ValueRegs) (rule (lower_ushr128 src amt) (let ((src_lo Reg (value_regs_get src 0)) (src_hi Reg (value_regs_get src 1)) (lo_rshift Reg (lsr $I64 src_lo amt)) (hi_rshift Reg (lsr $I64 src_hi amt)) (inv_amt Reg (orr_not $I32 (zero_reg) amt)) (hi_lshift Reg (lsl $I64 (lsl_imm $I64 src_hi (imm_shift_from_u8 1)) inv_amt)) (maybe_lo Reg (orr $I64 lo_rshift hi_lshift)) ) (with_flags (tst_imm $I64 amt (u64_into_imm_logic $I64 64)) (consumes_flags_concat (csel (Cond.Ne) hi_rshift maybe_lo) (csel (Cond.Ne) (zero_reg) hi_rshift))))) ;;;; Rules for `sshr` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Shift for i8/i16/i32. (rule sshr_fits_in_32 -4 (lower (has_type (fits_in_32 ty) (sshr x y))) (do_shift (ALUOp.Asr) ty (put_in_reg_sext32 x) y)) ;; Shift for i64. (rule sshr_64 (lower (has_type $I64 (sshr x y))) (do_shift (ALUOp.Asr) $I64 (put_in_reg_sext64 x) y)) ;; Shift for i128. (rule (lower (has_type $I128 (sshr x y))) (lower_sshr128 x (value_regs_get y 0))) ;; Vector shifts. ;; ;; Note that right shifts are implemented with a negative left shift. Also note ;; that for constant shifts a 0-width shift can't be emitted so it's special ;; cased to pass through the input as-is since a 0-shift doesn't modify the ;; input anyway. (rule -3 (lower (has_type (ty_vec128 ty) (sshr x y))) (let ((size VectorSize (vector_size ty)) (masked_shift_amt Reg (and_imm $I32 y (shift_mask ty))) (shift Reg (vec_dup (sub $I64 (zero_reg) masked_shift_amt) size))) (sshl x shift size))) (rule -2 (lower (has_type (ty_vec128 ty) (sshr x (iconst (u64_from_imm64 n))))) (sshr_vec_imm x (shift_masked_imm ty n) (vector_size ty))) (rule -1 (lower (has_type (ty_vec128 ty) (sshr x (iconst (u64_from_imm64 n))))) (if-let 0 (shift_masked_imm ty n)) x) ;; lsr lo_rshift, src_lo, amt ;; asr hi_rshift, src_hi, amt ;; mvn inv_amt, amt ;; lsl hi_lshift, src_hi, #1 ;; lsl hi_lshift, hi_lshift, inv_amt ;; asr hi_sign, src_hi, #63 ;; orr maybe_lo, lo_rshift, hi_lshift ;; tst amt, #0x40 ;; csel dst_hi, hi_sign, hi_rshift, ne ;; csel dst_lo, hi_rshift, maybe_lo, ne (decl lower_sshr128 (ValueRegs Reg) ValueRegs) (rule (lower_sshr128 src amt) (let ((src_lo Reg (value_regs_get src 0)) (src_hi Reg (value_regs_get src 1)) (lo_rshift Reg (lsr $I64 src_lo amt)) (hi_rshift Reg (asr $I64 src_hi amt)) (inv_amt Reg (orr_not $I32 (zero_reg) amt)) (hi_lshift Reg (lsl $I64 (lsl_imm $I64 src_hi (imm_shift_from_u8 1)) inv_amt)) (hi_sign Reg (asr_imm $I64 src_hi (imm_shift_from_u8 63))) (maybe_lo Reg (orr $I64 lo_rshift hi_lshift)) ) (with_flags (tst_imm $I64 amt (u64_into_imm_logic $I64 64)) (consumes_flags_concat (csel (Cond.Ne) hi_rshift maybe_lo) (csel (Cond.Ne) hi_sign hi_rshift))))) ;;;; Rules for `rotl` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; General 8/16-bit case. (rule rotl_fits_in_16 -2 (lower (has_type (fits_in_16 ty) (rotl x y))) (let ((amt Reg (value_regs_get y 0)) (neg_shift Reg (sub $I32 (zero_reg) amt))) (small_rotr ty (put_in_reg_zext32 x) neg_shift))) ;; Specialization for the 8/16-bit case when the rotation amount is an immediate. (rule rotl_fits_in_16_imm -1 (lower (has_type (fits_in_16 ty) (rotl x (iconst k)))) (if-let n (imm_shift_from_imm64 ty k)) (small_rotr_imm ty (put_in_reg_zext32 x) (negate_imm_shift ty n))) ;; aarch64 doesn't have a left-rotate instruction, but a left rotation of K ;; places is effectively a right rotation of N - K places, if N is the integer's ;; bit size. We implement left rotations with this trick. ;; ;; Note that when negating the shift amount here the upper bits are ignored ;; by the rotr instruction, meaning that we'll still left-shift by the desired ;; amount. ;; General 32-bit case. (rule rotl_32_base_case (lower (has_type $I32 (rotl x y))) (let ((amt Reg (value_regs_get y 0)) (neg_shift Reg (sub $I32 (zero_reg) amt))) (a64_rotr $I32 x neg_shift))) ;; General 64-bit case. (rule rotl_64_base_case (lower (has_type $I64 (rotl x y))) (let ((amt Reg (value_regs_get y 0)) (neg_shift Reg (sub $I64 (zero_reg) amt))) (a64_rotr $I64 x neg_shift))) ;; Specialization for the 32-bit case when the rotation amount is an immediate. (rule rotl_32_imm 1 (lower (has_type $I32 (rotl x (iconst k)))) (if-let n (imm_shift_from_imm64 $I32 k)) (a64_rotr_imm $I32 x (negate_imm_shift $I32 n))) ;; Specialization for the 64-bit case when the rotation amount is an immediate. (rule rotl_64_imm 1 (lower (has_type $I64 (rotl x (iconst k)))) (if-let n (imm_shift_from_imm64 $I64 k)) (a64_rotr_imm $I64 x (negate_imm_shift $I64 n))) ;; fn negate_imm_shift(&mut self, ty: Type, mut imm: ImmShift) -> ImmShift { ;; let size = u8::try_from(ty.bits()).unwrap(); ;; imm.imm = size.wrapping_sub(imm.value()); ;; imm.imm &= size - 1; ;; imm ;; } (spec (negate_imm_shift ty x) (provide (= result (bvand (bvsub (int2bv 6 ty) x) (bvsub (int2bv 6 ty) #b000001))))) (decl negate_imm_shift (Type ImmShift) ImmShift) (extern constructor negate_imm_shift negate_imm_shift) ;; General 128-bit case. ;; ;; TODO: much better codegen is possible with a constant amount. (rule (lower (has_type $I128 (rotl x y))) (let ((val ValueRegs x) (amt Reg (value_regs_get y 0)) (neg_amt Reg (sub $I64 (imm $I64 (ImmExtend.Zero) 128) amt)) (lshift ValueRegs (lower_shl128 val amt)) (rshift ValueRegs (lower_ushr128 val neg_amt))) (value_regs (orr $I64 (value_regs_get lshift 0) (value_regs_get rshift 0)) (orr $I64 (value_regs_get lshift 1) (value_regs_get rshift 1))))) ;;;; Rules for `rotr` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; General 8/16-bit case. (rule rotr_fits_in_16 -3 (lower (has_type (fits_in_16 ty) (rotr x y))) (small_rotr ty (put_in_reg_zext32 x) (value_regs_get y 0))) ;; General 32-bit case. (rule rotr_32_base_case -1 (lower (has_type $I32 (rotr x y))) (a64_rotr $I32 x (value_regs_get y 0))) ;; General 64-bit case. (rule rotr_64_base_case -1 (lower (has_type $I64 (rotr x y))) (a64_rotr $I64 x (value_regs_get y 0))) ;; Specialization for the 8/16-bit case when the rotation amount is an immediate. (rule rotr_fits_in_16_imm -2 (lower (has_type (fits_in_16 ty) (rotr x (iconst k)))) (if-let n (imm_shift_from_imm64 ty k)) (small_rotr_imm ty (put_in_reg_zext32 x) n)) ;; Specialization for the 32-bit case when the rotation amount is an immediate. (rule rotr_32_imm (lower (has_type $I32 (rotr x (iconst k)))) (if-let n (imm_shift_from_imm64 $I32 k)) (a64_rotr_imm $I32 x n)) ;; Specialization for the 64-bit case when the rotation amount is an immediate. (rule rotr_64_imm (lower (has_type $I64 (rotr x (iconst k)))) (if-let n (imm_shift_from_imm64 $I64 k)) (a64_rotr_imm $I64 x n)) ;; For a < 32-bit rotate-right, we synthesize this as: ;; ;; rotr rd, val, amt ;; ;; => ;; ;; and masked_amt, amt, ;; sub tmp_sub, masked_amt, ;; sub neg_amt, zero, tmp_sub ; neg ;; lsr val_rshift, val, masked_amt ;; lsl val_lshift, val, neg_amt ;; orr rd, val_lshift val_rshift (spec (small_rotr t x y) (provide (= result (switch t (8 (conv_to 64 (rotr (extract 7 0 x) (extract 7 0 y)))) (16 (conv_to 64 (rotr (extract 15 0 x) (extract 15 0 y))))))) (require (or (= t 8) (= t 16)) (switch t (8 (= (extract 31 8 x) #x000000)) (16 (= (extract 31 16 x) #x0000))))) (instantiate small_rotr ((args Int (bv 64) (bv 64)) (ret (bv 64)) (canon (bv 64)))) (decl small_rotr (Type Reg Reg) Reg) (rule small_rotr (small_rotr ty val amt) (let ((masked_amt Reg (and_imm $I32 amt (rotr_mask ty))) (tmp_sub Reg (sub_imm $I32 masked_amt (u8_into_imm12 (ty_bits ty)))) (neg_amt Reg (sub $I32 (zero_reg) tmp_sub)) (val_rshift Reg (lsr $I32 val masked_amt)) (val_lshift Reg (lsl $I32 val neg_amt))) (orr $I32 val_lshift val_rshift))) (spec (rotr_mask x) (provide (= (bvsub (int2bv 64 x) #x0000000000000001) result))) (decl rotr_mask (Type) ImmLogic) (extern constructor rotr_mask rotr_mask) ;; For a constant amount, we can instead do: ;; ;; rotr rd, val, #amt ;; ;; => ;; ;; lsr val_rshift, val, # ;; lsl val_lshift, val, ;; orr rd, val_lshift, val_rshift (spec (small_rotr_imm t x y) (provide (= result (switch t (8 (conv_to 64 (rotr (extract 7 0 x) (zero_ext 8 y)))) (16 (conv_to 64 (rotr (extract 15 0 x) (zero_ext 16 y))))))) (require (or (= t 8) (= t 16)) (switch t (8 (= (extract 31 8 x) #x000000)) (16 (= (extract 31 16 x) #x0000))) (bvult y (int2bv 6 t)))) (instantiate small_rotr_imm ((args Int (bv 64) (bv 6)) (ret (bv 64)) (canon (bv 64)))) (decl small_rotr_imm (Type Reg ImmShift) Reg) (rule small_rotr_imm (small_rotr_imm ty val amt) (let ((val_rshift Reg (lsr_imm $I32 val amt)) (val_lshift Reg (lsl_imm $I32 val (rotr_opposite_amount ty amt)))) (orr $I32 val_lshift val_rshift))) (spec (rotr_opposite_amount ty x) (provide (= (bvsub (int2bv 6 ty) (bvand x (bvsub (int2bv 6 ty) #b000001))) result))) (decl rotr_opposite_amount (Type ImmShift) ImmShift) (extern constructor rotr_opposite_amount rotr_opposite_amount) ;; General 128-bit case. ;; ;; TODO: much better codegen is possible with a constant amount. (rule (lower (has_type $I128 (rotr x y))) (let ((val ValueRegs x) (amt Reg (value_regs_get y 0)) (neg_amt Reg (sub $I64 (imm $I64 (ImmExtend.Zero) 128) amt)) (rshift ValueRegs (lower_ushr128 val amt)) (lshift ValueRegs (lower_shl128 val neg_amt)) (hi Reg (orr $I64 (value_regs_get rshift 1) (value_regs_get lshift 1))) (lo Reg (orr $I64 (value_regs_get rshift 0) (value_regs_get lshift 0)))) (value_regs lo hi))) ;;;; Rules for `bitrev` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Reversing an 8-bit value with a 32-bit bitrev instruction will place ;; the reversed result in the highest 8 bits, so we need to shift them down into ;; place. (rule (lower (has_type $I8 (bitrev x))) (lsr_imm $I32 (rbit $I32 x) (imm_shift_from_u8 24))) ;; Reversing an 16-bit value with a 32-bit bitrev instruction will place ;; the reversed result in the highest 16 bits, so we need to shift them down into ;; place. (rule (lower (has_type $I16 (bitrev x))) (lsr_imm $I32 (rbit $I32 x) (imm_shift_from_u8 16))) (rule (lower (has_type $I128 (bitrev x))) (let ((val ValueRegs x) (lo_rev Reg (rbit $I64 (value_regs_get val 0))) (hi_rev Reg (rbit $I64 (value_regs_get val 1)))) (value_regs hi_rev lo_rev))) (rule -1 (lower (has_type ty (bitrev x))) (rbit ty x)) ;;;; Rules for `clz` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule clz_8 (lower (has_type $I8 (clz x))) (sub_imm $I32 (a64_clz $I32 (put_in_reg_zext32 x)) (u8_into_imm12 24))) (rule clz_16 (lower (has_type $I16 (clz x))) (sub_imm $I32 (a64_clz $I32 (put_in_reg_zext32 x)) (u8_into_imm12 16))) (rule (lower (has_type $I128 (clz x))) (lower_clz128 x)) (rule clz_32_64 -1 (lower (has_type ty (clz x))) (a64_clz ty x)) ;; clz hi_clz, hi ;; clz lo_clz, lo ;; lsr tmp, hi_clz, #6 ;; madd dst_lo, lo_clz, tmp, hi_clz ;; mov dst_hi, 0 (decl lower_clz128 (ValueRegs) ValueRegs) (rule (lower_clz128 val) (let ((hi_clz Reg (a64_clz $I64 (value_regs_get val 1))) (lo_clz Reg (a64_clz $I64 (value_regs_get val 0))) (tmp Reg (lsr_imm $I64 hi_clz (imm_shift_from_u8 6)))) (value_regs (madd $I64 lo_clz tmp hi_clz) (imm $I64 (ImmExtend.Zero) 0)))) ;;;; Rules for `ctz` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Note that all `ctz` instructions are implemented by reversing the bits and ;; then using a `clz` instruction since the tail zeros are the same as the ;; leading zeros of the reversed value. (rule ctz_8 (lower (has_type $I8 (ctz x))) (a64_clz $I32 (orr_imm $I32 (rbit $I32 x) (u64_into_imm_logic $I32 0x800000)))) (rule ctz_16 (lower (has_type $I16 (ctz x))) (a64_clz $I32 (orr_imm $I32 (rbit $I32 x) (u64_into_imm_logic $I32 0x8000)))) (rule (lower (has_type $I128 (ctz x))) (let ((val ValueRegs x) (lo Reg (rbit $I64 (value_regs_get val 0))) (hi Reg (rbit $I64 (value_regs_get val 1)))) (lower_clz128 (value_regs hi lo)))) (rule ctz_32_64 -1 (lower (has_type ty (ctz x))) (a64_clz ty (rbit ty x))) ;;;; Rules for `cls` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule cls_8 (lower (has_type $I8 (cls x))) (sub_imm $I32 (a64_cls $I32 (put_in_reg_sext32 x)) (u8_into_imm12 24))) (rule cls_16 (lower (has_type $I16 (cls x))) (sub_imm $I32 (a64_cls $I32 (put_in_reg_sext32 x)) (u8_into_imm12 16))) ;; cls lo_cls, lo ;; cls hi_cls, hi ;; eon sign_eq_eor, hi, lo ;; lsr sign_eq, sign_eq_eor, #63 ;; madd lo_sign_bits, out_lo, sign_eq, sign_eq ;; cmp hi_cls, #63 ;; csel maybe_lo, lo_sign_bits, xzr, eq ;; add out_lo, maybe_lo, hi_cls ;; mov out_hi, 0 (rule (lower (has_type $I128 (cls x))) (let ((val ValueRegs x) (lo Reg (value_regs_get val 0)) (hi Reg (value_regs_get val 1)) (lo_cls Reg (a64_cls $I64 lo)) (hi_cls Reg (a64_cls $I64 hi)) (sign_eq_eon Reg (eon $I64 hi lo)) (sign_eq Reg (lsr_imm $I64 sign_eq_eon (imm_shift_from_u8 63))) (lo_sign_bits Reg (madd $I64 lo_cls sign_eq sign_eq)) (maybe_lo Reg (with_flags_reg (cmp64_imm hi_cls (u8_into_imm12 63)) (csel (Cond.Eq) lo_sign_bits (zero_reg))))) (value_regs (add $I64 maybe_lo hi_cls) (imm $I64 (ImmExtend.Zero) 0)))) (rule cls_32_64 -1 (lower (has_type ty (cls x))) (a64_cls ty x)) ;;;; Rules for `bswap` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type $I16 (bswap x))) (a64_rev16 $I16 x)) (rule (lower (has_type $I32 (bswap x))) (a64_rev32 $I32 x)) (rule (lower (has_type $I64 (bswap x))) (a64_rev64 $I64 x)) (rule (lower (has_type $I128 (bswap x))) (value_regs (a64_rev64 $I64 (value_regs_get x 1)) (a64_rev64 $I64 (value_regs_get x 0)))) ;;;; Rules for `bmask` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Bmask tests the value against zero, and uses `csetm` to assert the result. (rule (lower (has_type out_ty (bmask x @ (value_type in_ty)))) (lower_bmask out_ty in_ty x)) ;;;; Rules for `popcnt` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; The implementation of `popcnt` for scalar types is done by moving the value ;; into a vector register, using the `cnt` instruction, and then collating the ;; result back into a normal register. ;; ;; The general sequence emitted here is ;; ;; fmov tmp, in_lo ;; if ty == i128: ;; mov tmp.d[1], in_hi ;; ;; cnt tmp.16b, tmp.16b / cnt tmp.8b, tmp.8b ;; addv tmp, tmp.16b / addv tmp, tmp.8b / addp tmp.8b, tmp.8b, tmp.8b / (no instruction for 8-bit inputs) ;; ;; umov out_lo, tmp.b[0] ;; if ty == i128: ;; mov out_hi, 0 (rule popcnt_8 (lower (has_type $I8 (popcnt x))) (let ((tmp Reg (mov_to_fpu x (ScalarSize.Size32))) (nbits Reg (vec_cnt tmp (VectorSize.Size8x8)))) (mov_from_vec nbits 0 (ScalarSize.Size8)))) ;; Note that this uses `addp` instead of `addv` as it's usually cheaper. (rule popcnt_16 (lower (has_type $I16 (popcnt x))) (let ((tmp Reg (mov_to_fpu x (ScalarSize.Size32))) (nbits Reg (vec_cnt tmp (VectorSize.Size8x8))) (added Reg (addp nbits nbits (VectorSize.Size8x8)))) (mov_from_vec added 0 (ScalarSize.Size8)))) (rule popcnt_32 (lower (has_type $I32 (popcnt x))) (let ((tmp Reg (mov_to_fpu x (ScalarSize.Size32))) (nbits Reg (vec_cnt tmp (VectorSize.Size8x8))) (added Reg (addv nbits (VectorSize.Size8x8)))) (mov_from_vec added 0 (ScalarSize.Size8)))) (rule popcnt_64 (lower (has_type $I64 (popcnt x))) (let ((tmp Reg (mov_to_fpu x (ScalarSize.Size64))) (nbits Reg (vec_cnt tmp (VectorSize.Size8x8))) (added Reg (addv nbits (VectorSize.Size8x8)))) (mov_from_vec added 0 (ScalarSize.Size8)))) (rule (lower (has_type $I128 (popcnt x))) (let ((val ValueRegs x) (tmp_half Reg (mov_to_fpu (value_regs_get val 0) (ScalarSize.Size64))) (tmp Reg (mov_to_vec tmp_half (value_regs_get val 1) 1 (VectorSize.Size64x2))) (nbits Reg (vec_cnt tmp (VectorSize.Size8x16))) (added Reg (addv nbits (VectorSize.Size8x16)))) (value_regs (mov_from_vec added 0 (ScalarSize.Size8)) (imm $I64 (ImmExtend.Zero) 0)))) (rule (lower (has_type $I8X16 (popcnt x))) (vec_cnt x (VectorSize.Size8x16))) ;;;; Rules for `bitselect` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule bitselect (lower (has_type ty (bitselect c x y))) (if (ty_int_ref_scalar_64 ty)) (let ((tmp1 Reg (and_reg ty x c)) (tmp2 Reg (bic ty y c))) (orr ty tmp1 tmp2))) (rule 1 (lower (has_type (ty_vec128 ty) (bitselect c x y))) (bsl ty c x y)) ;;;; Rules for `ireduce` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; T -> I{64,32,16,8}: We can simply pass through the value: values ;; are always stored with high bits undefined, so we can just leave ;; them be. (rule (lower (has_type ty (ireduce src))) (if (ty_int_ref_scalar_64 ty)) (value_regs_get src 0)) ;;;; Rules for `fcmp` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 4 (lower (has_type ty @ (multi_lane _ _) (fcmp (fcmp_zero_cond_not_eq cond) x y))) (if (zero_value y)) (let ((rn Reg x) (vec_size VectorSize (vector_size ty))) (value_reg (not (fcmeq0 rn vec_size) vec_size)))) (rule 3 (lower (has_type ty @ (multi_lane _ _) (fcmp (fcmp_zero_cond cond) x y))) (if (zero_value y)) (let ((rn Reg x) (vec_size VectorSize (vector_size ty))) (value_reg (float_cmp_zero cond rn vec_size)))) (rule 2 (lower (has_type ty @ (multi_lane _ _) (fcmp (fcmp_zero_cond_not_eq cond) x y))) (if (zero_value x)) (let ((rn Reg y) (vec_size VectorSize (vector_size ty))) (value_reg (not (fcmeq0 rn vec_size) vec_size)))) (rule 1 (lower (has_type ty @ (multi_lane _ _) (fcmp (fcmp_zero_cond cond) x y))) (if (zero_value x)) (let ((rn Reg y) (vec_size VectorSize (vector_size ty))) (value_reg (float_cmp_zero_swap cond rn vec_size)))) (rule 0 (lower (has_type out_ty (fcmp cond x @ (value_type (ty_scalar_float in_ty)) y))) (with_flags (fpu_cmp (scalar_size in_ty) x y) (materialize_bool_result (fp_cond_code cond)))) (rule -1 (lower (has_type out_ty (fcmp cond x @ (value_type in_ty) y))) (if (ty_vector_float in_ty)) (vec_cmp x y in_ty (fp_cond_code cond))) ;;;; Rules for `icmp` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 3 (lower (has_type ty @ (multi_lane _ _) (icmp (icmp_zero_cond_not_eq cond) x y))) (if (zero_value y)) (let ((rn Reg x) (vec_size VectorSize (vector_size ty))) (value_reg (not (cmeq0 rn vec_size) vec_size)))) (rule 2 (lower (has_type ty @ (multi_lane _ _) (icmp (icmp_zero_cond cond) x y))) (if (zero_value y)) (let ((rn Reg x) (vec_size VectorSize (vector_size ty))) (value_reg (int_cmp_zero cond rn vec_size)))) (rule 1 (lower (has_type ty @ (multi_lane _ _) (icmp (icmp_zero_cond_not_eq cond) x y))) (if (zero_value x)) (let ((rn Reg y) (vec_size VectorSize (vector_size ty))) (value_reg (not (cmeq0 rn vec_size) vec_size)))) (rule 0 (lower (has_type ty @ (multi_lane _ _) (icmp (icmp_zero_cond cond) x y))) (if (zero_value x)) (let ((rn Reg y) (vec_size VectorSize (vector_size ty))) (value_reg (int_cmp_zero_swap cond rn vec_size)))) (rule icmp_8_16_32_64 -1 (lower (icmp cond x @ (value_type in_ty) y)) (lower_icmp_into_reg cond x y in_ty $I8)) ;;;; Rules for `trap` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (trap trap_code)) (side_effect (udf trap_code))) ;;;;; Rules for `trapz`;;;;;;;;; (rule (lower (trapz val trap_code)) (trap_if_val (ZeroCond.Zero) val trap_code)) ;;;;; Rules for `trapnz`;;;;;;;;; (rule (lower (trapnz val trap_code)) (trap_if_val (ZeroCond.NonZero) val trap_code)) ;;;; Rules for `select` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type ty (select (maybe_uextend (icmp cc x @ (value_type in_ty) y)) rn rm))) (let ((comparison FlagsAndCC (lower_icmp_into_flags cc x y in_ty))) (lower_select (flags_and_cc_flags comparison) (cond_code (flags_and_cc_cc comparison)) ty rn rm))) (rule (lower (has_type ty (select (maybe_uextend (fcmp cc x @ (value_type in_ty) y)) rn rm))) (let ((cond Cond (fp_cond_code cc))) (lower_select (fpu_cmp (scalar_size in_ty) x y) cond ty rn rm))) (rule -1 (lower (has_type ty (select rcond @ (value_type $I8) rn rm))) (let ((rcond Reg rcond)) (lower_select (tst_imm $I32 rcond (u64_into_imm_logic $I32 255)) (Cond.Ne) ty rn rm))) (rule -2 (lower (has_type ty (select rcond @ (value_type (fits_in_32 _)) rn rm))) (let ((rcond Reg (put_in_reg_zext32 rcond))) (lower_select (cmp (OperandSize.Size32) rcond (zero_reg)) (Cond.Ne) ty rn rm))) (rule -3 (lower (has_type ty (select rcond @ (value_type (fits_in_64 _)) rn rm))) (let ((rcond Reg (put_in_reg_zext64 rcond))) (lower_select (cmp (OperandSize.Size64) rcond (zero_reg)) (Cond.Ne) ty rn rm))) (rule -4 (lower (has_type ty (select rcond @ (value_type $I128) rn rm))) (let ((c ValueRegs (put_in_regs rcond)) (c_lo Reg (value_regs_get c 0)) (c_hi Reg (value_regs_get c 1)) (rt Reg (orr $I64 c_lo c_hi))) (lower_select (cmp (OperandSize.Size64) rt (zero_reg)) (Cond.Ne) ty rn rm))) ;;;; Rules for `select_spectre_guard` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type ty (select_spectre_guard (maybe_uextend (icmp cc x @ (value_type in_ty) y)) if_true if_false))) (let ((comparison FlagsAndCC (lower_icmp_into_flags cc x y in_ty)) (dst ValueRegs (lower_select (flags_and_cc_flags comparison) (cond_code (flags_and_cc_cc comparison)) ty if_true if_false)) (_ InstOutput (side_effect (csdb)))) dst)) (rule -1 (lower (has_type ty (select_spectre_guard rcond @ (value_type (fits_in_64 _)) rn rm))) (let ((rcond Reg (put_in_reg_zext64 rcond))) (lower_select (cmp (OperandSize.Size64) rcond (zero_reg)) (Cond.Ne) ty rn rm))) (rule -2 (lower (has_type ty (select_spectre_guard rcond @ (value_type $I128) rn rm))) (let ((c ValueRegs (put_in_regs rcond)) (c_lo Reg (value_regs_get c 0)) (c_hi Reg (value_regs_get c 1)) (rt Reg (orr $I64 c_lo c_hi))) (lower_select (cmp (OperandSize.Size64) rt (zero_reg)) (Cond.Ne) ty rn rm))) ;;;; Rules for `vconst` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (ty_vec128 _) (vconst (u128_from_constant x)))) (constant_f128 x)) (rule 1 (lower (has_type ty (vconst (u64_from_constant x)))) (if (ty_vec64 ty)) (constant_f64 x)) ;;;; Rules for `splat` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule -1 (lower (has_type ty (splat x @ (value_type in_ty)))) (if (ty_int_ref_scalar_64 in_ty)) (vec_dup x (vector_size ty))) (rule -2 (lower (has_type ty (splat x @ (value_type (ty_scalar_float _))))) (vec_dup_from_fpu x (vector_size ty) 0)) (rule (lower (has_type ty (splat (f32const (u32_from_ieee32 n))))) (splat_const n (vector_size ty))) (rule (lower (has_type ty (splat (f64const (u64_from_ieee64 n))))) (splat_const n (vector_size ty))) (rule (lower (has_type ty (splat (iconst (u64_from_imm64 n))))) (splat_const n (vector_size ty))) (rule (lower (has_type ty (splat (ireduce (iconst (u64_from_imm64 n)))))) (splat_const n (vector_size ty))) (rule (lower (has_type ty (splat x @ (load flags _ _)))) (if-let mem_op (is_sinkable_inst x)) (let ((addr Reg (sink_load_into_addr (lane_type ty) mem_op))) (ld1r addr (vector_size ty) flags))) ;;;; Rules for `AtomicLoad` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (valid_atomic_transaction ty) (atomic_load flags addr))) (load_acquire ty flags addr)) ;;;; Rules for `AtomicStore` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (atomic_store flags src @ (value_type (valid_atomic_transaction ty)) addr)) (side_effect (store_release ty flags src addr))) ;;;; Rules for `AtomicRMW` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Add) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Add) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Xor) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Eor) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Or) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Set) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Smax) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Smax) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Smin) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Smin) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Umax) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Umax) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Umin) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Umin) addr src ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Sub) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Add) addr (sub ty (zero_reg) src) ty flags)) (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.And) addr src)))) (lse_atomic_rmw (AtomicRMWOp.Clr) addr (eon ty src (zero_reg)) ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Add) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Add) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Sub) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Sub) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.And) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.And) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Nand) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Nand) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Or) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Orr) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Xor) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Eor) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Smin) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Smin) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Smax) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Smax) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Umin) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Umin) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Umax) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Umax) addr src ty flags)) (rule (lower (has_type (valid_atomic_transaction ty) (atomic_rmw flags (AtomicRmwOp.Xchg) addr src))) (atomic_rmw_loop (AtomicRMWLoopOp.Xchg) addr src ty flags)) ;;;; Rules for `AtomicCAS` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (and (use_lse) (has_type (valid_atomic_transaction ty) (atomic_cas flags addr src1 src2)))) (lse_atomic_cas addr src1 src2 ty flags)) (rule (lower (and (has_type (valid_atomic_transaction ty) (atomic_cas flags addr src1 src2)))) (atomic_cas_loop addr src1 src2 ty flags)) ;;;; Rules for 'fvdemote' ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (fvdemote x)) (fcvtn x (ScalarSize.Size32))) ;;;; Rules for `snarrow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type (ty_vec128_int ty) (snarrow x y))) (if (zero_value y)) (sqxtn x (lane_size ty))) (rule 2 (lower (has_type (ty_vec64_int ty) (snarrow x y))) (let ((dst Reg (mov_vec_elem x y 1 0 (VectorSize.Size64x2)))) (sqxtn dst (lane_size ty)))) (rule 0 (lower (has_type (ty_vec128_int ty) (snarrow x y))) (let ((low_half Reg (sqxtn x (lane_size ty))) (result Reg (sqxtn2 low_half y (lane_size ty)))) result)) ;;;; Rules for `unarrow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type (ty_vec128_int ty) (unarrow x y))) (if (zero_value y)) (sqxtun x (lane_size ty))) (rule 2 (lower (has_type (ty_vec64_int ty) (unarrow x y))) (let ((dst Reg (mov_vec_elem x y 1 0 (VectorSize.Size64x2)))) (sqxtun dst (lane_size ty)))) (rule 0 (lower (has_type (ty_vec128_int ty) (unarrow x y))) (let ((low_half Reg (sqxtun x (lane_size ty))) (result Reg (sqxtun2 low_half y (lane_size ty)))) result)) ;;;; Rules for `uunarrow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type (ty_vec128_int ty) (uunarrow x y))) (if (zero_value y)) (uqxtn x (lane_size ty))) (rule 2 (lower (has_type (ty_vec64_int ty) (uunarrow x y))) (let ((dst Reg (mov_vec_elem x y 1 0 (VectorSize.Size64x2)))) (uqxtn dst (lane_size ty)))) (rule 0 (lower (has_type (ty_vec128_int ty) (uunarrow x y))) (let ((low_half Reg (uqxtn x (lane_size ty))) (result Reg (uqxtn2 low_half y (lane_size ty)))) result)) ;;;; Rules for `swiden_low` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type ty (swiden_low x))) (vec_extend (VecExtendOp.Sxtl) x false (lane_size ty))) ;;;; Rules for `swiden_high` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type (ty_vec128 ty) (swiden_high x))) (vec_extend (VecExtendOp.Sxtl) x true (lane_size ty))) (rule (lower (has_type ty (swiden_high x))) (if (ty_vec64 ty)) (let ((tmp Reg (fpu_move_from_vec x 1 (VectorSize.Size32x2)))) (vec_extend (VecExtendOp.Sxtl) tmp false (lane_size ty)))) ;;;; Rules for `uwiden_low` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type ty (uwiden_low x))) (vec_extend (VecExtendOp.Uxtl) x false (lane_size ty))) ;;;; Rules for `uwiden_high` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (has_type (ty_vec128 ty) (uwiden_high x))) (vec_extend (VecExtendOp.Uxtl) x true (lane_size ty))) (rule (lower (has_type ty (uwiden_high x))) (if (ty_vec64 ty)) (let ((tmp Reg (fpu_move_from_vec x 1 (VectorSize.Size32x2)))) (vec_extend (VecExtendOp.Uxtl) tmp false (lane_size ty)))) ;;;; Rules for `Fence` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (fence)) (side_effect (aarch64_fence))) ;;;; Rules for `Debugtrap` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (debugtrap)) (side_effect (brk))) ;;;; Rules for `func_addr` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (func_addr (func_ref_data _ extname _))) (load_ext_name (box_external_name extname) 0)) ;;;; Rules for `symbol_value` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (symbol_value (symbol_value_data extname _ offset))) (load_ext_name (box_external_name extname) offset)) ;;; Rules for `get_{frame,stack}_pointer` and `get_return_address` ;;;;;;;;;;;;; (rule (lower (get_frame_pointer)) (aarch64_fp)) (rule (lower (get_stack_pointer)) (aarch64_sp)) (rule (lower (get_return_address)) (aarch64_link)) ;;;; Rules for calls ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (call (func_ref_data sig_ref extname dist) inputs)) (gen_call sig_ref extname dist inputs)) (rule (lower (call_indirect sig_ref val inputs)) (gen_call_indirect sig_ref val inputs)) ;;;; Rules for `return` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; N.B.: the Ret itself is generated by the ABI. (rule (lower (return args)) (lower_return args)) ;;;; Rules for `return_call` and `return_call_indirect` ;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (return_call (func_ref_data sig_ref extname dist) args)) (gen_return_call sig_ref extname dist args)) (rule (lower (return_call_indirect sig_ref callee args)) (gen_return_call_indirect sig_ref callee args)) ;;;; Rules for loads ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule load_i8_aarch64_uload8 (lower (has_type $I8 (load flags address offset))) (aarch64_uload8 (amode $I8 address offset) flags)) (rule load_i16_aarch64_uload16 (lower (has_type $I16 (load flags address offset))) (aarch64_uload16 (amode $I16 address offset) flags)) (rule load_i32_aarch64_uload32 (lower (has_type $I32 (load flags address offset))) (aarch64_uload32 (amode $I32 address offset) flags)) (rule load_i64_aarch64_uload64 (lower (has_type $I64 (load flags address offset))) (aarch64_uload64 (amode $I64 address offset) flags)) (rule (lower (has_type $F16 (load flags address offset))) (aarch64_fpuload16 (amode $F16 address offset) flags)) (rule (lower (has_type $F32 (load flags address offset))) (aarch64_fpuload32 (amode $F32 address offset) flags)) (rule (lower (has_type $F64 (load flags address offset))) (aarch64_fpuload64 (amode $F64 address offset) flags)) (rule (lower (has_type $F128 (load flags address offset))) (aarch64_fpuload128 (amode $F128 address offset) flags)) (rule (lower (has_type $I128 (load flags address offset))) (aarch64_loadp64 (pair_amode address offset) flags)) (rule -1 (lower (has_type (ty_vec64 _) (load flags address offset))) (aarch64_fpuload64 (amode $F64 address offset) flags)) (rule -3 (lower (has_type (ty_vec128 _) (load flags address offset))) (aarch64_fpuload128 (amode $I8X16 address offset) flags)) (rule -2 (lower (has_type (ty_dyn_vec64 _) (load flags address offset))) (aarch64_fpuload64 (amode $F64 address offset) flags)) (rule -4 (lower (has_type (ty_dyn_vec128 _) (load flags address offset))) (aarch64_fpuload128 (amode $I8X16 address offset) flags)) (rule (lower (uload8 flags address offset)) (aarch64_uload8 (amode $I8 address offset) flags)) (rule (lower (sload8 flags address offset)) (aarch64_sload8 (amode $I8 address offset) flags)) (rule (lower (uload16 flags address offset)) (aarch64_uload16 (amode $I16 address offset) flags)) (rule (lower (sload16 flags address offset)) (aarch64_sload16 (amode $I16 address offset) flags)) (rule (lower (uload32 flags address offset)) (aarch64_uload32 (amode $I32 address offset) flags)) (rule (lower (sload32 flags address offset)) (aarch64_sload32 (amode $I32 address offset) flags)) (rule (lower (sload8x8 flags address offset)) (vec_extend (VecExtendOp.Sxtl) (aarch64_fpuload64 (amode $F64 address offset) flags) false (ScalarSize.Size16))) (rule (lower (uload8x8 flags address offset)) (vec_extend (VecExtendOp.Uxtl) (aarch64_fpuload64 (amode $F64 address offset) flags) false (ScalarSize.Size16))) (rule (lower (sload16x4 flags address offset)) (vec_extend (VecExtendOp.Sxtl) (aarch64_fpuload64 (amode $F64 address offset) flags) false (ScalarSize.Size32))) (rule (lower (uload16x4 flags address offset)) (vec_extend (VecExtendOp.Uxtl) (aarch64_fpuload64 (amode $F64 address offset) flags) false (ScalarSize.Size32))) (rule (lower (sload32x2 flags address offset)) (vec_extend (VecExtendOp.Sxtl) (aarch64_fpuload64 (amode $F64 address offset) flags) false (ScalarSize.Size64))) (rule (lower (uload32x2 flags address offset)) (vec_extend (VecExtendOp.Uxtl) (aarch64_fpuload64 (amode $F64 address offset) flags) false (ScalarSize.Size64))) ;;;; Rules for stores ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule store_i8_aarch64_store8 (lower (store flags value @ (value_type $I8) address offset)) (side_effect (aarch64_store8 (amode $I8 address offset) flags value))) (rule store_i16_aarch64_store16 (lower (store flags value @ (value_type $I16) address offset)) (side_effect (aarch64_store16 (amode $I16 address offset) flags value))) (rule store_i32_aarch64_store32 (lower (store flags value @ (value_type $I32) address offset)) (side_effect (aarch64_store32 (amode $I32 address offset) flags value))) (rule store_i64_aarch64_store64 (lower (store flags value @ (value_type $I64) address offset)) (side_effect (aarch64_store64 (amode $I64 address offset) flags value))) (rule (lower (istore8 flags value address offset)) (side_effect (aarch64_store8 (amode $I8 address offset) flags value))) (rule (lower (istore16 flags value address offset)) (side_effect (aarch64_store16 (amode $I16 address offset) flags value))) (rule (lower (istore32 flags value address offset)) (side_effect (aarch64_store32 (amode $I32 address offset) flags value))) (rule (lower (store flags value @ (value_type $F16) address offset)) (side_effect (aarch64_fpustore16 (amode $F16 address offset) flags value))) (rule (lower (store flags value @ (value_type $F32) address offset)) (side_effect (aarch64_fpustore32 (amode $F32 address offset) flags value))) (rule (lower (store flags value @ (value_type $F64) address offset)) (side_effect (aarch64_fpustore64 (amode $F64 address offset) flags value))) (rule (lower (store flags value @ (value_type $F128) address offset)) (side_effect (aarch64_fpustore128 (amode $F128 address offset) flags value))) (rule (lower (store flags value @ (value_type $I128) address offset)) (side_effect (aarch64_storep64 (pair_amode address offset) flags (value_regs_get value 0) (value_regs_get value 1)))) (rule -1 (lower (store flags value @ (value_type (ty_vec64 _)) address offset)) (side_effect (aarch64_fpustore64 (amode $F64 address offset) flags value))) (rule -3 (lower (store flags value @ (value_type (ty_vec128 _)) address offset)) (side_effect (aarch64_fpustore128 (amode $I8X16 address offset) flags value))) (rule -2 (lower (store flags value @ (value_type (ty_dyn_vec64 _)) address offset)) (side_effect (aarch64_fpustore64 (amode $F64 address offset) flags value))) (rule -4 (lower (store flags value @ (value_type (ty_dyn_vec128 _)) address offset)) (side_effect (aarch64_fpustore128 (amode $I8X16 address offset) flags value))) ;;; Rules for `{get,set}_pinned_reg` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (get_pinned_reg)) (mov_from_preg (preg_pinned))) (rule (lower (set_pinned_reg val)) (side_effect (write_pinned_reg val))) ;;; Rules for `bitcast` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; SIMD&FP <=> SIMD&FP (rule 7 (lower (has_type (ty_float_or_vec _) (bitcast _ x @ (value_type (ty_float_or_vec _))))) x) ; I128 => SIMD&FP (rule 6 (lower (has_type (ty_float_or_vec _) (bitcast _ x @ (value_type $I128)))) (mov_to_vec (mov_to_fpu (value_regs_get x 0) (ScalarSize.Size64)) (value_regs_get x 1) 1 (VectorSize.Size64x2))) ; SIMD&FP => I128 (rule 5 (lower (has_type $I128 (bitcast _ x @ (value_type (ty_float_or_vec _))))) (value_regs (mov_from_vec x 0 (ScalarSize.Size64)) (mov_from_vec x 1 (ScalarSize.Size64)))) ; GPR => SIMD&FP (rule 4 (lower (has_type (ty_float_or_vec _) (bitcast _ x @ (value_type in_ty)))) (if (ty_int_ref_scalar_64 in_ty)) (mov_to_fpu x (scalar_size in_ty))) ; SIMD&FP => GPR (rule 3 (lower (has_type out_ty (bitcast _ x @ (value_type (fits_in_64 (ty_float_or_vec _)))))) (if (ty_int_ref_scalar_64 out_ty)) (mov_from_vec x 0 (scalar_size out_ty))) ; GPR <=> GPR (rule 1 (lower (has_type out_ty (bitcast _ x @ (value_type in_ty)))) (if (ty_int_ref_scalar_64 out_ty)) (if (ty_int_ref_scalar_64 in_ty)) x) (rule 0 (lower (has_type $I128 (bitcast _ x @ (value_type $I128)))) x) ;;; Rules for `extractlane` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; extractlane with lane 0 can pass through the value unchanged; upper ;; bits are undefined when a narrower type is in a wider register. (rule 2 (lower (has_type (ty_scalar_float _) (extractlane val (u8_from_uimm8 0)))) val) (rule 0 (lower (has_type (ty_int ty) (extractlane val (u8_from_uimm8 lane)))) (mov_from_vec val lane (scalar_size ty))) (rule 1 (lower (has_type (ty_scalar_float ty) (extractlane val @ (value_type vty) (u8_from_uimm8 lane)))) (fpu_move_from_vec val lane (vector_size vty))) ;;; Rules for `insertlane` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule 1 (lower (insertlane vec @ (value_type vty) val @ (value_type (ty_int _)) (u8_from_uimm8 lane))) (mov_to_vec vec val lane (vector_size vty))) (rule (lower (insertlane vec @ (value_type vty) val @ (value_type (ty_scalar_float _)) (u8_from_uimm8 lane))) (mov_vec_elem vec val lane 0 (vector_size vty))) ;;; Rules for `stack_addr` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (stack_addr stack_slot offset)) (compute_stack_addr stack_slot offset)) ;;; Rules for `vhigh_bits` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; All three sequences use one integer temporary and two vector ;; temporaries. The shift is done early so as to give the register ;; allocator the possibility of using the same reg for `tmp_v1` and ;; `src_v` in the case that this is the last use of `src_v`. See ;; https://github.com/WebAssembly/simd/pull/201 for the background and ;; derivation of these sequences. Alternative sequences are discussed ;; in https://github.com/bytecodealliance/wasmtime/issues/2296, ;; although they are not used here. (rule (lower (vhigh_bits vec @ (value_type $I8X16))) (let ( ;; Replicate the MSB of each of the 16 byte lanes across ;; the whole lane (sshr is an arithmetic right shift). (shifted Reg (sshr_vec_imm vec 7 (VectorSize.Size8x16))) ;; Bitwise-and with a mask ;; `0x80402010_08040201_80402010_08040201` to get the bit ;; in the proper location for each group of 8 lanes. (anded Reg (and_vec shifted (constant_f128 0x80402010_08040201_80402010_08040201) (VectorSize.Size8x16))) ;; Produce a version of `anded` with upper 8 lanes and ;; lower 8 lanes swapped. (anded_swapped Reg (vec_extract anded anded 8)) ;; Zip together the two; with the above this produces the lane permutation: ;; 15 7 14 6 13 5 12 4 11 3 10 2 9 1 8 0 (zipped Reg (zip1 anded anded_swapped (VectorSize.Size8x16))) ;; Add 16-bit lanes together ("add across vector"), so we ;; get, in the low 16 bits, 15+14+...+8 in the high byte ;; and 7+6+...+0 in the low byte. This effectively puts ;; the 16 MSBs together, giving our results. ;; ;; N.B.: `Size16x8` is not a typo! (result Reg (addv zipped (VectorSize.Size16x8)))) (mov_from_vec result 0 (ScalarSize.Size16)))) (rule (lower (vhigh_bits vec @ (value_type $I16X8))) (let ( ;; Replicate the MSB of each of the 8 16-bit lanes across ;; the whole lane (sshr is an arithmetic right shift). (shifted Reg (sshr_vec_imm vec 15 (VectorSize.Size16x8))) ;; Bitwise-and with a mask ;; `0x0080_0040_0020_0010_0008_0004_0002_0001` to get the ;; bit in the proper location for each group of 4 lanes. (anded Reg (and_vec shifted (constant_f128 0x0080_0040_0020_0010_0008_0004_0002_0001) (VectorSize.Size16x8))) ;; Add lanes together to get the 8 MSBs in the low byte. (result Reg (addv anded (VectorSize.Size16x8)))) (mov_from_vec result 0 (ScalarSize.Size16)))) (rule (lower (vhigh_bits vec @ (value_type $I32X4))) (let ( ;; Replicate the MSB of each of the 4 32-bit lanes across ;; the whole lane (sshr is an arithmetic right shift). (shifted Reg (sshr_vec_imm vec 31 (VectorSize.Size32x4))) ;; Bitwise-and with a mask ;; `0x00000008_00000004_00000002_00000001` to get the bit ;; in the proper location for each group of 4 lanes. (anded Reg (and_vec shifted (constant_f128 0x00000008_00000004_00000002_00000001) (VectorSize.Size32x4))) ;; Add lanes together to get the 4 MSBs in the low byte. (result Reg (addv anded (VectorSize.Size32x4)))) (mov_from_vec result 0 (ScalarSize.Size32)))) (rule (lower (vhigh_bits vec @ (value_type $I64X2))) (let ( ;; Grab the MSB out of each of the lanes, right-shift to ;; LSB, and add with a left-shift of upper lane's MSB back ;; to bit 1. the whole lane (sshr is an arithmetic right ;; shift). (upper_msb Reg (mov_from_vec vec 1 (ScalarSize.Size64))) (lower_msb Reg (mov_from_vec vec 0 (ScalarSize.Size64))) (upper_msb Reg (lsr_imm $I64 upper_msb (imm_shift_from_u8 63))) (lower_msb Reg (lsr_imm $I64 lower_msb (imm_shift_from_u8 63)))) (add_shift $I64 lower_msb upper_msb (lshl_from_u64 $I64 1)))) ;;; Rules for `uadd_overflow_trap` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (fits_in_64 ty) (uadd_overflow_trap a b tc))) (trap_if_overflow (add_with_flags_paired ty a b) tc)) ;;;; Helpers for `*_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; put a narrow value into a register and sign-/zero-extend depending on the ArgumentExtension (decl put_in_reg_ext32 (Value ArgumentExtension) Reg) (rule (put_in_reg_ext32 val (ArgumentExtension.Sext)) (put_in_reg_sext32 val)) (rule (put_in_reg_ext32 val (ArgumentExtension.Uext)) (put_in_reg_zext32 val)) ;; For narrow values emit a normal op with both arguments zero/sign extended. ;; Then check if the output is the same as itself zero/sign extended from the narrower width. (decl overflow_op_small (Type Value Value ArgumentExtension ALUOp) InstOutput) (rule (overflow_op_small ty a b arg_ext alu_op) (let ((extend ExtendOp (lower_extend_op ty arg_ext)) ;; Instead of emitting two `{u,s}xt{b,h}` we do one as an instruction and ;; the other as an extend operation in the alu_op. ;; ;; uxtb a_ext, a ;; alu_op out, a_ext, b, {u,s}xtb ;; cmp out, out, {u,s}xtb ;; cset out_of, ne (a_ext Reg (put_in_reg_ext32 a arg_ext)) (out Reg (alu_rrr_extend alu_op ty a_ext b extend)) (out_of Reg (with_flags_reg (cmp_extend (OperandSize.Size32) out out extend) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;; For register sized op's just emit a op+cset, without further masking. ;; ;; op out, a, b ;; cset out_of, cond ;; ;; conds expected: ;; Hs: Carry set, unsigned overflow; Vs: Signed Over-/Underflow; ;; Lo: Carry clear, meaning no unsigned overflow. ;; (this is because subtraction is implemented as an add with the two's complement value on aarch64, meaning there is a sub-overflow if the add does not overflow) (decl overflow_op_normal (Type Value Value ALUOp Cond) InstOutput) (rule (overflow_op_normal ty a b alu_op cond) (let ((out ValueRegs (with_flags (alu_rrr_with_flags_paired ty a b alu_op) (cset_paired cond)))) (output_pair (value_regs_get out 0) (value_regs_get out 1)))) ;; For 128bit integers emit, for example, add+adcs+cset (decl overflow_op_128 (Value Value ALUOp ALUOp Cond) InstOutput) (rule (overflow_op_128 x y alu_op1 alu_op2 cond) (let ;; Get the high/low registers for `x`. ((x_regs ValueRegs x) (x_lo Reg (value_regs_get x_regs 0)) (x_hi Reg (value_regs_get x_regs 1)) ;; Get the high/low registers for `y`. (y_regs ValueRegs y) (y_lo Reg (value_regs_get y_regs 0)) (y_hi Reg (value_regs_get y_regs 1))) ;; cannot use the with_flags helper here but it should be fine right now (let ((lo_inst ProducesFlags (alu_rrr_with_flags_paired $I64 x_lo y_lo alu_op1)) (hi_inst ConsumesAndProducesFlags (alu_rrr_with_flags_chained $I64 x_hi y_hi alu_op2)) (of_inst ConsumesFlags (cset_paired cond)) (result MultiReg (with_flags_chained lo_inst hi_inst of_inst))) (multi_reg_to_pair_and_single result))) ) ;;;; Rules for `uadd_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; For values smaller than a register, we do a normal `add` with both arguments ;; zero extended. We then check if the output is the same as itself zero extended. (rule 1 (lower (has_type (fits_in_16 ty) (uadd_overflow a b))) (overflow_op_small ty a b (ArgumentExtension.Uext) (ALUOp.Add))) ;; For register sized add's we just emit a adds+cset, without further masking. (rule 2 (lower (has_type (ty_32_or_64 ty) (uadd_overflow a b))) (overflow_op_normal ty a b (ALUOp.AddS) (Cond.Hs))) ;; For 128bit integers we emit add+adcs+cset (rule 0 (lower (has_type $I128 (uadd_overflow x y))) (overflow_op_128 x y (ALUOp.AddS) (ALUOp.AdcS) (Cond.Hs))) ;;;; Rules for `sadd_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sxt{b,h} a_ext, a ;; add out, a_ext, b, sxt{b,h} ;; cmp out, out, sxt{b,h} ;; cset of, ne (rule 1 (lower (has_type (fits_in_16 ty) (sadd_overflow a b))) (overflow_op_small ty a b (ArgumentExtension.Sext) (ALUOp.Add))) ;; adds a, b ;; cset of, vs (rule 2 (lower (has_type (ty_32_or_64 ty) (sadd_overflow a b))) (overflow_op_normal ty a b (ALUOp.AddS) (Cond.Vs))) ;; adds x_lo, y_lo ;; addcs x_hi, y_hi ;; cset of, vs (rule 0 (lower (has_type $I128 (sadd_overflow x y))) (overflow_op_128 x y (ALUOp.AddS) (ALUOp.AdcS) (Cond.Vs))) ;;;; Rules for `usub_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; uxt{b,h} a_ext, a ;; sub out, a_ext, b, ext{b,h} ;; cmp out, out, uxt{b,h} ;; cset of, ne (rule 1 (lower (has_type (fits_in_16 ty) (usub_overflow a b))) (overflow_op_small ty a b (ArgumentExtension.Uext) (ALUOp.Sub))) ;; subs a, b ;; cset of, lo (rule 2 (lower (has_type (ty_32_or_64 ty) (usub_overflow a b))) (overflow_op_normal ty a b (ALUOp.SubS) (Cond.Lo))) ;; subs x_lo, y_lo ;; sbcs x_hi, y_hi ;; cset of, lo (rule 0 (lower (has_type $I128 (usub_overflow x y))) (overflow_op_128 x y (ALUOp.SubS) (ALUOp.SbcS) (Cond.Lo))) ;;;; Rules for `ssub_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sxt{b,h} a_ext, a ;; sub out, a_ext, b, sxt{b,h} ;; cmp out, out, sxt{b,h} ;; cset of, ne (rule 1 (lower (has_type (fits_in_16 ty) (ssub_overflow a b))) (overflow_op_small ty a b (ArgumentExtension.Sext) (ALUOp.Sub))) ;; subs a, b ;; cset of, vs (rule 2 (lower (has_type (ty_32_or_64 ty) (ssub_overflow a b))) (overflow_op_normal ty a b (ALUOp.SubS) (Cond.Vs))) ;; subs x_lo, y_lo ;; sbcs x_hi, y_hi ;; cset of, vs (rule 0 (lower (has_type $I128 (ssub_overflow x y))) (overflow_op_128 x y (ALUOp.SubS) (ALUOp.SbcS) (Cond.Vs))) ;;;; Rules for `umul_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; uxt{b,h} a_ext, a ;; uxt{b,h} b_ext, b ;; mul out, a_ext, b_ext ;; cmp out, out, uxt{b,h} ;; cset of, ne (rule 1 (lower (has_type (fits_in_16 ty) (umul_overflow a b))) (let ((extend ExtendOp (lower_extend_op ty (ArgumentExtension.Uext))) (a_uext Reg (put_in_reg_zext32 a)) (b_uext Reg (put_in_reg_zext32 b)) (out Reg (madd ty a_uext b_uext (zero_reg))) (out_of Reg (with_flags_reg (cmp_extend (OperandSize.Size32) out out extend) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;; umull out, a, b ;; cmp out, out, uxtw ;; cset of, ne (rule 2 (lower (has_type $I32 (umul_overflow a b))) (let ( (out Reg (umaddl a b (zero_reg))) (out_of Reg (with_flags_reg (cmp_extend (OperandSize.Size64) out out (ExtendOp.UXTW)) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;; mul out, a, b ;; umulh tmp, a, b ;; cmp tmp, #0 ;; cset of, ne (rule 2 (lower (has_type $I64 (umul_overflow a b))) (let ( (out Reg (madd $I64 a b (zero_reg))) (tmp Reg (umulh $I64 a b)) (out_of Reg (with_flags_reg (cmp64_imm tmp (u8_into_imm12 0)) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;;;; Rules for `smul_overflow` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sxt{b,h} a_ext, a ;; sxt{b,h} b_ext, b ;; mul out, a_ext, b_ext ;; cmp out, out, sxt{b,h} ;; cset of, ne (rule 1 (lower (has_type (fits_in_16 ty) (smul_overflow a b))) (let ((extend ExtendOp (lower_extend_op ty (ArgumentExtension.Sext))) (a_sext Reg (put_in_reg_sext32 a)) (b_sext Reg (put_in_reg_sext32 b)) (out Reg (madd ty a_sext b_sext (zero_reg))) (out_of Reg (with_flags_reg (cmp_extend (OperandSize.Size32) out out extend) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;; smull out, a, b ;; cmp out, out, sxtw ;; cset of, ne (rule 2 (lower (has_type $I32 (smul_overflow a b))) (let ( (out Reg (smaddl a b (zero_reg))) (out_of Reg (with_flags_reg (cmp_extend (OperandSize.Size64) out out (ExtendOp.SXTW)) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;; mul out, a, b ;; smulh tmp, a, b ;; cmp tmp, out, ASR #63 ;; cset of, ne (rule 2 (lower (has_type $I64 (smul_overflow a b))) (let ( (out Reg (madd $I64 a b (zero_reg))) (tmp Reg (smulh $I64 a b)) (out_of Reg (with_flags_reg (cmp_rr_shift_asr (OperandSize.Size64) tmp out 63) (cset (Cond.Ne))))) (output_pair (value_reg out) (value_reg out_of)))) ;;; Rules for `tls_value` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (has_type (tls_model (TlsModel.ElfGd)) (tls_value (symbol_value_data name _ _)))) (elf_tls_get_addr name)) (rule (lower (has_type (tls_model (TlsModel.Macho)) (tls_value (symbol_value_data name _ _)))) (macho_tls_get_addr name)) ;;; Rules for `fvpromote_low` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower (fvpromote_low val)) (vec_rr_long (VecRRLongOp.Fcvtl32) val false)) ;;; Rules for `brif` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; `brif` following `icmp` (rule (lower_branch (brif (maybe_uextend (icmp cc x @ (value_type ty) y)) _ _) (two_targets taken not_taken)) (let ((comparison FlagsAndCC (lower_icmp_into_flags cc x y ty)) (cond Cond (cond_code (flags_and_cc_cc comparison)))) (emit_side_effect (with_flags_side_effect (flags_and_cc_flags comparison) (cond_br taken not_taken (cond_br_cond cond)))))) ;; `brif` following `fcmp` (rule (lower_branch (brif (maybe_uextend (fcmp cc x @ (value_type (ty_scalar_float ty)) y)) _ _) (two_targets taken not_taken)) (let ((cond Cond (fp_cond_code cc))) (emit_side_effect (with_flags_side_effect (fpu_cmp (scalar_size ty) x y) (cond_br taken not_taken (cond_br_cond cond)))))) ;; standard `brif` (rule -1 (lower_branch (brif c @ (value_type $I128) _ _) (two_targets taken not_taken)) (let ((flags ProducesFlags (flags_to_producesflags c)) (c ValueRegs (put_in_regs c)) (c_lo Reg (value_regs_get c 0)) (c_hi Reg (value_regs_get c 1)) (rt Reg (orr $I64 c_lo c_hi))) (emit_side_effect (with_flags_side_effect flags (cond_br taken not_taken (cond_br_not_zero rt (operand_size $I64))))))) (rule -2 (lower_branch (brif c @ (value_type ty) _ _) (two_targets taken not_taken)) (if (ty_int_ref_scalar_64 ty)) (let ((flags ProducesFlags (flags_to_producesflags c)) (rt Reg (put_in_reg_zext64 c))) (emit_side_effect (with_flags_side_effect flags (cond_br taken not_taken (cond_br_not_zero rt (operand_size $I64))))))) ;; Special lowerings for `tbnz` - "Test bit and Branch if Nonzero" (rule 1 (lower_branch (brif (band x @ (value_type ty) (u64_from_iconst n)) _ _) (two_targets taken not_taken)) (if-let bit (test_and_compare_bit_const ty n)) (emit_side_effect (tbnz taken not_taken x bit))) ;; Special lowering for `tbz` - "Test bit and Branch if Zero" (rule 1 (lower_branch (brif (icmp (IntCC.Equal) (band x @ (value_type (fits_in_64 ty)) (u64_from_iconst n)) (u64_from_iconst 0)) _ _) (two_targets taken not_taken)) (if-let bit (test_and_compare_bit_const ty n)) (emit_side_effect (tbz taken not_taken x bit))) (decl pure partial test_and_compare_bit_const (Type u64) u8) (extern constructor test_and_compare_bit_const test_and_compare_bit_const) ;;; Rules for `jump` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (rule (lower_branch (jump _) (single_target label)) (emit_side_effect (aarch64_jump label))) ;;; Rules for `br_table` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; `targets` contains the default target with the list of branch targets ;; concatenated. (rule (lower_branch (br_table idx _) (jump_table_targets default targets)) (let ((jt_size u32 (jump_table_size targets)) (_ InstOutput (side_effect (emit_island (targets_jt_space targets)))) (ridx Reg (put_in_reg_zext32 idx))) (br_table_impl (u32_as_u64 jt_size) ridx default targets)))