# SAX The term "SAX" originated from [Simple API for XML](http://en.wikipedia.org/wiki/Simple_API_for_XML). We borrowed this term for JSON parsing and generation. In RapidJSON, `Reader` (typedef of `GenericReader<...>`) is the SAX-style parser for JSON, and `Writer` (typedef of `GenericWriter<...>`) is the SAX-style generator for JSON. [TOC] # Reader {#Reader} `Reader` parses a JSON from a stream. While it reads characters from the stream, it analyzes the characters according to the syntax of JSON, and publishes events to a handler. For example, here is a JSON. ~~~~~~~~~~js { "hello": "world", "t": true , "f": false, "n": null, "i": 123, "pi": 3.1416, "a": [1, 2, 3, 4] } ~~~~~~~~~~ When a `Reader` parses this JSON, it publishes the following events to the handler sequentially: ~~~~~~~~~~ StartObject() Key("hello", 5, true) String("world", 5, true) Key("t", 1, true) Bool(true) Key("f", 1, true) Bool(false) Key("n", 1, true) Null() Key("i") UInt(123) Key("pi") Double(3.1416) Key("a") StartArray() Uint(1) Uint(2) Uint(3) Uint(4) EndArray(4) EndObject(7) ~~~~~~~~~~ These events can be easily matched with the JSON, but some event parameters need further explanation. Let's see the `simplereader` example which produces exactly the same output as above: ~~~~~~~~~~cpp #include "rapidjson/reader.h" #include using namespace rapidjson; using namespace std; struct MyHandler : public BaseReaderHandler, MyHandler> { bool Null() { cout << "Null()" << endl; return true; } bool Bool(bool b) { cout << "Bool(" << boolalpha << b << ")" << endl; return true; } bool Int(int i) { cout << "Int(" << i << ")" << endl; return true; } bool Uint(unsigned u) { cout << "Uint(" << u << ")" << endl; return true; } bool Int64(int64_t i) { cout << "Int64(" << i << ")" << endl; return true; } bool Uint64(uint64_t u) { cout << "Uint64(" << u << ")" << endl; return true; } bool Double(double d) { cout << "Double(" << d << ")" << endl; return true; } bool String(const char* str, SizeType length, bool copy) { cout << "String(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; return true; } bool StartObject() { cout << "StartObject()" << endl; return true; } bool Key(const char* str, SizeType length, bool copy) { cout << "Key(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; return true; } bool EndObject(SizeType memberCount) { cout << "EndObject(" << memberCount << ")" << endl; return true; } bool StartArray() { cout << "StartArray()" << endl; return true; } bool EndArray(SizeType elementCount) { cout << "EndArray(" << elementCount << ")" << endl; return true; } }; void main() { const char json[] = " { \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3, 4] } "; MyHandler handler; Reader reader; StringStream ss(json); reader.Parse(ss, handler); } ~~~~~~~~~~ Note that RapidJSON uses templates to statically bind the `Reader` type and the handler type, instead of using classes with virtual functions. This paradigm can improve performance by inlining functions. ## Handler {#Handler} As shown in the previous example, the user needs to implement a handler which consumes the events (via function calls) from the `Reader`. The handler must contain the following member functions. ~~~~~~~~~~cpp class Handler { bool Null(); bool Bool(bool b); bool Int(int i); bool Uint(unsigned i); bool Int64(int64_t i); bool Uint64(uint64_t i); bool Double(double d); bool RawNumber(const Ch* str, SizeType length, bool copy); bool String(const Ch* str, SizeType length, bool copy); bool StartObject(); bool Key(const Ch* str, SizeType length, bool copy); bool EndObject(SizeType memberCount); bool StartArray(); bool EndArray(SizeType elementCount); }; ~~~~~~~~~~ `Null()` is called when the `Reader` encounters a JSON null value. `Bool(bool)` is called when the `Reader` encounters a JSON true or false value. When the `Reader` encounters a JSON number, it chooses a suitable C++ type mapping. And then it calls *one* function out of `Int(int)`, `Uint(unsigned)`, `Int64(int64_t)`, `Uint64(uint64_t)` and `Double(double)`. If `kParseNumbersAsStrings` is enabled, `Reader` will always calls `RawNumber()` instead. `String(const char* str, SizeType length, bool copy)` is called when the `Reader` encounters a string. The first parameter is pointer to the string. The second parameter is the length of the string (excluding the null terminator). Note that RapidJSON supports null character `\0` inside a string. If such situation happens, `strlen(str) < length`. The last `copy` indicates whether the handler needs to make a copy of the string. For normal parsing, `copy = true`. Only when *insitu* parsing is used, `copy = false`. And be aware that the character type depends on the target encoding, which will be explained later. When the `Reader` encounters the beginning of an object, it calls `StartObject()`. An object in JSON is a set of name-value pairs. If the object contains members it first calls `Key()` for the name of member, and then calls functions depending on the type of the value. These calls of name-value pairs repeat until calling `EndObject(SizeType memberCount)`. Note that the `memberCount` parameter is just an aid for the handler; users who do not need this parameter may ignore it. Arrays are similar to objects, but simpler. At the beginning of an array, the `Reader` calls `BeginArray()`. If there is elements, it calls functions according to the types of element. Similarly, in the last call `EndArray(SizeType elementCount)`, the parameter `elementCount` is just an aid for the handler. Every handler function returns a `bool`. Normally it should return `true`. If the handler encounters an error, it can return `false` to notify the event publisher to stop further processing. For example, when we parse a JSON with `Reader` and the handler detects that the JSON does not conform to the required schema, the handler can return `false` and let the `Reader` stop further parsing. This will place the `Reader` in an error state, with error code `kParseErrorTermination`. ## GenericReader {#GenericReader} As mentioned before, `Reader` is a typedef of a template class `GenericReader`: ~~~~~~~~~~cpp namespace rapidjson { template > class GenericReader { // ... }; typedef GenericReader, UTF8<> > Reader; } // namespace rapidjson ~~~~~~~~~~ The `Reader` uses UTF-8 as both source and target encoding. The source encoding means the encoding in the JSON stream. The target encoding means the encoding of the `str` parameter in `String()` calls. For example, to parse a UTF-8 stream and output UTF-16 string events, you can define a reader by: ~~~~~~~~~~cpp GenericReader, UTF16<> > reader; ~~~~~~~~~~ Note that, the default character type of `UTF16` is `wchar_t`. So this `reader` needs to call `String(const wchar_t*, SizeType, bool)` of the handler. The third template parameter `Allocator` is the allocator type for internal data structure (actually a stack). ## Parsing {#SaxParsing} The main function of `Reader` is used to parse JSON. ~~~~~~~~~~cpp template bool Parse(InputStream& is, Handler& handler); // with parseFlags = kDefaultParseFlags template bool Parse(InputStream& is, Handler& handler); ~~~~~~~~~~ If an error occurs during parsing, it will return `false`. User can also call `bool HasParseError()`, `ParseErrorCode GetParseErrorCode()` and `size_t GetErrorOffset()` to obtain the error states. In fact, `Document` uses these `Reader` functions to obtain parse errors. Please refer to [DOM](doc/dom.md) for details about parse errors. ## Token-by-Token Parsing {#TokenByTokenParsing} Some users may wish to parse a JSON input stream a single token at a time, instead of immediately parsing an entire document without stopping. To parse JSON this way, instead of calling `Parse`, you can use the `IterativeParse` set of functions: ~~~~~~~~~~cpp void IterativeParseInit(); template bool IterativeParseNext(InputStream& is, Handler& handler); bool IterativeParseComplete(); ~~~~~~~~~~ Here is an example of iteratively parsing JSON, token by token: ~~~~~~~~~~cpp reader.IterativeParseInit(); while (!reader.IterativeParseComplete()) { reader.IterativeParseNext(is, handler); // Your handler has been called once. } ~~~~~~~~~~ # Writer {#Writer} `Reader` converts (parses) JSON into events. `Writer` does exactly the opposite. It converts events into JSON. `Writer` is very easy to use. If your application only need to converts some data into JSON, it may be a good choice to use `Writer` directly, instead of building a `Document` and then stringifying it with a `Writer`. In `simplewriter` example, we do exactly the reverse of `simplereader`. ~~~~~~~~~~cpp #include "rapidjson/writer.h" #include "rapidjson/stringbuffer.h" #include using namespace rapidjson; using namespace std; void main() { StringBuffer s; Writer writer(s); writer.StartObject(); writer.Key("hello"); writer.String("world"); writer.Key("t"); writer.Bool(true); writer.Key("f"); writer.Bool(false); writer.Key("n"); writer.Null(); writer.Key("i"); writer.Uint(123); writer.Key("pi"); writer.Double(3.1416); writer.Key("a"); writer.StartArray(); for (unsigned i = 0; i < 4; i++) writer.Uint(i); writer.EndArray(); writer.EndObject(); cout << s.GetString() << endl; } ~~~~~~~~~~ ~~~~~~~~~~ {"hello":"world","t":true,"f":false,"n":null,"i":123,"pi":3.1416,"a":[0,1,2,3]} ~~~~~~~~~~ There are two `String()` and `Key()` overloads. One is the same as defined in handler concept with 3 parameters. It can handle string with null characters. Another one is the simpler version used in the above example. Note that, the example code does not pass any parameters in `EndArray()` and `EndObject()`. An `SizeType` can be passed but it will be simply ignored by `Writer`. You may doubt that, why not just using `sprintf()` or `std::stringstream` to build a JSON? There are various reasons: 1. `Writer` must output a well-formed JSON. If there is incorrect event sequence (e.g. `Int()` just after `StartObject()`), it generates assertion fail in debug mode. 2. `Writer::String()` can handle string escaping (e.g. converting code point `U+000A` to `\n`) and Unicode transcoding. 3. `Writer` handles number output consistently. 4. `Writer` implements the event handler concept. It can be used to handle events from `Reader`, `Document` or other event publisher. 5. `Writer` can be optimized for different platforms. Anyway, using `Writer` API is even simpler than generating a JSON by ad hoc methods. ## Template {#WriterTemplate} `Writer` has a minor design difference to `Reader`. `Writer` is a template class, not a typedef. There is no `GenericWriter`. The following is the declaration. ~~~~~~~~~~cpp namespace rapidjson { template, typename TargetEncoding = UTF8<>, typename Allocator = CrtAllocator<>, unsigned writeFlags = kWriteDefaultFlags> class Writer { public: Writer(OutputStream& os, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) // ... }; } // namespace rapidjson ~~~~~~~~~~ The `OutputStream` template parameter is the type of output stream. It cannot be deduced and must be specified by user. The `SourceEncoding` template parameter specifies the encoding to be used in `String(const Ch*, ...)`. The `TargetEncoding` template parameter specifies the encoding in the output stream. The `Allocator` is the type of allocator, which is used for allocating internal data structure (a stack). The `writeFlags` are combination of the following bit-flags: Parse flags | Meaning ------------------------------|----------------------------------- `kWriteNoFlags` | No flag is set. `kWriteDefaultFlags` | Default write flags. It is equal to macro `RAPIDJSON_WRITE_DEFAULT_FLAGS`, which is defined as `kWriteNoFlags`. `kWriteValidateEncodingFlag` | Validate encoding of JSON strings. `kWriteNanAndInfFlag` | Allow writing of `Infinity`, `-Infinity` and `NaN`. Besides, the constructor of `Writer` has a `levelDepth` parameter. This parameter affects the initial memory allocated for storing information per hierarchy level. ## PrettyWriter {#PrettyWriter} While the output of `Writer` is the most condensed JSON without white-spaces, suitable for network transfer or storage, it is not easily readable by human. Therefore, RapidJSON provides a `PrettyWriter`, which adds indentation and line feeds in the output. The usage of `PrettyWriter` is exactly the same as `Writer`, expect that `PrettyWriter` provides a `SetIndent(Ch indentChar, unsigned indentCharCount)` function. The default is 4 spaces. ## Completeness and Reset {#CompletenessReset} A `Writer` can only output a single JSON, which can be any JSON type at the root. Once the singular event for root (e.g. `String()`), or the last matching `EndObject()` or `EndArray()` event, is handled, the output JSON is well-formed and complete. User can detect this state by calling `Writer::IsComplete()`. When a JSON is complete, the `Writer` cannot accept any new events. Otherwise the output will be invalid (i.e. having more than one root). To reuse the `Writer` object, user can call `Writer::Reset(OutputStream& os)` to reset all internal states of the `Writer` with a new output stream. # Techniques {#SaxTechniques} ## Parsing JSON to Custom Data Structure {#CustomDataStructure} `Document`'s parsing capability is completely based on `Reader`. Actually `Document` is a handler which receives events from a reader to build a DOM during parsing. User may uses `Reader` to build other data structures directly. This eliminates building of DOM, thus reducing memory and improving performance. In the following `messagereader` example, `ParseMessages()` parses a JSON which should be an object with key-string pairs. ~~~~~~~~~~cpp #include "rapidjson/reader.h" #include "rapidjson/error/en.h" #include #include #include using namespace std; using namespace rapidjson; typedef map MessageMap; struct MessageHandler : public BaseReaderHandler, MessageHandler> { MessageHandler() : state_(kExpectObjectStart) { } bool StartObject() { switch (state_) { case kExpectObjectStart: state_ = kExpectNameOrObjectEnd; return true; default: return false; } } bool String(const char* str, SizeType length, bool) { switch (state_) { case kExpectNameOrObjectEnd: name_ = string(str, length); state_ = kExpectValue; return true; case kExpectValue: messages_.insert(MessageMap::value_type(name_, string(str, length))); state_ = kExpectNameOrObjectEnd; return true; default: return false; } } bool EndObject(SizeType) { return state_ == kExpectNameOrObjectEnd; } bool Default() { return false; } // All other events are invalid. MessageMap messages_; enum State { kExpectObjectStart, kExpectNameOrObjectEnd, kExpectValue, }state_; std::string name_; }; void ParseMessages(const char* json, MessageMap& messages) { Reader reader; MessageHandler handler; StringStream ss(json); if (reader.Parse(ss, handler)) messages.swap(handler.messages_); // Only change it if success. else { ParseErrorCode e = reader.GetParseErrorCode(); size_t o = reader.GetErrorOffset(); cout << "Error: " << GetParseError_En(e) << endl;; cout << " at offset " << o << " near '" << string(json).substr(o, 10) << "...'" << endl; } } int main() { MessageMap messages; const char* json1 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\" }"; cout << json1 << endl; ParseMessages(json1, messages); for (MessageMap::const_iterator itr = messages.begin(); itr != messages.end(); ++itr) cout << itr->first << ": " << itr->second << endl; cout << endl << "Parse a JSON with invalid schema." << endl; const char* json2 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\", \"foo\" : {} }"; cout << json2 << endl; ParseMessages(json2, messages); return 0; } ~~~~~~~~~~ ~~~~~~~~~~ { "greeting" : "Hello!", "farewell" : "bye-bye!" } farewell: bye-bye! greeting: Hello! Parse a JSON with invalid schema. { "greeting" : "Hello!", "farewell" : "bye-bye!", "foo" : {} } Error: Terminate parsing due to Handler error. at offset 59 near '} }...' ~~~~~~~~~~ The first JSON (`json1`) was successfully parsed into `MessageMap`. Since `MessageMap` is a `std::map`, the printing order are sorted by the key. This order is different from the JSON's order. In the second JSON (`json2`), `foo`'s value is an empty object. As it is an object, `MessageHandler::StartObject()` will be called. However, at that moment `state_ = kExpectValue`, so that function returns `false` and cause the parsing process be terminated. The error code is `kParseErrorTermination`. ## Filtering of JSON {#Filtering} As mentioned earlier, `Writer` can handle the events published by `Reader`. `condense` example simply set a `Writer` as handler of a `Reader`, so it can remove all white-spaces in JSON. `pretty` example uses the same relationship, but replacing `Writer` by `PrettyWriter`. So `pretty` can be used to reformat a JSON with indentation and line feed. Actually, we can add intermediate layer(s) to filter the contents of JSON via these SAX-style API. For example, `capitalize` example capitalize all strings in a JSON. ~~~~~~~~~~cpp #include "rapidjson/reader.h" #include "rapidjson/writer.h" #include "rapidjson/filereadstream.h" #include "rapidjson/filewritestream.h" #include "rapidjson/error/en.h" #include #include using namespace rapidjson; template struct CapitalizeFilter { CapitalizeFilter(OutputHandler& out) : out_(out), buffer_() { } bool Null() { return out_.Null(); } bool Bool(bool b) { return out_.Bool(b); } bool Int(int i) { return out_.Int(i); } bool Uint(unsigned u) { return out_.Uint(u); } bool Int64(int64_t i) { return out_.Int64(i); } bool Uint64(uint64_t u) { return out_.Uint64(u); } bool Double(double d) { return out_.Double(d); } bool RawNumber(const char* str, SizeType length, bool copy) { return out_.RawNumber(str, length, copy); } bool String(const char* str, SizeType length, bool) { buffer_.clear(); for (SizeType i = 0; i < length; i++) buffer_.push_back(std::toupper(str[i])); return out_.String(&buffer_.front(), length, true); // true = output handler need to copy the string } bool StartObject() { return out_.StartObject(); } bool Key(const char* str, SizeType length, bool copy) { return String(str, length, copy); } bool EndObject(SizeType memberCount) { return out_.EndObject(memberCount); } bool StartArray() { return out_.StartArray(); } bool EndArray(SizeType elementCount) { return out_.EndArray(elementCount); } OutputHandler& out_; std::vector buffer_; }; int main(int, char*[]) { // Prepare JSON reader and input stream. Reader reader; char readBuffer[65536]; FileReadStream is(stdin, readBuffer, sizeof(readBuffer)); // Prepare JSON writer and output stream. char writeBuffer[65536]; FileWriteStream os(stdout, writeBuffer, sizeof(writeBuffer)); Writer writer(os); // JSON reader parse from the input stream and let writer generate the output. CapitalizeFilter > filter(writer); if (!reader.Parse(is, filter)) { fprintf(stderr, "\nError(%u): %s\n", (unsigned)reader.GetErrorOffset(), GetParseError_En(reader.GetParseErrorCode())); return 1; } return 0; } ~~~~~~~~~~ Note that, it is incorrect to simply capitalize the JSON as a string. For example: ~~~~~~~~~~ ["Hello\nWorld"] ~~~~~~~~~~ Simply capitalizing the whole JSON would contain incorrect escape character: ~~~~~~~~~~ ["HELLO\NWORLD"] ~~~~~~~~~~ The correct result by `capitalize`: ~~~~~~~~~~ ["HELLO\nWORLD"] ~~~~~~~~~~ More complicated filters can be developed. However, since SAX-style API can only provide information about a single event at a time, user may need to book-keeping the contextual information (e.g. the path from root value, storage of other related values). Some processing may be easier to be implemented in DOM than SAX.