# frozen_string_literal: true require 'svmkit/validation' require 'svmkit/base/base_estimator' require 'svmkit/base/regressor' require 'svmkit/optimizer/nadam' module SVMKit module LinearModel # SVR is a class that implements Support Vector Regressor # with mini-batch stochastic gradient descent optimization. # # @example # estimator = # SVMKit::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_target_values) # results = estimator.predict(testing_samples) # # *Reference* # 1. S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. class SVR include Base::BaseEstimator include Base::Regressor include Validation # Return the weight vector for SVR. # @return [Numo::DFloat] (shape: [n_outputs, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for SVR. # @return [Numo::DFloat] (shape: [n_outputs]) attr_reader :bias_term # Return the random generator for performing random sampling. # @return [Random] attr_reader :rng # Create a new regressor with Support Vector Machine by the SGD optimization. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param epsilon [Float] The margin of tolerance. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate. # If nil is given, Nadam is used. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:epsilon] = epsilon @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:optimizer] = optimizer @params[:optimizer] ||= Optimizer::Nadam.new @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [SVR] The learned regressor itself. def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] _n_samples, n_features = x.shape if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = single_fit(x, y[true, n]) } else @weight_vec, @bias_term = single_fit(x, y) end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Dump marshal data. # @return [Hash] The marshal data about SVR. def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end private def single_fit(x, y) # Expand feature vectors for bias term. samples = @params[:fit_bias] ? expand_feature(x) : x # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0...n_samples].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) optimizer = @params[:optimizer].dup # Start optimization. @params[:max_iter].times do |_t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) data = samples[subset_ids, true] values = y[subset_ids] # update the weight vector. loss_grad = loss_gradient(data, values, weight_vec) weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec)) end split_weight_vec_bias(weight_vec) end def loss_gradient(x, y, weight) z = x.dot(weight) grad = Numo::DFloat.zeros(@params[:batch_size]) grad[(z - y).gt(@params[:epsilon]).where] = 1 grad[(y - z).gt(@params[:epsilon]).where] = -1 grad end def weight_gradient(loss_grad, x, weight) x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight end def expand_feature(x) Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]) end def split_weight_vec_bias(weight_vec) weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec bias = @params[:fit_bias] ? weight_vec[-1] : 0.0 [weights, bias] end end end end