// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" #include "utils.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) // Helper function used to load a property from a dictionary backing storage. // This function may return false negatives, so miss_label // must always call a backup property load that is complete. // This function is safe to call if the receiver has fast properties, // or if name is not a symbol, and will jump to the miss_label in that case. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label, Register r0, Register r1, Register r2, Register name, DictionaryCheck check_dictionary) { // Register use: // // r0 - used to hold the property dictionary. // // r1 - initially the receiver // - used for the index into the property dictionary // - holds the result on exit. // // r2 - used to hold the capacity of the property dictionary. // // name - holds the name of the property and is unchanged. Label done; // Check for the absence of an interceptor. // Load the map into r0. __ mov(r0, FieldOperand(r1, JSObject::kMapOffset)); // Test the has_named_interceptor bit in the map. __ test(FieldOperand(r0, Map::kInstanceAttributesOffset), Immediate(1 << (Map::kHasNamedInterceptor + (3 * 8)))); // Jump to miss if the interceptor bit is set. __ j(not_zero, miss_label, not_taken); // Bail out if we have a JS global proxy object. __ movzx_b(r0, FieldOperand(r0, Map::kInstanceTypeOffset)); __ cmp(r0, JS_GLOBAL_PROXY_TYPE); __ j(equal, miss_label, not_taken); // Possible work-around for http://crbug.com/16276. __ cmp(r0, JS_GLOBAL_OBJECT_TYPE); __ j(equal, miss_label, not_taken); __ cmp(r0, JS_BUILTINS_OBJECT_TYPE); __ j(equal, miss_label, not_taken); // Load properties array. __ mov(r0, FieldOperand(r1, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. if (check_dictionary == CHECK_DICTIONARY) { __ cmp(FieldOperand(r0, HeapObject::kMapOffset), Immediate(Factory::hash_table_map())); __ j(not_equal, miss_label); } // Compute the capacity mask. const int kCapacityOffset = StringDictionary::kHeaderSize + StringDictionary::kCapacityIndex * kPointerSize; __ mov(r2, FieldOperand(r0, kCapacityOffset)); __ shr(r2, kSmiTagSize); // convert smi to int __ dec(r2); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. static const int kProbes = 4; const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; for (int i = 0; i < kProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ mov(r1, FieldOperand(name, String::kHashFieldOffset)); __ shr(r1, String::kHashShift); if (i > 0) { __ add(Operand(r1), Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(r1, Operand(r2)); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3 // Check if the key is identical to the name. __ cmp(name, Operand(r0, r1, times_4, kElementsStartOffset - kHeapObjectTag)); if (i != kProbes - 1) { __ j(equal, &done, taken); } else { __ j(not_equal, miss_label, not_taken); } } // Check that the value is a normal property. __ bind(&done); const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ test(Operand(r0, r1, times_4, kDetailsOffset - kHeapObjectTag), Immediate(PropertyDetails::TypeField::mask() << kSmiTagSize)); __ j(not_zero, miss_label, not_taken); // Get the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ mov(r1, Operand(r0, r1, times_4, kValueOffset - kHeapObjectTag)); } // Helper function used to check that a value is either not an object // or is loaded if it is an object. static void GenerateCheckNonObjectOrLoaded(MacroAssembler* masm, Label* miss, Register value, Register scratch) { Label done; // Check if the value is a Smi. __ test(value, Immediate(kSmiTagMask)); __ j(zero, &done, not_taken); // Check if the object has been loaded. __ mov(scratch, FieldOperand(value, JSFunction::kMapOffset)); __ mov(scratch, FieldOperand(scratch, Map::kBitField2Offset)); __ test(scratch, Immediate(1 << Map::kNeedsLoading)); __ j(not_zero, miss, not_taken); __ bind(&done); } // The offset from the inlined patch site to the start of the // inlined load instruction. It is 7 bytes (test eax, imm) plus // 6 bytes (jne slow_label). const int LoadIC::kOffsetToLoadInstruction = 13; void LoadIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- Label miss; __ mov(eax, Operand(esp, kPointerSize)); StubCompiler::GenerateLoadArrayLength(masm, eax, edx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateStringLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- Label miss; __ mov(eax, Operand(esp, kPointerSize)); StubCompiler::GenerateLoadStringLength(masm, eax, edx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- Label miss; __ mov(eax, Operand(esp, kPointerSize)); StubCompiler::GenerateLoadFunctionPrototype(masm, eax, edx, ebx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : name // -- esp[8] : receiver // ----------------------------------- Label slow, check_string, index_int, index_string; Label check_pixel_array, probe_dictionary; // Load name and receiver. __ mov(eax, Operand(esp, kPointerSize)); __ mov(ecx, Operand(esp, 2 * kPointerSize)); // Check that the object isn't a smi. __ test(ecx, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Get the map of the receiver. __ mov(edx, FieldOperand(ecx, HeapObject::kMapOffset)); // Check bit field. __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset)); __ test(ebx, Immediate(kSlowCaseBitFieldMask)); __ j(not_zero, &slow, not_taken); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing // into string objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ movzx_b(edx, FieldOperand(edx, Map::kInstanceTypeOffset)); __ cmp(edx, JS_OBJECT_TYPE); __ j(less, &slow, not_taken); // Check that the key is a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &check_string, not_taken); __ sar(eax, kSmiTagSize); // Get the elements array of the object. __ bind(&index_int); __ mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); __ j(not_equal, &check_pixel_array); // Check that the key (index) is within bounds. __ cmp(eax, FieldOperand(ecx, FixedArray::kLengthOffset)); __ j(above_equal, &slow); // Fast case: Do the load. __ mov(eax, Operand(ecx, eax, times_4, FixedArray::kHeaderSize - kHeapObjectTag)); __ cmp(Operand(eax), Immediate(Factory::the_hole_value())); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ j(equal, &slow); __ IncrementCounter(&Counters::keyed_load_generic_smi, 1); __ ret(0); // Check whether the elements is a pixel array. // eax: untagged index // ecx: elements array __ bind(&check_pixel_array); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(Factory::pixel_array_map())); __ j(not_equal, &slow); __ cmp(eax, FieldOperand(ecx, PixelArray::kLengthOffset)); __ j(above_equal, &slow); __ mov(ecx, FieldOperand(ecx, PixelArray::kExternalPointerOffset)); __ movzx_b(eax, Operand(ecx, eax, times_1, 0)); __ shl(eax, kSmiTagSize); __ ret(0); // Slow case: Load name and receiver from stack and jump to runtime. __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_generic_slow, 1); Generate(masm, ExternalReference(Runtime::kKeyedGetProperty)); __ bind(&check_string); // The key is not a smi. // Is it a string? __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx); __ j(above_equal, &slow); // Is the string an array index, with cached numeric value? __ mov(ebx, FieldOperand(eax, String::kHashFieldOffset)); __ test(ebx, Immediate(String::kIsArrayIndexMask)); __ j(not_zero, &index_string, not_taken); // Is the string a symbol? __ movzx_b(ebx, FieldOperand(edx, Map::kInstanceTypeOffset)); ASSERT(kSymbolTag != 0); __ test(ebx, Immediate(kIsSymbolMask)); __ j(zero, &slow, not_taken); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary leaving result in ecx. __ mov(ebx, FieldOperand(ecx, JSObject::kPropertiesOffset)); __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(Factory::hash_table_map())); __ j(equal, &probe_dictionary); // Load the map of the receiver, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the string hash. __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); __ mov(edx, ebx); __ shr(edx, KeyedLookupCache::kMapHashShift); __ mov(eax, FieldOperand(eax, String::kHashFieldOffset)); __ shr(eax, String::kHashShift); __ xor_(edx, Operand(eax)); __ and_(edx, KeyedLookupCache::kCapacityMask); // Load the key (consisting of map and symbol) from the cache and // check for match. ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(); __ mov(edi, edx); __ shl(edi, kPointerSizeLog2 + 1); __ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys)); __ j(not_equal, &slow); __ add(Operand(edi), Immediate(kPointerSize)); __ mov(edi, Operand::StaticArray(edi, times_1, cache_keys)); __ cmp(edi, Operand(esp, kPointerSize)); __ j(not_equal, &slow); // Get field offset and check that it is an in-object property. ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(); __ mov(eax, Operand::StaticArray(edx, times_pointer_size, cache_field_offsets)); __ movzx_b(edx, FieldOperand(ebx, Map::kInObjectPropertiesOffset)); __ cmp(eax, Operand(edx)); __ j(above_equal, &slow); // Load in-object property. __ sub(eax, Operand(edx)); __ movzx_b(edx, FieldOperand(ebx, Map::kInstanceSizeOffset)); __ add(eax, Operand(edx)); __ mov(eax, FieldOperand(ecx, eax, times_pointer_size, 0)); __ ret(0); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); GenerateDictionaryLoad(masm, &slow, ebx, ecx, edx, eax, DICTIONARY_CHECK_DONE); GenerateCheckNonObjectOrLoaded(masm, &slow, ecx, edx); __ mov(eax, Operand(ecx)); __ IncrementCounter(&Counters::keyed_load_generic_symbol, 1); __ ret(0); // If the hash field contains an array index pick it out. The assert checks // that the constants for the maximum number of digits for an array index // cached in the hash field and the number of bits reserved for it does not // conflict. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); __ bind(&index_string); __ mov(eax, Operand(ebx)); __ and_(eax, String::kArrayIndexHashMask); __ shr(eax, String::kHashShift); __ jmp(&index_int); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : key // -- esp[8] : receiver // ----------------------------------- Label miss, index_ok; // Pop return address. // Performing the load early is better in the common case. __ pop(eax); __ mov(ebx, Operand(esp, 1 * kPointerSize)); __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &miss); __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ test(ecx, Immediate(kIsNotStringMask)); __ j(not_zero, &miss); // Check if key is a smi or a heap number. __ mov(edx, Operand(esp, 0)); __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &index_ok); __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); __ cmp(ecx, Factory::heap_number_map()); __ j(not_equal, &miss); __ bind(&index_ok); // Duplicate receiver and key since they are expected on the stack after // the KeyedLoadIC call. __ push(ebx); // receiver __ push(edx); // key __ push(eax); // return address __ InvokeBuiltin(Builtins::STRING_CHAR_AT, JUMP_FUNCTION); __ bind(&miss); __ push(eax); GenerateMiss(masm); } void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : key // -- esp[8] : receiver // ----------------------------------- Label slow, failed_allocation; // Load name and receiver. __ mov(eax, Operand(esp, kPointerSize)); __ mov(ecx, Operand(esp, 2 * kPointerSize)); // Check that the object isn't a smi. __ test(ecx, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Check that the key is a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &slow, not_taken); // Get the map of the receiver. __ mov(edx, FieldOperand(ecx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to check this explicitly since this generic stub does not perform // map checks. __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow, not_taken); // Get the instance type from the map of the receiver. __ movzx_b(edx, FieldOperand(edx, Map::kInstanceTypeOffset)); // Check that the object is a JS object. __ cmp(edx, JS_OBJECT_TYPE); __ j(not_equal, &slow, not_taken); // Check that the elements array is the appropriate type of // ExternalArray. // eax: index (as a smi) // ecx: JSObject __ mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset)); Handle map(Heap::MapForExternalArrayType(array_type)); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(map)); __ j(not_equal, &slow, not_taken); // Check that the index is in range. __ sar(eax, kSmiTagSize); // Untag the index. __ cmp(eax, FieldOperand(ecx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // eax: untagged index // ecx: elements array __ mov(ecx, FieldOperand(ecx, ExternalArray::kExternalPointerOffset)); // ecx: base pointer of external storage switch (array_type) { case kExternalByteArray: __ movsx_b(eax, Operand(ecx, eax, times_1, 0)); break; case kExternalUnsignedByteArray: __ movzx_b(eax, Operand(ecx, eax, times_1, 0)); break; case kExternalShortArray: __ movsx_w(eax, Operand(ecx, eax, times_2, 0)); break; case kExternalUnsignedShortArray: __ movzx_w(eax, Operand(ecx, eax, times_2, 0)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ mov(eax, Operand(ecx, eax, times_4, 0)); break; case kExternalFloatArray: __ fld_s(Operand(ecx, eax, times_4, 0)); break; default: UNREACHABLE(); break; } // For integer array types: // eax: value // For floating-point array type: // FP(0): value if (array_type == kExternalIntArray || array_type == kExternalUnsignedIntArray) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; if (array_type == kExternalIntArray) { // See Smi::IsValid for why this works. __ mov(ebx, eax); __ add(Operand(ebx), Immediate(0x40000000)); __ cmp(ebx, 0x80000000); __ j(above_equal, &box_int); } else { ASSERT_EQ(array_type, kExternalUnsignedIntArray); // The test is different for unsigned int values. Since we need // the Smi-encoded result to be treated as unsigned, we can't // handle either of the top two bits being set in the value. __ test(eax, Immediate(0xC0000000)); __ j(not_zero, &box_int); } __ shl(eax, kSmiTagSize); __ ret(0); __ bind(&box_int); // Allocate a HeapNumber for the int and perform int-to-double // conversion. if (array_type == kExternalIntArray) { __ push(eax); __ fild_s(Operand(esp, 0)); __ pop(eax); } else { ASSERT(array_type == kExternalUnsignedIntArray); // Need to zero-extend the value. // There's no fild variant for unsigned values, so zero-extend // to a 64-bit int manually. __ push(Immediate(0)); __ push(eax); __ fild_d(Operand(esp, 0)); __ pop(eax); __ pop(eax); } // FP(0): value __ AllocateHeapNumber(eax, ebx, ecx, &failed_allocation); // Set the value. __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); } else if (array_type == kExternalFloatArray) { // For the floating-point array type, we need to always allocate a // HeapNumber. __ AllocateHeapNumber(eax, ebx, ecx, &failed_allocation); // Set the value. __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); } else { __ shl(eax, kSmiTagSize); __ ret(0); } // If we fail allocation of the HeapNumber, we still have a value on // top of the FPU stack. Remove it. __ bind(&failed_allocation); __ ffree(); __ fincstp(); // Fall through to slow case. // Slow case: Load name and receiver from stack and jump to runtime. __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1); Generate(masm, ExternalReference(Runtime::kKeyedGetProperty)); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- esp[0] : return address // -- esp[4] : key // -- esp[8] : receiver // ----------------------------------- Label slow, fast, array, extra, check_pixel_array; // Get the receiver from the stack. __ mov(edx, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, key // Check that the object isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Get the map from the receiver. __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ movzx_b(ebx, FieldOperand(ecx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow, not_taken); // Get the key from the stack. __ mov(ebx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address // Check that the key is a smi. __ test(ebx, Immediate(kSmiTagMask)); __ j(not_zero, &slow, not_taken); // Get the instance type from the map of the receiver. __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // Check if the object is a JS array or not. __ cmp(ecx, JS_ARRAY_TYPE); __ j(equal, &array); // Check that the object is some kind of JS object. __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &slow, not_taken); // Object case: Check key against length in the elements array. // eax: value // edx: JSObject // ebx: index (as a smi) __ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); __ j(not_equal, &check_pixel_array, not_taken); // Untag the key (for checking against untagged length in the fixed array). __ mov(edx, Operand(ebx)); __ sar(edx, kSmiTagSize); // untag the index and use it for the comparison __ cmp(edx, FieldOperand(ecx, Array::kLengthOffset)); // eax: value // ecx: FixedArray // ebx: index (as a smi) __ j(below, &fast, taken); // Slow case: call runtime. __ bind(&slow); Generate(masm, ExternalReference(Runtime::kSetProperty)); // Check whether the elements is a pixel array. // eax: value // ecx: elements array // ebx: index (as a smi) __ bind(&check_pixel_array); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(Factory::pixel_array_map())); __ j(not_equal, &slow); // Check that the value is a smi. If a conversion is needed call into the // runtime to convert and clamp. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &slow); __ sar(ebx, kSmiTagSize); // Untag the index. __ cmp(ebx, FieldOperand(ecx, PixelArray::kLengthOffset)); __ j(above_equal, &slow); __ mov(edx, eax); // Save the value. __ sar(eax, kSmiTagSize); // Untag the value. { // Clamp the value to [0..255]. Label done; __ test(eax, Immediate(0xFFFFFF00)); __ j(zero, &done); __ setcc(negative, eax); // 1 if negative, 0 if positive. __ dec_b(eax); // 0 if negative, 255 if positive. __ bind(&done); } __ mov(ecx, FieldOperand(ecx, PixelArray::kExternalPointerOffset)); __ mov_b(Operand(ecx, ebx, times_1, 0), eax); __ mov(eax, edx); // Return the original value. __ ret(0); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // eax: value // edx: JSArray // ecx: FixedArray // ebx: index (as a smi) // flags: compare (ebx, edx.length()) __ j(not_equal, &slow, not_taken); // do not leave holes in the array __ sar(ebx, kSmiTagSize); // untag __ cmp(ebx, FieldOperand(ecx, Array::kLengthOffset)); __ j(above_equal, &slow, not_taken); // Restore tag and increment. __ lea(ebx, Operand(ebx, times_2, 1 << kSmiTagSize)); __ mov(FieldOperand(edx, JSArray::kLengthOffset), ebx); __ sub(Operand(ebx), Immediate(1 << kSmiTagSize)); // decrement ebx again __ jmp(&fast); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode; if it is the // length is always a smi. __ bind(&array); // eax: value // edx: JSArray // ebx: index (as a smi) __ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset)); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); __ j(not_equal, &check_pixel_array); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ cmp(ebx, FieldOperand(edx, JSArray::kLengthOffset)); __ j(above_equal, &extra, not_taken); // Fast case: Do the store. __ bind(&fast); // eax: value // ecx: FixedArray // ebx: index (as a smi) __ mov(Operand(ecx, ebx, times_2, FixedArray::kHeaderSize - kHeapObjectTag), eax); // Update write barrier for the elements array address. __ mov(edx, Operand(eax)); __ RecordWrite(ecx, 0, edx, ebx); __ ret(0); } void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ----------- S t a t e ------------- // -- eax : value // -- esp[0] : return address // -- esp[4] : key // -- esp[8] : receiver // ----------------------------------- Label slow, check_heap_number; // Get the receiver from the stack. __ mov(edx, Operand(esp, 2 * kPointerSize)); // Check that the object isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &slow); // Get the map from the receiver. __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ movzx_b(ebx, FieldOperand(ecx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Get the key from the stack. __ mov(ebx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address // Check that the key is a smi. __ test(ebx, Immediate(kSmiTagMask)); __ j(not_zero, &slow); // Get the instance type from the map of the receiver. __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // Check that the object is a JS object. __ cmp(ecx, JS_OBJECT_TYPE); __ j(not_equal, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // eax: value // edx: JSObject // ebx: index (as a smi) __ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset)); Handle map(Heap::MapForExternalArrayType(array_type)); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(map)); __ j(not_equal, &slow); // Check that the index is in range. __ sar(ebx, kSmiTagSize); // Untag the index. __ cmp(ebx, FieldOperand(ecx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // eax: value // ecx: elements array // ebx: untagged index __ test(eax, Immediate(kSmiTagMask)); __ j(not_equal, &check_heap_number); // smi case __ mov(edx, eax); // Save the value. __ sar(eax, kSmiTagSize); // Untag the value. __ mov(ecx, FieldOperand(ecx, ExternalArray::kExternalPointerOffset)); // ecx: base pointer of external storage switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ mov_b(Operand(ecx, ebx, times_1, 0), eax); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ mov_w(Operand(ecx, ebx, times_2, 0), eax); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ mov(Operand(ecx, ebx, times_4, 0), eax); break; case kExternalFloatArray: // Need to perform int-to-float conversion. __ push(eax); __ fild_s(Operand(esp, 0)); __ pop(eax); __ fstp_s(Operand(ecx, ebx, times_4, 0)); break; default: UNREACHABLE(); break; } __ mov(eax, edx); // Return the original value. __ ret(0); __ bind(&check_heap_number); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Immediate(Factory::heap_number_map())); __ j(not_equal, &slow); // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ mov(edx, eax); // Save the value. __ mov(ecx, FieldOperand(ecx, ExternalArray::kExternalPointerOffset)); // ebx: untagged index // ecx: base pointer of external storage // top of FPU stack: value if (array_type == kExternalFloatArray) { __ fstp_s(Operand(ecx, ebx, times_4, 0)); __ mov(eax, edx); // Return the original value. __ ret(0); } else { // Need to perform float-to-int conversion. // Test the top of the FP stack for NaN. Label is_nan; __ fucomi(0); __ j(parity_even, &is_nan); if (array_type != kExternalUnsignedIntArray) { __ push(eax); // Make room on stack __ fistp_s(Operand(esp, 0)); __ pop(eax); } else { // fistp stores values as signed integers. // To represent the entire range, we need to store as a 64-bit // int and discard the high 32 bits. __ push(eax); // Make room on stack __ push(eax); // Make room on stack __ fistp_d(Operand(esp, 0)); __ pop(eax); __ mov(Operand(esp, 0), eax); __ pop(eax); } // eax: untagged integer value switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ mov_b(Operand(ecx, ebx, times_1, 0), eax); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ mov_w(Operand(ecx, ebx, times_2, 0), eax); break; case kExternalIntArray: case kExternalUnsignedIntArray: { // We also need to explicitly check for +/-Infinity. These are // converted to MIN_INT, but we need to be careful not to // confuse with legal uses of MIN_INT. Label not_infinity; // This test would apparently detect both NaN and Infinity, // but we've already checked for NaN using the FPU hardware // above. __ mov_w(edi, FieldOperand(edx, HeapNumber::kValueOffset + 6)); __ and_(edi, 0x7FF0); __ cmp(edi, 0x7FF0); __ j(not_equal, ¬_infinity); __ mov(eax, 0); __ bind(¬_infinity); __ mov(Operand(ecx, ebx, times_4, 0), eax); break; } default: UNREACHABLE(); break; } __ mov(eax, edx); // Return the original value. __ ret(0); __ bind(&is_nan); __ ffree(); __ fincstp(); switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ mov_b(Operand(ecx, ebx, times_1, 0), 0); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ mov(eax, 0); __ mov_w(Operand(ecx, ebx, times_2, 0), eax); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ mov(Operand(ecx, ebx, times_4, 0), Immediate(0)); break; default: UNREACHABLE(); break; } __ mov(eax, edx); // Return the original value. __ ret(0); } // Slow case: call runtime. __ bind(&slow); Generate(masm, ExternalReference(Runtime::kSetProperty)); } // Defined in ic.cc. Object* CallIC_Miss(Arguments args); void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Label number, non_number, non_string, boolean, probe, miss; // Get the receiver of the function from the stack; 1 ~ return address. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc); StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, eax); // If the stub cache probing failed, the receiver might be a value. // For value objects, we use the map of the prototype objects for // the corresponding JSValue for the cache and that is what we need // to probe. // // Check for number. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &number, not_taken); __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ebx); __ j(not_equal, &non_number, taken); __ bind(&number); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::NUMBER_FUNCTION_INDEX, edx); __ jmp(&probe); // Check for string. __ bind(&non_number); __ cmp(ebx, FIRST_NONSTRING_TYPE); __ j(above_equal, &non_string, taken); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::STRING_FUNCTION_INDEX, edx); __ jmp(&probe); // Check for boolean. __ bind(&non_string); __ cmp(edx, Factory::true_value()); __ j(equal, &boolean, not_taken); __ cmp(edx, Factory::false_value()); __ j(not_equal, &miss, taken); __ bind(&boolean); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::BOOLEAN_FUNCTION_INDEX, edx); // Probe the stub cache for the value object. __ bind(&probe); StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, no_reg); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm, argc); } static void GenerateNormalHelper(MacroAssembler* masm, int argc, bool is_global_object, Label* miss) { // ----------- S t a t e ------------- // -- ecx : name // -- edx : receiver // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // Search dictionary - put result in register edi. __ mov(edi, edx); GenerateDictionaryLoad(masm, miss, eax, edi, ebx, ecx, CHECK_DICTIONARY); // Check that the result is not a smi. __ test(edi, Immediate(kSmiTagMask)); __ j(zero, miss, not_taken); // Check that the value is a JavaScript function, fetching its map into eax. __ CmpObjectType(edi, JS_FUNCTION_TYPE, eax); __ j(not_equal, miss, not_taken); // Check that the function has been loaded. eax holds function's map. __ mov(eax, FieldOperand(eax, Map::kBitField2Offset)); __ test(eax, Immediate(1 << Map::kNeedsLoading)); __ j(not_zero, miss, not_taken); // Patch the receiver on stack with the global proxy if necessary. if (is_global_object) { __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc + 1) * kPointerSize), edx); } // Invoke the function. ParameterCount actual(argc); __ InvokeFunction(edi, actual, JUMP_FUNCTION); } void CallIC::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Label miss, global_object, non_global_object; // Get the receiver of the function from the stack; 1 ~ return address. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss, not_taken); // Check that the receiver is a valid JS object. __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(eax, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ cmp(eax, FIRST_JS_OBJECT_TYPE); __ j(below, &miss, not_taken); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object. __ cmp(eax, JS_GLOBAL_OBJECT_TYPE); __ j(equal, &global_object); __ cmp(eax, JS_BUILTINS_OBJECT_TYPE); __ j(not_equal, &non_global_object); // Accessing global object: Load and invoke. __ bind(&global_object); // Check that the global object does not require access checks. __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_equal, &miss, not_taken); GenerateNormalHelper(masm, argc, true, &miss); // Accessing non-global object: Check for access to global proxy. Label global_proxy, invoke; __ bind(&non_global_object); __ cmp(eax, JS_GLOBAL_PROXY_TYPE); __ j(equal, &global_proxy, not_taken); // Check that the non-global, non-global-proxy object does not // require access checks. __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_equal, &miss, not_taken); __ bind(&invoke); GenerateNormalHelper(masm, argc, false, &miss); // Global object proxy access: Check access rights. __ bind(&global_proxy); __ CheckAccessGlobalProxy(edx, eax, &miss); __ jmp(&invoke); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm, argc); } void CallIC::GenerateMiss(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // Get the receiver of the function from the stack; 1 ~ return address. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Enter an internal frame. __ EnterInternalFrame(); // Push the receiver and the name of the function. __ push(edx); __ push(ecx); // Call the entry. CEntryStub stub(1); __ mov(eax, Immediate(2)); __ mov(ebx, Immediate(ExternalReference(IC_Utility(kCallIC_Miss)))); __ CallStub(&stub); // Move result to edi and exit the internal frame. __ mov(edi, eax); __ LeaveInternalFrame(); // Check if the receiver is a global object of some sort. Label invoke, global; __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // receiver __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &invoke, not_taken); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ cmp(ebx, JS_GLOBAL_OBJECT_TYPE); __ j(equal, &global); __ cmp(ebx, JS_BUILTINS_OBJECT_TYPE); __ j(not_equal, &invoke); // Patch the receiver on the stack. __ bind(&global); __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc + 1) * kPointerSize), edx); // Invoke the function. ParameterCount actual(argc); __ bind(&invoke); __ InvokeFunction(edi, actual, JUMP_FUNCTION); } // Defined in ic.cc. Object* LoadIC_Miss(Arguments args); void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- __ mov(eax, Operand(esp, kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, eax, ecx, ebx, edx); // Cache miss: Jump to runtime. Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- Label miss, probe, global; __ mov(eax, Operand(esp, kPointerSize)); // Check that the receiver isn't a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &miss, not_taken); // Check that the receiver is a valid JS object. __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(edx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ cmp(edx, FIRST_JS_OBJECT_TYPE); __ j(less, &miss, not_taken); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object (unlikely). __ cmp(edx, JS_GLOBAL_PROXY_TYPE); __ j(equal, &global, not_taken); // Check for non-global object that requires access check. __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &miss, not_taken); // Search the dictionary placing the result in eax. __ bind(&probe); GenerateDictionaryLoad(masm, &miss, edx, eax, ebx, ecx, CHECK_DICTIONARY); GenerateCheckNonObjectOrLoaded(masm, &miss, eax, edx); __ ret(0); // Global object access: Check access rights. __ bind(&global); __ CheckAccessGlobalProxy(eax, edx, &miss); __ jmp(&probe); // Cache miss: Restore receiver from stack and jump to runtime. __ bind(&miss); __ mov(eax, Operand(esp, 1 * kPointerSize)); Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- __ mov(eax, Operand(esp, kPointerSize)); __ pop(ebx); __ push(eax); // receiver __ push(ecx); // name __ push(ebx); // return address // Perform tail call to the entry. __ TailCallRuntime(f, 2, 1); } // One byte opcode for test eax,0xXXXXXXXX. static const byte kTestEaxByte = 0xA9; void LoadIC::ClearInlinedVersion(Address address) { // Reset the map check of the inlined inobject property load (if // present) to guarantee failure by holding an invalid map (the null // value). The offset can be patched to anything. PatchInlinedLoad(address, Heap::null_value(), kMaxInt); } void KeyedLoadIC::ClearInlinedVersion(Address address) { // Insert null as the map to check for to make sure the map check fails // sending control flow to the IC instead of the inlined version. PatchInlinedLoad(address, Heap::null_value()); } void KeyedStoreIC::ClearInlinedVersion(Address address) { // Insert null as the elements map to check for. This will make // sure that the elements fast-case map check fails so that control // flows to the IC instead of the inlined version. PatchInlinedStore(address, Heap::null_value()); } void KeyedStoreIC::RestoreInlinedVersion(Address address) { // Restore the fast-case elements map check so that the inlined // version can be used again. PatchInlinedStore(address, Heap::fixed_array_map()); } bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test eax, nothing // was inlined. if (*test_instruction_address != kTestEaxByte) return false; Address delta_address = test_instruction_address + 1; // The delta to the start of the map check instruction. int delta = *reinterpret_cast(delta_address); // The map address is the last 4 bytes of the 7-byte // operand-immediate compare instruction, so we add 3 to get the // offset to the last 4 bytes. Address map_address = test_instruction_address + delta + 3; *(reinterpret_cast(map_address)) = map; // The offset is in the last 4 bytes of a six byte // memory-to-register move instruction, so we add 2 to get the // offset to the last 4 bytes. Address offset_address = test_instruction_address + delta + kOffsetToLoadInstruction + 2; *reinterpret_cast(offset_address) = offset - kHeapObjectTag; return true; } static bool PatchInlinedMapCheck(Address address, Object* map) { Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // The keyed load has a fast inlined case if the IC call instruction // is immediately followed by a test instruction. if (*test_instruction_address != kTestEaxByte) return false; // Fetch the offset from the test instruction to the map cmp // instruction. This offset is stored in the last 4 bytes of the 5 // byte test instruction. Address delta_address = test_instruction_address + 1; int delta = *reinterpret_cast(delta_address); // Compute the map address. The map address is in the last 4 bytes // of the 7-byte operand-immediate compare instruction, so we add 3 // to the offset to get the map address. Address map_address = test_instruction_address + delta + 3; // Patch the map check. *(reinterpret_cast(map_address)) = map; return true; } bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) { return PatchInlinedMapCheck(address, map); } bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) { return PatchInlinedMapCheck(address, map); } // Defined in ic.cc. Object* KeyedLoadIC_Miss(Arguments args); void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : name // -- esp[8] : receiver // ----------------------------------- Generate(masm, ExternalReference(IC_Utility(kKeyedLoadIC_Miss))); } void KeyedLoadIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : name // -- esp[8] : receiver // ----------------------------------- __ mov(eax, Operand(esp, kPointerSize)); __ mov(ecx, Operand(esp, 2 * kPointerSize)); __ pop(ebx); __ push(ecx); // receiver __ push(eax); // name __ push(ebx); // return address // Perform tail call to the entry. __ TailCallRuntime(f, 2, 1); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- // Get the receiver from the stack and probe the stub cache. __ mov(edx, Operand(esp, 4)); Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, no_reg); // Cache miss: Jump to runtime. Generate(masm, ExternalReference(IC_Utility(kStoreIC_Miss))); } void StoreIC::GenerateExtendStorage(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : transition map // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- __ pop(ebx); __ push(Operand(esp, 0)); // receiver __ push(ecx); // transition map __ push(eax); // value __ push(ebx); // return address // Perform tail call to the entry. __ TailCallRuntime( ExternalReference(IC_Utility(kSharedStoreIC_ExtendStorage)), 3, 1); } void StoreIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- esp[0] : return address // -- esp[4] : receiver // ----------------------------------- // Move the return address below the arguments. __ pop(ebx); __ push(Operand(esp, 0)); __ push(ecx); __ push(eax); __ push(ebx); // Perform tail call to the entry. __ TailCallRuntime(f, 3, 1); } // Defined in ic.cc. Object* KeyedStoreIC_Miss(Arguments args); void KeyedStoreIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ----------- S t a t e ------------- // -- eax : value // -- esp[0] : return address // -- esp[4] : key // -- esp[8] : receiver // ----------------------------------- // Move the return address below the arguments. __ pop(ecx); __ push(Operand(esp, 1 * kPointerSize)); __ push(Operand(esp, 1 * kPointerSize)); __ push(eax); __ push(ecx); // Do tail-call to runtime routine. __ TailCallRuntime(f, 3, 1); } void KeyedStoreIC::GenerateExtendStorage(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : transition map // -- esp[0] : return address // -- esp[4] : key // -- esp[8] : receiver // ----------------------------------- // Move the return address below the arguments. __ pop(ebx); __ push(Operand(esp, 1 * kPointerSize)); __ push(ecx); __ push(eax); __ push(ebx); // Do tail-call to runtime routine. __ TailCallRuntime( ExternalReference(IC_Utility(kSharedStoreIC_ExtendStorage)), 3, 1); } #undef __ } } // namespace v8::internal