/*- * Copyright 2009 Colin Percival * Copyright 2012,2013 Alexander Peslyak * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #if defined(HAVE_EMMINTRIN_H) || \ (defined(_MSC_VER) && (defined(_M_X64) || defined(_M_AMD64) || defined(_M_IX86))) #if __GNUC__ # pragma GCC target("sse2") #endif #include #if defined(__XOP__) && defined(DISABLED) # include #endif #include #include #include #include #include #include "../pbkdf2-sha256.h" #include "../crypto_scrypt.h" #include "../../../sodium/common.h" #if defined(__XOP__) && defined(DISABLED) #define ARX(out, in1, in2, s) \ out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s)); #else #define ARX(out, in1, in2, s) \ { \ __m128i T = _mm_add_epi32(in1, in2); \ out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \ out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \ } #endif #define SALSA20_2ROUNDS \ /* Operate on "columns". */ \ ARX(X1, X0, X3, 7) \ ARX(X2, X1, X0, 9) \ ARX(X3, X2, X1, 13) \ ARX(X0, X3, X2, 18) \ \ /* Rearrange data. */ \ X1 = _mm_shuffle_epi32(X1, 0x93); \ X2 = _mm_shuffle_epi32(X2, 0x4E); \ X3 = _mm_shuffle_epi32(X3, 0x39); \ \ /* Operate on "rows". */ \ ARX(X3, X0, X1, 7) \ ARX(X2, X3, X0, 9) \ ARX(X1, X2, X3, 13) \ ARX(X0, X1, X2, 18) \ \ /* Rearrange data. */ \ X1 = _mm_shuffle_epi32(X1, 0x39); \ X2 = _mm_shuffle_epi32(X2, 0x4E); \ X3 = _mm_shuffle_epi32(X3, 0x93); /** * Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3). */ #define SALSA20_8_XOR(in, out) \ { \ __m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \ __m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \ __m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \ __m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \ SALSA20_2ROUNDS \ SALSA20_2ROUNDS \ SALSA20_2ROUNDS \ SALSA20_2ROUNDS \ (out)[0] = X0 = _mm_add_epi32(X0, Y0); \ (out)[1] = X1 = _mm_add_epi32(X1, Y1); \ (out)[2] = X2 = _mm_add_epi32(X2, Y2); \ (out)[3] = X3 = _mm_add_epi32(X3, Y3); \ } /** * blockmix_salsa8(Bin, Bout, r): * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r * bytes in length; the output Bout must also be the same size. */ static inline void blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r) { __m128i X0, X1, X2, X3; size_t i; /* 1: X <-- B_{2r - 1} */ X0 = Bin[8 * r - 4]; X1 = Bin[8 * r - 3]; X2 = Bin[8 * r - 2]; X3 = Bin[8 * r - 1]; /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ SALSA20_8_XOR(Bin, Bout) /* 2: for i = 0 to 2r - 1 do */ r--; for (i = 0; i < r;) { /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4]) i++; /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4]) } /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4]) } #define XOR4(in) \ X0 = _mm_xor_si128(X0, (in)[0]); \ X1 = _mm_xor_si128(X1, (in)[1]); \ X2 = _mm_xor_si128(X2, (in)[2]); \ X3 = _mm_xor_si128(X3, (in)[3]); #define XOR4_2(in1, in2) \ X0 = _mm_xor_si128((in1)[0], (in2)[0]); \ X1 = _mm_xor_si128((in1)[1], (in2)[1]); \ X2 = _mm_xor_si128((in1)[2], (in2)[2]); \ X3 = _mm_xor_si128((in1)[3], (in2)[3]); static inline uint32_t blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout, size_t r) { __m128i X0, X1, X2, X3; size_t i; /* 1: X <-- B_{2r - 1} */ XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4]) /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ XOR4(Bin1) SALSA20_8_XOR(Bin2, Bout) /* 2: for i = 0 to 2r - 1 do */ r--; for (i = 0; i < r;) { /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ XOR4(&Bin1[i * 8 + 4]) SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4]) i++; /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ XOR4(&Bin1[i * 8]) SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4]) } /* 3: X <-- H(X \xor B_i) */ /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ XOR4(&Bin1[i * 8 + 4]) SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4]) return _mm_cvtsi128_si32(X0); } #undef ARX #undef SALSA20_2ROUNDS #undef SALSA20_8_XOR #undef XOR4 #undef XOR4_2 /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static inline uint32_t integerify(const void * B, size_t r) { return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64); } /** * smix(B, r, N, V, XY): * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; * the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 256r + 64 bytes in length. The value N must be a * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a * multiple of 64 bytes. */ static void smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY) { size_t s = 128 * r; __m128i * X = (__m128i *) V, * Y; uint32_t * X32 = (uint32_t *) V; uint32_t i, j; size_t k; /* 1: X <-- B */ /* 3: V_i <-- X */ for (k = 0; k < 2 * r; k++) { for (i = 0; i < 16; i++) { X32[k * 16 + i] = LOAD32_LE(&B[(k * 16 + (i * 5 % 16)) * 4]); } } /* 2: for i = 0 to N - 1 do */ for (i = 1; i < N - 1; i += 2) { /* 4: X <-- H(X) */ /* 3: V_i <-- X */ Y = (__m128i *)((uintptr_t)(V) + i * s); blockmix_salsa8(X, Y, r); /* 4: X <-- H(X) */ /* 3: V_i <-- X */ X = (__m128i *)((uintptr_t)(V) + (i + 1) * s); blockmix_salsa8(Y, X, r); } /* 4: X <-- H(X) */ /* 3: V_i <-- X */ Y = (__m128i *)((uintptr_t)(V) + i * s); blockmix_salsa8(X, Y, r); /* 4: X <-- H(X) */ /* 3: V_i <-- X */ X = (__m128i *) XY; blockmix_salsa8(Y, X, r); X32 = (uint32_t *) XY; Y = (__m128i *)((uintptr_t)(XY) + s); /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { __m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s); /* 8: X <-- H(X \xor V_j) */ /* 7: j <-- Integerify(X) mod N */ j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1); V_j = (__m128i *)((uintptr_t)(V) + j * s); /* 8: X <-- H(X \xor V_j) */ /* 7: j <-- Integerify(X) mod N */ j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1); } /* 10: B' <-- X */ for (k = 0; k < 2 * r; k++) { for (i = 0; i < 16; i++) { STORE32_LE(&B[(k * 16 + (i * 5 % 16)) * 4], X32[k * 16 + i]); } } } /** * escrypt_kdf(local, passwd, passwdlen, salt, saltlen, * N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2 greater than 1. * * Return 0 on success; or -1 on error. */ int escrypt_kdf_sse(escrypt_local_t * local, const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p, uint8_t * buf, size_t buflen) { size_t B_size, V_size, XY_size, need; uint8_t * B; uint32_t * V, * XY; size_t r = _r, p = _p; uint32_t i; /* Sanity-check parameters. */ #if SIZE_MAX > UINT32_MAX if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { errno = EFBIG; return -1; } #endif if ((uint64_t)(r) * (uint64_t)(p) >= ((uint64_t) 1 << 30)) { errno = EFBIG; return -1; } if (N > UINT32_MAX) { errno = EFBIG; return -1; } if (((N & (N - 1)) != 0) || (N < 2)) { errno = EINVAL; return -1; } if (r == 0 || p == 0) { errno = EINVAL; return -1; } if ((r > SIZE_MAX / 128 / p) || #if SIZE_MAX / 256 <= UINT32_MAX (r > SIZE_MAX / 256) || #endif (N > SIZE_MAX / 128 / r)) { errno = ENOMEM; return -1; } /* Allocate memory. */ B_size = (size_t)128 * r * p; V_size = (size_t)128 * r * N; need = B_size + V_size; if (need < V_size) { errno = ENOMEM; return -1; } XY_size = (size_t)256 * r + 64; need += XY_size; if (need < XY_size) { errno = ENOMEM; return -1; } if (local->size < need) { if (free_region(local)) return -1; /* LCOV_EXCL_LINE */ if (!alloc_region(local, need)) return -1; /* LCOV_EXCL_LINE */ } B = (uint8_t *)local->aligned; V = (uint32_t *)((uint8_t *)B + B_size); XY = (uint32_t *)((uint8_t *)V + V_size); /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size); /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ smix(&B[(size_t)128 * i * r], r, (uint32_t) N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen); /* Success! */ return 0; } #endif