module DNN module Layers # Super class of all RNN classes. class RNN < Connection include Activations attr_reader :num_nodes attr_reader :stateful attr_reader :weight attr_reader :weight2 attr_reader :bias def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lambda: 0, l2_lambda: 0) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, l1_lambda: l1_lambda, l2_lambda: l2_lambda) @num_nodes = num_nodes @stateful = stateful @return_sequences = return_sequences @layers = [] @hidden = @params[:h] = Param.new @params[:weight2] = @weight2 = Param.new end def forward(xs) @xs_shape = xs.shape hs = Xumo::SFloat.zeros(xs.shape[0], @time_length, @num_nodes) h = (@stateful && @hidden.data) ? @hidden.data : Xumo::SFloat.zeros(xs.shape[0], @num_nodes) xs.shape[1].times do |t| x = xs[true, t, false] h = @layers[t].forward(x, h) hs[true, t, false] = h end @hidden.data = h @return_sequences ? hs : h end def backward(dh2s) @weight.grad = Xumo::SFloat.zeros(*@weight.data.shape) @weight2.grad = Xumo::SFloat.zeros(*@weight2.data.shape) @bias.grad = Xumo::SFloat.zeros(*@bias.data.shape) unless @return_sequences dh = dh2s dh2s = Xumo::SFloat.zeros(dh.shape[0], @time_length, dh.shape[1]) dh2s[true, -1, false] = dh end dxs = Xumo::SFloat.zeros(@xs_shape) dh = 0 (0...dh2s.shape[1]).to_a.reverse.each do |t| dh2 = dh2s[true, t, false] dx, dh = @layers[t].backward(dh2 + dh) dxs[true, t, false] = dx end dxs end def to_hash(merge_hash = nil) hash = { num_nodes: @num_nodes, stateful: @stateful, return_sequences: @return_sequences } hash.merge!(merge_hash) if merge_hash super(hash) end def shape @return_sequences ? [@time_length, @num_nodes] : [@num_nodes] end def reset_state @hidden.data = @hidden.data.fill(0) if @hidden.data end def lasso if @l1_lambda > 0 @l1_lambda * (@weight.data.abs.sum + @weight2.data.abs.sum) else 0 end end def ridge if @l2_lambda > 0 0.5 * (@l2_lambda * ((@weight.data**2).sum + (@weight2.data**2).sum)) else 0 end end def dlasso if @l1_lambda > 0 dlasso = Xumo::SFloat.ones(*@weight.data.shape) dlasso[@weight.data < 0] = -1 @weight.grad += @l1_lambda * dlasso dlasso2 = Xumo::SFloat.ones(*@weight2.data.shape) dlasso2[@weight2.data < 0] = -1 @weight2.grad += @l1_lambda * dlasso2 end end def dridge if @l2_lambda > 0 @weight.grad += l2_lambda * @weight.data @weight2.grad += l2_lambda * @weight2.data end end private def init_params @time_length = prev_layer.shape[0] end end class SimpleRNN_Dense def initialize(weight, weight2, bias, activation) @weight = weight @weight2 = weight2 @bias = bias @activation = activation.clone end def forward(x, h) @x = x @h = h h2 = x.dot(@weight.data) + h.dot(@weight2.data) + @bias.data @activation.forward(h2) end def backward(dh2) dh2 = @activation.backward(dh2) @weight.grad += @x.transpose.dot(dh2) @weight2.grad += @h.transpose.dot(dh2) @bias.grad += dh2.sum(0) dx = dh2.dot(@weight.data.transpose) dh = dh2.dot(@weight2.data.transpose) [dx, dh] end end class SimpleRNN < RNN attr_reader :activation def self.load_hash(hash) simple_rnn = self.new(hash[:num_nodes], stateful: hash[:stateful], return_sequences: hash[:return_sequences], activation: Util.load_hash(hash[:activation]), weight_initializer: Util.load_hash(hash[:weight_initializer]), bias_initializer: Util.load_hash(hash[:bias_initializer]), l1_lambda: hash[:l1_lambda], l2_lambda: hash[:l2_lambda]) simple_rnn end def initialize(num_nodes, stateful: false, return_sequences: true, activation: Tanh.new, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lambda: 0, l2_lambda: 0) super(num_nodes, stateful: stateful, return_sequences: return_sequences, weight_initializer: weight_initializer, bias_initializer: bias_initializer, l1_lambda: 0, l2_lambda: 0) @activation = activation end def to_hash super({activation: @activation.to_hash}) end private def init_params super() num_prev_nodes = prev_layer.shape[1] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes) @weight2.data = Xumo::SFloat.new(@num_nodes, @num_nodes) @bias.data = Xumo::SFloat.new(@num_nodes) @weight_initializer.init_param(self, @weight) @weight_initializer.init_param(self, @weight2) @bias_initializer.init_param(self, @bias) @time_length.times do |t| @layers << SimpleRNN_Dense.new(@weight, @weight2, @bias) end end end class LSTM_Dense def initialize(weight, weight2, bias) @weight = weight @weight2 = weight2 @bias = bias @tanh = Tanh.new @g_tanh = Tanh.new @forget_sigmoid = Sigmoid.new @in_sigmoid = Sigmoid.new @out_sigmoid = Sigmoid.new end def forward(x, h, c) @x = x @h = h @c = c num_nodes = h.shape[1] a = x.dot(@weight.data) + h.dot(@weight2.data) + @bias.data @forget = @forget_sigmoid.forward(a[true, 0...num_nodes]) @g = @g_tanh.forward(a[true, num_nodes...(num_nodes * 2)]) @in = @in_sigmoid.forward(a[true, (num_nodes * 2)...(num_nodes * 3)]) @out = @out_sigmoid.forward(a[true, (num_nodes * 3)..-1]) c2 = @forget * c + @g * @in @tanh_c2 = @tanh.forward(c2) h2 = @out * @tanh_c2 [h2, c2] end def backward(dh2, dc2) dh2_tmp = @tanh_c2 * dh2 dc2_tmp = @tanh.backward(@out * dh2) + dc2 dout = @out_sigmoid.backward(dh2_tmp) din = @in_sigmoid.backward(dc2_tmp * @g) dg = @g_tanh.backward(dc2_tmp * @in) dforget = @forget_sigmoid.backward(dc2_tmp * @c) da = Xumo::SFloat.hstack([dforget, dg, din, dout]) @weight.grad += @x.transpose.dot(da) @weight2.grad += @h.transpose.dot(da) @bias.grad += da.sum(0) dx = da.dot(@weight.data.transpose) dh = da.dot(@weight2.data.transpose) dc = dc2_tmp * @forget [dx, dh, dc] end end class LSTM < RNN def self.load_hash(hash) lstm = self.new(hash[:num_nodes], stateful: hash[:stateful], return_sequences: hash[:return_sequences], weight_initializer: Util.load_hash(hash[:weight_initializer]), bias_initializer: Util.load_hash(hash[:bias_initializer]), l1_lambda: hash[:l1_lambda], l2_lambda: hash[:l2_lambda]) lstm end def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lambda: 0, l2_lambda: 0) super @cell = @params[:c] = Param.new end def forward(xs) @xs_shape = xs.shape hs = Xumo::SFloat.zeros(xs.shape[0], @time_length, @num_nodes) h = nil c = nil if @stateful h = @hidden.data if @hidden.data c = @cell.data if @cell.data end h ||= Xumo::SFloat.zeros(xs.shape[0], @num_nodes) c ||= Xumo::SFloat.zeros(xs.shape[0], @num_nodes) xs.shape[1].times do |t| x = xs[true, t, false] h, c = @layers[t].forward(x, h, c) hs[true, t, false] = h end @hidden.data = h @cell.data = c @return_sequences ? hs : h end def backward(dh2s) @weight.grad = Xumo::SFloat.zeros(*@weight.data.shape) @weight2.grad = Xumo::SFloat.zeros(*@weight2.data.shape) @bias.grad = Xumo::SFloat.zeros(*@bias.data.shape) unless @return_sequences dh = dh2s dh2s = Xumo::SFloat.zeros(dh.shape[0], @time_length, dh.shape[1]) dh2s[true, -1, false] = dh end dxs = Xumo::SFloat.zeros(@xs_shape) dh = 0 dc = 0 (0...dh2s.shape[1]).to_a.reverse.each do |t| dh2 = dh2s[true, t, false] dx, dh, dc = @layers[t].backward(dh2 + dh, dc) dxs[true, t, false] = dx end dxs end def reset_state super() @cell.data = @cell.data.fill(0) if @cell.data end private def init_params super() num_prev_nodes = prev_layer.shape[1] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes * 4) @weight2.data = Xumo::SFloat.new(@num_nodes, @num_nodes * 4) @bias.data = Xumo::SFloat.new(@num_nodes * 4) @weight_initializer.init_param(self, @weight) @weight_initializer.init_param(self, @weight2) @bias_initializer.init_param(self, @bias) @time_length.times do |t| @layers << LSTM_Dense.new(@weight, @weight2, @bias) end end end class GRU_Dense def initialize(weight, weight2, bias) @weight = weight @weight2 = weight2 @bias = bias @update_sigmoid = Sigmoid.new @reset_sigmoid = Sigmoid.new @tanh = Tanh.new end def forward(x, h) @x = x @h = h num_nodes = h.shape[1] @weight_a = @weight.data[true, 0...(num_nodes * 2)] @weight2_a = @weight2.data[true, 0...(num_nodes * 2)] bias_a = @bias.data[0...(num_nodes * 2)] a = x.dot(@weight_a) + h.dot(@weight2_a) + bias_a @update = @update_sigmoid.forward(a[true, 0...num_nodes]) @reset = @reset_sigmoid.forward(a[true, num_nodes..-1]) @weight_h = @weight.data[true, (num_nodes * 2)..-1] @weight2_h = @weight2.data[true, (num_nodes * 2)..-1] bias_h = @bias.data[(num_nodes * 2)..-1] @tanh_h = @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h) h2 = (1 - @update) * h + @update * @tanh_h h2 end def backward(dh2) dtanh_h = @tanh.backward(dh2 * @update) dh = dh2 * (1 - @update) dweight_h = @x.transpose.dot(dtanh_h) dx = dtanh_h.dot(@weight_h.transpose) dweight2_h = (@h * @reset).transpose.dot(dtanh_h) dh += dtanh_h.dot(@weight2_h.transpose) * @reset dbias_h = dtanh_h.sum(0) dreset = @reset_sigmoid.backward(dtanh_h.dot(@weight2_h.transpose) * @h) dupdate = @update_sigmoid.backward(dh2 * @tanh_h - dh2 * @h) da = Xumo::SFloat.hstack([dupdate, dreset]) dweight_a = @x.transpose.dot(da) dx += da.dot(@weight_a.transpose) dweight2_a = @h.transpose.dot(da) dh += da.dot(@weight2_a.transpose) dbias_a = da.sum(0) @weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h]) @weight2.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h]) @bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h]) [dx, dh] end end class GRU < RNN def self.load_hash(hash) gru = self.new(hash[:num_nodes], stateful: hash[:stateful], return_sequences: hash[:return_sequences], weight_initializer: Util.load_hash(hash[:weight_initializer]), bias_initializer: Util.load_hash(hash[:bias_initializer]), l1_lambda: hash[:l1_lambda], l2_lambda: hash[:l2_lambda]) gru end def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lambda: 0, l2_lambda: 0) super end private def init_params super() num_prev_nodes = prev_layer.shape[1] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes * 3) @weight2.data = Xumo::SFloat.new(@num_nodes, @num_nodes * 3) @bias.data = Xumo::SFloat.new(@num_nodes * 3) @weight_initializer.init_param(self, @weight) @weight_initializer.init_param(self, @weight2) @bias_initializer.init_param(self, @bias) @time_length.times do |t| @layers << GRU_Dense.new(@weight, @weight2, @bias) end end end end end