# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2021, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* # see the URL below for information on how to write OpenStudio measures # http://openstudio.nrel.gov/openstudio-measure-writing-guide # see the URL below for information on using life cycle cost objects in OpenStudio # http://openstudio.nrel.gov/openstudio-life-cycle-examples # see the URL below for access to C++ documentation on model objects (click on "model" in the main window to view model objects) # http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/namespaces.html # load OpenStudio measure libraries from openstudio-extension gem require 'openstudio-extension' require 'openstudio/extension/core/os_lib_constructions' require 'openstudio/extension/core/os_lib_geometry' require 'openstudio/extension/core/os_lib_helper_methods' require 'openstudio/extension/core/os_lib_lighting_and_equipment' # load OpenStudio measure libraries require "#{File.dirname(__FILE__)}/resources/OsLib_AedgMeasures" # start the measure class AedgK12FenestrationAndDaylightingControls < OpenStudio::Measure::ModelMeasure # define the name that a user will see, this method may be deprecated as # the display name in PAT comes from the name field in measure.xml def name return 'AEDG K12 - Fenestration and Daylighting Controls' end # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # make an argument for cost of cost_daylight_glazing cost_daylight_glazing = OpenStudio::Measure::OSArgument.makeDoubleArgument('cost_daylight_glazing', true) cost_daylight_glazing.setDisplayName('Cost per Area for Proposed Daylighting Window Constructions ($/ft^2).') cost_daylight_glazing.setDefaultValue(0.0) args << cost_daylight_glazing # make an argument for cost of cost_view_glazing cost_view_glazing = OpenStudio::Measure::OSArgument.makeDoubleArgument('cost_view_glazing', true) cost_view_glazing.setDisplayName('Cost per Area for Proposed View Window Constructions ($/ft^2).') cost_view_glazing.setDefaultValue(0.0) args << cost_view_glazing # make an argument for cost of cost_skylight cost_skylight = OpenStudio::Measure::OSArgument.makeDoubleArgument('cost_skylight', true) cost_skylight.setDisplayName('Cost per Area for Proposed Skylight Construction ($/ft^2).') cost_skylight.setDefaultValue(0.0) args << cost_skylight # make an argument for cost of cost_shading_surface (todo - later would be nice to change to linear) cost_shading_surface = OpenStudio::Measure::OSArgument.makeDoubleArgument('cost_shading_surface', true) cost_shading_surface.setDisplayName('Cost per Area for Proposed Exterior Shading Surface Construction ($/ft^2).') cost_shading_surface.setDefaultValue(0.0) args << cost_shading_surface # make an argument for cost of cost_light_shelf (todo - later would be nice to change to linear) cost_light_shelf = OpenStudio::Measure::OSArgument.makeDoubleArgument('cost_light_shelf', true) cost_light_shelf.setDisplayName('Cost per Area for Proposed Light Shelf Construction ($/ft^2).') cost_light_shelf.setDefaultValue(0.0) args << cost_light_shelf # TODO: - eventually would be nice to cost each sensor (but wouldn't larger rooms really have more than one sensor) return args end # define what happens when the measure is run def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables cost_daylight_glazing = runner.getDoubleArgumentValue('cost_daylight_glazing', user_arguments) cost_view_glazing = runner.getDoubleArgumentValue('cost_daylight_glazing', user_arguments) cost_skylight = runner.getDoubleArgumentValue('cost_skylight', user_arguments) cost_shading_surface = runner.getDoubleArgumentValue('cost_shading_surface', user_arguments) cost_light_shelf = runner.getDoubleArgumentValue('cost_light_shelf', user_arguments) # check arguments for reasonableness checkDoubleArguments = OsLib_HelperMethods.checkDoubleAndIntegerArguments(runner, user_arguments, 'min' => 0.0, 'max' => nil, 'min_eq_bool' => true, 'max_eq_bool' => true, 'arg_array' => ['cost_daylight_glazing', 'cost_view_glazing', 'cost_skylight', 'cost_shading_surface', 'cost_light_shelf']) if !checkDoubleArguments then return false end # get climate zone climateZoneNumber = OsLib_AedgMeasures.getClimateZoneNumber(model, runner) # add message if climate zone can't be found if climateZoneNumber == false return false end # setup rules view fenestration (from Chapter 4 and Table 5-3) viewFenestrationRules = [] # climate zone, framing material, Ufactor(ip), SHGC-N, SHGC-S, SHGC-EW, VT-NSEW, FFR-NS, FFR-EW, overhang-S viewFenestrationRules << ['1', 'NonmetalFraming', 0.56, 0.62, 0.25, 0.25, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['2', 'NonmetalFraming', 0.45, 0.62, 0.5, 0.25, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['3', 'NonmetalFraming', 0.41, 0.62, 0.75, 0.25, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['4', 'NonmetalFraming', 0.38, 0.62, 0.75, 0.4, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['5', 'NonmetalFraming', 0.35, 0.62, 0.75, 0.42, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['6', 'NonmetalFraming', 0.35, 0.62, 0.75, 0.42, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['7', 'NonmetalFraming', 0.33, 0.62, 0.75, 0.45, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['8', 'NonmetalFraming', 0.25, 0.62, 0.75, 0.45, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['1', 'MetalFraming', 0.65, 0.62, 0.25, 0.25, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['2', 'MetalFraming', 0.64, 0.62, 0.5, 0.25, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['3', 'MetalFraming', 0.6, 0.62, 0.75, 0.25, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['4', 'MetalFraming', 0.44, 0.62, 0.75, 0.4, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['5', 'MetalFraming', 0.44, 0.62, 0.75, 0.42, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['6', 'MetalFraming', 0.42, 0.62, 0.75, 0.42, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['7', 'MetalFraming', 0.34, 0.62, 0.75, 0.45, 0.3, 0.07, 0.05, 0.5] viewFenestrationRules << ['8', 'MetalFraming', 0.34, 0.62, 0.75, 0.45, 0.3, 0.07, 0.05, 0.5] # make rule hash for cleaner code viewFenestrationRulesHash = {} viewFenestrationRules.each do |rule| viewFenestrationRulesHash["#{rule[0]} #{rule[1]}"] = { 'uFactor' => rule[2], 'sHGC-N' => rule[3], 'sHGC-S' => rule[4], 'sHGC-EW' => rule[5], 'vT-NSEW' => rule[6], 'fFR-NS' => rule[7], 'fFR-EW' => rule[8], 'overhang-S' => rule[9] } end # setup rules daylighting fenestration and skylights (from Table 5-5) daylightFenestrationRules = [] # climate zone, Ufactor(ip), SHGC-NS, VT-NS,DFRmin, DFRmix (not sure if use min, max, or avg. U value and SHGC came from Table 3-30 of TSD) daylightFenestrationRules << ['1', 'LightShelf', 0.97, 0.58, 0.8, 0.06, 0.09] daylightFenestrationRules << ['2', 'LightShelf', 0.97, 0.58, 0.8, 0.06, 0.09] daylightFenestrationRules << ['3', 'LightShelf', 0.97, 0.58, 0.8, 0.07, 0.10] daylightFenestrationRules << ['4', 'LightShelf', 0.97, 0.58, 0.8, 0.07, 0.10] daylightFenestrationRules << ['5', 'LightShelf', 0.97, 0.58, 0.8, 0.07, 0.10] daylightFenestrationRules << ['6', 'LightShelf', 0.97, 0.58, 0.8, 0.08, 0.11] daylightFenestrationRules << ['7', 'LightShelf', 0.97, 0.58, 0.8, 0.10, 0.13] daylightFenestrationRules << ['8', 'LightShelf', 0.97, 0.58, 0.8, 0.10, 0.13] daylightFenestrationRules << ['1', 'NorthHigh', 0.97, 0.58, 0.8, 0.09, 0.12] daylightFenestrationRules << ['2', 'NorthHigh', 0.97, 0.58, 0.8, 0.09, 0.12] daylightFenestrationRules << ['3', 'NorthHigh', 0.97, 0.58, 0.8, 0.10, 0.13] daylightFenestrationRules << ['4', 'NorthHigh', 0.97, 0.58, 0.8, 0.10, 0.13] daylightFenestrationRules << ['5', 'NorthHigh', 0.97, 0.58, 0.8, 0.10, 0.13] daylightFenestrationRules << ['6', 'NorthHigh', 0.97, 0.58, 0.8, 0.11, 0.14] daylightFenestrationRules << ['7', 'NorthHigh', 0.97, 0.58, 0.8, 0.13, 0.16] daylightFenestrationRules << ['8', 'NorthHigh', 0.97, 0.58, 0.8, 0.13, 0.16] daylightFenestrationRules << ['1', 'Skylight', 0.97, 0.18, 0.2, 0.02, 0.05] # didn't find TSD or AEDG data on skylight SHGC. Made reasonable assumption daylightFenestrationRules << ['2', 'Skylight', 0.97, 0.18, 0.2, 0.02, 0.05] daylightFenestrationRules << ['3', 'Skylight', 0.97, 0.18, 0.2, 0.03, 0.05] daylightFenestrationRules << ['4', 'Skylight', 0.97, 0.18, 0.2, 0.03, 0.05] daylightFenestrationRules << ['5', 'Skylight', 0.97, 0.18, 0.2, 0.03, 0.05] daylightFenestrationRules << ['6', 'Skylight', 0.97, 0.18, 0.2, 0.04, 0.05] daylightFenestrationRules << ['7', 'Skylight', 0.97, 0.18, 0.2, 0.04, 0.05] daylightFenestrationRules << ['8', 'Skylight', 0.97, 0.18, 0.2, 0.04, 0.05] # make rule hash for cleaner code daylightFenestrationRulesHash = {} daylightFenestrationRules.each do |rule| daylightFenestrationRulesHash["#{rule[0]} #{rule[1]}"] = { 'uFactor' => rule[2], 'sHGC' => rule[3], 'vT' => rule[4], 'dFRmin' => rule[5], 'dFRmax' => rule[6] } end # misc variables (some could become user arguments) southRangeStart = 150.0 southRangeEnd = 210.0 northRangeStart = 330.0 northRangeEnd = 30.0 sill = OpenStudio.convert(2.5, 'ft', 'm').get header = OpenStudio.convert(1.0, 'ft', 'm').get shadingProjectionFactor = 0.5 lightShelfProjectionFactor = 1.0 skylightSize = OpenStudio.convert(6.0, 'ft', 'm').get daylightSensorHeight = OpenStudio.convert(3.0, 'ft', 'm').get daylightMinOppositeWallClearance = OpenStudio.convert(2.0, 'ft', 'm').get targetFcGeneralInstruction = OpenStudio.convert(40.0, 'fc', 'lux').get # range is 45-50 fc. There is lower 30-50 range for on the teaching wall viewWindowFramingType = 'MetalFraming' daylightingControlType = 'Continuous' expected_life = 25 years_until_costs_start = 0 uFactorIpToSiConversion = OpenStudio.convert(1.0, 'Btu/ft^2*h*R', 'W/m^2*K').get # create new constructions options = { 'constructionName' => 'AEDG-K12 View Glazing North', 'materialName' => 'AEDG-K12 View Glazing North-mat', 'uFactor' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['uFactor'] * uFactorIpToSiConversion, 'solarHeatGainCoef' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['sHGC-N'], 'visibleTransmittance' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['vT-NSEW'] } viewConstructionNorth = OsLib_Constructions.createConstructionWithSimpleGlazing(model, runner, options) options = { 'constructionName' => 'AEDG-K12 View Glazing South', 'materialName' => 'AEDG-K12 View Glazing South-mat', 'uFactor' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['uFactor'] * uFactorIpToSiConversion, 'solarHeatGainCoef' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['sHGC-S'], 'visibleTransmittance' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['vT-NSEW'] } viewConstructionSouth = OsLib_Constructions.createConstructionWithSimpleGlazing(model, runner, options) options = { 'constructionName' => 'AEDG-K12 View Glazing EastWest', 'materialName' => 'AEDG-K12 View Glazing EastWest-mat', 'uFactor' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['uFactor'] * uFactorIpToSiConversion, 'solarHeatGainCoef' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['sHGC-EW'], 'visibleTransmittance' => viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['vT-NSEW'] } viewConstructionEastWest = OsLib_Constructions.createConstructionWithSimpleGlazing(model, runner, options) options = { 'constructionName' => 'AEDG-K12 Daylight Glazing South', 'materialName' => 'AEDG-K12 Daylight Glazing South-mat', 'uFactor' => daylightFenestrationRulesHash["#{climateZoneNumber} LightShelf"]['uFactor'] * uFactorIpToSiConversion, 'solarHeatGainCoef' => daylightFenestrationRulesHash["#{climateZoneNumber} LightShelf"]['sHGC'], 'visibleTransmittance' => daylightFenestrationRulesHash["#{climateZoneNumber} LightShelf"]['vT'] } daylightConstructionSouth = OsLib_Constructions.createConstructionWithSimpleGlazing(model, runner, options) options = { 'constructionName' => 'AEDG-K12 Daylight Glazing North', 'materialName' => 'AEDG-K12 Daylight Glazing North-mat', 'uFactor' => daylightFenestrationRulesHash["#{climateZoneNumber} NorthHigh"]['uFactor'] * uFactorIpToSiConversion, 'solarHeatGainCoef' => daylightFenestrationRulesHash["#{climateZoneNumber} NorthHigh"]['sHGC'], 'visibleTransmittance' => daylightFenestrationRulesHash["#{climateZoneNumber} NorthHigh"]['vT'] } daylightConstructionNorth = OsLib_Constructions.createConstructionWithSimpleGlazing(model, runner, options) # TODO: - in future release update skylight to use windowsMaterial:Glazing with solar diffusing set to "on" instead of windowsMaterialSimpleGlazingSystem options = { 'constructionName' => 'AEDG-K12 Skylight', 'materialName' => 'AEDG-K12 Daylight Skylight-mat', 'uFactor' => daylightFenestrationRulesHash["#{climateZoneNumber} Skylight"]['uFactor'] * uFactorIpToSiConversion, 'solarHeatGainCoef' => daylightFenestrationRulesHash["#{climateZoneNumber} Skylight"]['sHGC'], 'visibleTransmittance' => daylightFenestrationRulesHash["#{climateZoneNumber} Skylight"]['vT'] } skylightConstruction = OsLib_Constructions.createConstructionWithSimpleGlazing(model, runner, options) # light shelf construction lightShelfMaterial = OpenStudio::Model::StandardOpaqueMaterial.new(model) lightShelfMaterial.setName('AEDG-K12 LightShelf-mat') lightShelfMaterial.setThermalAbsorptance(0.4) lightShelfMaterial.setSolarAbsorptance(0.4) lightShelfMaterial.setVisibleAbsorptance(0.3) lightShelfMaterial.setRoughness('MediumSmooth') lightShelfMaterial.setSpecificHeat(100.0) lightShelfConstruction = OpenStudio::Model::Construction.new(model) lightShelfConstruction.setName('AEDG-K12 LightShelf') lightShelfConstruction.insertLayer(0, lightShelfMaterial) runner.registerInfo("Created #{lightShelfConstruction.name} construction for light shelves. Visible absorptance is #{lightShelfMaterial.visibleAbsorptance}.") # exterior shading surface construction exteriorShadeMaterial = OpenStudio::Model::StandardOpaqueMaterial.new(model) exteriorShadeMaterial.setName('AEDG-K12 ExteriorShade-mat') exteriorShadeMaterial.setSpecificHeat(100.0) exteriorShadeConstruction = OpenStudio::Model::Construction.new(model) exteriorShadeConstruction.setName('AEDG-K12 ExteriorShade') exteriorShadeConstruction.insertLayer(0, exteriorShadeMaterial) runner.registerInfo("Created #{exteriorShadeConstruction.name} construction for exterior shading surfaces.") # add cost to new constructions lcc_mat_view_north = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat - #{viewConstructionNorth.name}", viewConstructionNorth, OpenStudio.convert(cost_view_glazing, 'ft^2', 'm^2').get, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) lcc_mat_view_south = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat - #{viewConstructionSouth.name}", viewConstructionSouth, OpenStudio.convert(cost_view_glazing, 'ft^2', 'm^2').get, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) lcc_mat_view_eastWest = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat - #{viewConstructionEastWest.name}", viewConstructionEastWest, OpenStudio.convert(cost_view_glazing, 'ft^2', 'm^2').get, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) lcc_mat_daylight_glazing_north = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat - #{daylightConstructionNorth.name}", daylightConstructionNorth, OpenStudio.convert(cost_daylight_glazing, 'ft^2', 'm^2').get, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) lcc_mat_daylight_glazing_south = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat - #{daylightConstructionSouth.name}", daylightConstructionSouth, OpenStudio.convert(cost_daylight_glazing, 'ft^2', 'm^2').get, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) lcc_mat_skylight = OpenStudio::Model::LifeCycleCost.createLifeCycleCost("LCC_Mat - #{skylightConstruction.name}", skylightConstruction, OpenStudio.convert(cost_skylight, 'ft^2', 'm^2').get, 'CostPerArea', 'Construction', expected_life, years_until_costs_start) # create blind material shadingMaterial = OpenStudio::Model::Blind.new(model) # create shading control object shadingControl = OpenStudio::Model::ShadingControl.new(shadingMaterial) runner.registerInfo('Adding shading control object to connect to east and west view windows.') # array of space standards types for various daylighting conditions daylightingPerimeterOnly = ['Office'] # 15' (not currently using this for anything) daylightingCandidate = ['Auditorium', 'Cafeteria', 'Classroom', 'Corridor', 'Gym', 'Kitchen', 'Library', 'Lobby', 'Office', 'Restroom'] # only "Mechanical" is excluded viewGlazingCandidate = ['Auditorium', 'Cafeteria', 'Classroom', 'Corridor', 'Gym', 'Library', 'Lobby', 'Office'] # only "Mechanical","Kitchen","Restroom" are excluded # originally I listed only space not to receive view and daylighting windows, but reversed it to address attics and plenums. I could change it back to this approach, but then only add fenestration to surfaces that are part of the building area. topLightingCandidate = ['Gym', 'Library', 'Cafeteria'] topLightingIfNoSideLighting = ['Lobby', 'Corridor', 'Classroom', 'Office'] # not currently using this # get window to wall ratio for initial condition initialGrossWWR = OsLib_Geometry.getExteriorWindowToWallRatio(model.getSpaces) spacesPartOfFloorArea = [] model.getSpaces.each do |space| if space.partofTotalFloorArea spacesPartOfFloorArea << space end end initialNetWWR = OsLib_Geometry.getExteriorWindowToWallRatio(spacesPartOfFloorArea) # store original cost of construction objects for use in final condition. initialEnvelopeCost = OsLib_Constructions.getTotalCostOfSelectedConstructions(model.getConstructions) # initial condition of model if spacesPartOfFloorArea.size < model.getSpaces.size runner.registerInitialCondition("The building started with a gross window to wall ratio of #{OpenStudio.toNeatString(initialGrossWWR, 2, true)}, and a net window to wall ratio (including only spaces counted in building area) of #{OpenStudio.toNeatString(initialNetWWR, 2, true)}.") else runner.registerInitialCondition("The building started with a window to wall ratio of #{OpenStudio.toNeatString(initialGrossWWR, 2, true)}.") end # remove all fenestration in the model except for opaque doors runner.registerInfo('Removing existing translucent exterior surfaces.') model.getSubSurfaces.each do |subSurface| unless (subSurface.subSurfaceType == 'Door') || (subSurface.subSurfaceType == 'OverheadDoor') next if subSurface.outsideBoundaryCondition != 'Outdoors' # don't need to mess with interior fenestration subSurface.remove end end # remove existing daylight control objects if !model.getDaylightingControls.empty? runner.registerInfo("Removing #{model.getDaylightingControls.size} existing daylight control objects.") model.getDaylightingControls.each(&:remove) end # split doors to their own base surfaces model.getSurfaces.each do |surface| subSurfaces = surface.splitSurfaceForSubSurfaces end # put cap on wwr to prevent odd windows at deep spaces with little exterior exposure. wwrCapValue = 0.45 wwrCapFlag = 0 # info messages runner.registerInfo('Adding new fenestration.') runner.registerInfo('Adding new daylighting control objects.') # loop through spaces adding appropriate fenestration # this will contain a sub loop through surfaces. in that sub loop test for non full height walls, add only daylight windows there. model.getThermalZones.each do |thermalZone| # hash of spaces with data necessary to place daylighting control points and to. [floor area, north exterior wall area, south exterior wall area, north daylight wwr, south daylight wwr, skylight ratio] zoneSpacesHash = {} thermalZone.spaces.each do |space| # create array of z values for floor floorArray = [] space.surfaces.each do |surface| next unless surface.surfaceType == 'Floor' floorArray << surface end # run helper method to get array of z values for floors floorSurfacesZValueArray = OsLib_Geometry.getSurfaceZValues(floorArray) # create array of z values for floor ceilingArray = [] space.surfaces.each do |surface| next unless surface.surfaceType == 'RoofCeiling' ceilingArray << surface end # run helper method to get array of z values for ceilings ceilingSurfacesZValueArray = OsLib_Geometry.getSurfaceZValues(ceilingArray) # misc space counters and floorArea = space.floorArea exteriorWallAreaEW = 0 # exterior walls that only get view windows exteriorWallAreaNSView = 0 # exterior walls view only exteriorWallAreaNDaylight = 0 # exterior walls that receive daylighting exteriorWallAreaSDaylight = 0 # exterior walls that receive daylighting # flag for skylights addSkylights = false # first of two loops through space surfaces. This one is just to get floor and north or south exterior wall area. space.surfaces.each do |surface| # stop of not exterior wall next if surface.surfaceType != 'Wall' next if surface.outsideBoundaryCondition != 'Outdoors' # get the absoluteAzimuth for the surface so we can categorize it absoluteAzimuth = OpenStudio.convert(surface.azimuth, 'rad', 'deg').get + surface.space.get.directionofRelativeNorth + model.getBuilding.northAxis absoluteAzimuth -= 360.0 until absoluteAzimuth < 360.0 # flag to see if surface not to ground surfaceToFloor = false surfaceToCeiling = false # check if surface goes to floor or ceiling (if false then don't add view windows) minSurfaceZValue = OsLib_Geometry.getSurfaceZValues([surface]).sort.first # this expects an array of surfaces if floorSurfacesZValueArray.include? minSurfaceZValue # not sure if will hit rounding issue surfaceToFloor = true end maxSurfaceZValue = OsLib_Geometry.getSurfaceZValues([surface]).sort.last # this expects an array of surfaces if ceilingSurfacesZValueArray.include? maxSurfaceZValue # not sure if will hit rounding issue surfaceToCeiling = true end # add to exterior wall counter if north or south if (northRangeEnd < absoluteAzimuth) && (absoluteAzimuth < southRangeStart) # East exterior walls if surfaceToFloor then exteriorWallAreaEW += surface.grossArea end elsif (southRangeStart <= absoluteAzimuth) && (absoluteAzimuth <= southRangeEnd) # South exterior walls if surfaceToFloor then exteriorWallAreaNSView += surface.grossArea end if surfaceToCeiling then exteriorWallAreaSDaylight += surface.grossArea end elsif (southRangeEnd < absoluteAzimuth) && (absoluteAzimuth < northRangeStart) # West exterior walls if surfaceToFloor then exteriorWallAreaEW += surface.grossArea end else # North exterior walls if surfaceToFloor then exteriorWallAreaNSView += surface.grossArea end if surfaceToCeiling then exteriorWallAreaNDaylight += surface.grossArea end end end # get ffr and dfr values from rules ffrNS = viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['fFR-NS'] ffrEW = viewFenestrationRulesHash["#{climateZoneNumber} #{viewWindowFramingType}"]['fFR-EW'] dfrNorth = (daylightFenestrationRulesHash["#{climateZoneNumber} NorthHigh"]['dFRmin'] * 0.5 + daylightFenestrationRulesHash["#{climateZoneNumber} NorthHigh"]['dFRmax'] * 0.5) dfrSouth = (daylightFenestrationRulesHash["#{climateZoneNumber} LightShelf"]['dFRmin'] * 0.5 + daylightFenestrationRulesHash["#{climateZoneNumber} LightShelf"]['dFRmax'] * 0.5) # add north and south dayilght areas together exteriorWallAreaNSDaylight = exteriorWallAreaNDaylight + exteriorWallAreaSDaylight # calculate target WWR rations needed to meet rules for FFR and DFR from rules exteriorWallAreaEW > 0.0 ? (viewWwrEW = floorArea * ffrNS / exteriorWallAreaEW) : (viewWwrEW = 0.0) exteriorWallAreaNSView > 0.0 ? (viewWwrNS = floorArea * ffrEW / exteriorWallAreaNSView) : (viewWwrNS = 0.0) exteriorWallAreaNSDaylight > 0.0 ? (daylightWwrN = floorArea * dfrNorth / exteriorWallAreaNSDaylight) : (daylightWwrN = 0.0) exteriorWallAreaNSDaylight > 0.0 ? (daylightWwrS = floorArea * dfrSouth / exteriorWallAreaNSDaylight) : (daylightWwrS = 0.0) if (exteriorWallAreaNSView == 0.0) && (exteriorWallAreaEW > 0.0) # only add east and west view windows when no south or north options exist if viewWwrEW > wwrCapValue viewWwrEW = wwrCapValue wwrCapFlag += 1 end else viewWwrEW = 0.0 end if viewWwrNS > wwrCapValue viewWwrNS = wwrCapValue wwrCapFlag += 1 end if daylightWwrN > wwrCapValue daylightWwrN = wwrCapValue wwrCapFlag += 1 end if daylightWwrS > wwrCapValue daylightWwrS = wwrCapValue wwrCapFlag += 1 end # get standards space type if space.spaceType.empty? || space.spaceType.get.standardsSpaceType.empty? standardsSpaceType = nil else standardsSpaceType = space.spaceType.get.standardsSpaceType.get end # hash to hold daylight windows for use in placing sensor daylightNorthHash = {} daylightSouthHash = {} # second loop through surfaces to create fenestration space.surfaces.each do |surface| # only care about exterior surfaces next if surface.outsideBoundaryCondition != 'Outdoors' if surface.surfaceType == 'Wall' # flag to see if surface not to ground surfaceToFloor = false surfaceToCeiling = false # check if surface goes to floor or ceiling (if false then don't add view windows) minSurfaceZValue = OsLib_Geometry.getSurfaceZValues([surface]).sort.first # this expects an array of surfaces if floorSurfacesZValueArray.include? minSurfaceZValue # not sure if will hit rounding issue surfaceToFloor = true end maxSurfaceZValue = OsLib_Geometry.getSurfaceZValues([surface]).sort.last # this expects an array of surfaces if ceilingSurfacesZValueArray.include? maxSurfaceZValue # not sure if will hit rounding issue surfaceToCeiling = true end # don't add any windows if this surface doesn't touch floor or ceiling # next if surfaceToFloor == false and surfaceToCeiling == false # get the absoluteAzimuth for the surface so we can categorize it absoluteAzimuth = OpenStudio.convert(surface.azimuth, 'rad', 'deg').get + surface.space.get.directionofRelativeNorth + model.getBuilding.northAxis # flags to add view or daylight glazing. This is affected by the space type or the surface properties addViewGlazing = true addDaylightGlazing = true # geometry based tests if surfaceToFloor == false addViewGlazing = false end if surfaceToCeiling == false addDaylightGlazing = false end # space type tests if !daylightingCandidate.include? standardsSpaceType addDaylightGlazing = false end if !viewGlazingCandidate.include? standardsSpaceType addViewGlazing = false end # adjust method variables based on flags if addViewGlazing == false viewWwrEW_s = 0.0 viewWwrNS_s = 0.0 else viewWwrEW_s = viewWwrEW viewWwrNS_s = viewWwrNS end if addDaylightGlazing == false daylightWwrS_s = 0.0 daylightWwrN_s = 0.0 else daylightWwrS_s = daylightWwrS daylightWwrN_s = daylightWwrN end # see if surface has any subSurfaces. this is to eliminate warning on surface with door, as those have been split and a window isn't expected noDoorInSurface = true if !surface.subSurfaces.empty? then noDoorInSurface = false end # apply wwr based on surface orientation category and other inputs # applyViewAndDaylightingGlassRatios(viewGlassToWallRatio,daylightingGlassToWallRatio,desiredViewGlassSillHeight,desiredDaylightingGlassHeaderHeight,exteriorShadingProjectionFactor,interiorShelfProjectionFactor,viewGlassConstruction,daylightingGlassConstruction) if (northRangeEnd < absoluteAzimuth) && (absoluteAzimuth < southRangeStart) # East exterior walls vector = surface.applyViewAndDaylightingGlassRatios(viewWwrEW_s, 0.0, sill, header, 0.0, 0.0, viewConstructionEastWest.to_ConstructionBase, OpenStudio::Model::OptionalConstructionBase.new) # use OpenStudio::Model::OptionalConstructionBase.new when you don't want to pass in a construction if !vector[0].nil? vector[0].setShadingControl(shadingControl) elsif (viewWwrEW_s > 0) && noDoorInSurface runner.registerWarning("The requested view window to wall ratio of #{OpenStudio.toNeatString(viewWwrEW_s, 2, true)} could not be set for #{surface.name}.") end elsif (southRangeStart <= absoluteAzimuth) && (absoluteAzimuth <= southRangeEnd) # South exterior walls vector = surface.applyViewAndDaylightingGlassRatios(viewWwrNS_s, daylightWwrS_s, sill, header, shadingProjectionFactor, lightShelfProjectionFactor, viewConstructionSouth.to_ConstructionBase, daylightConstructionSouth.to_ConstructionBase) if vector[0].nil? && noDoorInSurface && ((viewWwrNS_s > 0) || (daylightWwrS_s > 0)) runner.registerWarning("The requested view and daylight window to wall ratio of #{OpenStudio.toNeatString(viewWwrNS_s, 2, true)} and #{OpenStudio.toNeatString(daylightWwrS_s, 2, true)} could not be set for #{surface.name}.") end vector.each do |subSurface| if subSurface.construction.get == viewConstructionSouth subSurface.shadingSurfaceGroups[0].shadingSurfaces[0].setConstruction(exteriorShadeConstruction) # setting shading surface construction elsif subSurface.construction.get == daylightConstructionSouth subSurface.daylightingDeviceShelf.get.insideShelf.get.setConstruction(lightShelfConstruction) # setting light shelf construction daylightSouthHash[vector.last] = vector.last.grossArea # push the daylight window to array for use later on end end elsif (southRangeEnd < absoluteAzimuth) && (absoluteAzimuth < northRangeStart) # West exterior walls vector = surface.applyViewAndDaylightingGlassRatios(viewWwrEW_s, 0.0, sill, header, 0.0, 0.0, viewConstructionEastWest.to_ConstructionBase, OpenStudio::Model::OptionalConstructionBase.new) # use OpenStudio::Model::OptionalConstructionBase.new when you don't want to pass in a construction if !vector[0].nil? vector[0].setShadingControl(shadingControl) elsif (viewWwrEW_s > 0) && noDoorInSurface runner.registerWarning("The requested view window to wall ratio of #{OpenStudio.toNeatString(viewWwrEW_s, 2, true)} could not be set for #{surface.name}.") end else # North exterior walls vector = surface.applyViewAndDaylightingGlassRatios(viewWwrNS_s, daylightWwrN_s, sill, header, 0.0, 0.0, viewConstructionNorth.to_ConstructionBase, daylightConstructionNorth.to_ConstructionBase) if vector[0].nil? && noDoorInSurface && ((viewWwrNS_s > 0) || (daylightWwrS_s > 0)) runner.registerWarning("The requested view and daylight window to wall ratio of #{OpenStudio.toNeatString(viewWwrNS_s, 2, true)} and #{OpenStudio.toNeatString(daylightWwrS_s, 2, true)} could not be set for #{surface.name}.") end vector.each do |subSurface| if subSurface.construction.get == daylightConstructionNorth daylightNorthHash[vector.last] = vector.last.grossArea # push the daylight window to array for use later on end end end elsif surface.surfaceType == 'RoofCeiling' # check for topLightingCandidate and topLightingIfNoSideLighting if topLightingCandidate.include? standardsSpaceType addSkylights = true end if topLightingIfNoSideLighting.include?(standardsSpaceType) && (exteriorWallAreaNSDaylight == 0) # (if this is uncommented it will add skylights to some other spaces if they don't have other daylighting windows) # addSkylights = true end end end # add skylights if required if addSkylights # making vector to create pattern spaces = OpenStudio::Model::SpaceVector.new spaces << space # making pattern # TODO: - in the future only want pattern to cover section of space not included in side lighting daylit area ratio = daylightFenestrationRulesHash["#{climateZoneNumber} Skylight"]['dFRmin'] pattern = OpenStudio::Model.generateSkylightPattern(spaces, spaces[0].directionofRelativeNorth, ratio, skylightSize, skylightSize) # ratio, x value, y value # applying skylight pattern skylights = OpenStudio::Model.applySkylightPattern(pattern, spaces, OpenStudio::Model::OptionalConstructionBase.new) runner.registerInfo("Adding #{skylights.size} skylights to #{space.name}") # create construction set for space if it doesn't exist, and add skylight construction. defaultSubSurfaceConstructions = OpenStudio::Model::DefaultSubSurfaceConstructions.new(model) defaultSubSurfaceConstructions.setSkylightConstruction(skylightConstruction) if space.defaultConstructionSet.empty? defaultConstructionSet = OpenStudio::Model::DefaultConstructionSet.new(model) defaultConstructionSet.setDefaultExteriorSubSurfaceConstructions(defaultSubSurfaceConstructions) space.setDefaultConstructionSet(defaultConstructionSet) else defaultConstructionSet = space.defaultConstructionSet.get defaultConstructionSet.setDefaultExteriorSubSurfaceConstructions(defaultSubSurfaceConstructions) end end # dont' add to hash if no daylighting in space next if (addSkylights == false) && (exteriorWallAreaNDaylight == 0) && (exteriorWallAreaSDaylight == 0) # go back and get north and south interior walls for spaces that also have exterior walls with daylight windows # this is specifically to address internal clerestory spaces like hallways space.surfaces.each do |surface| next if surface.surfaceType != 'Wall' next if surface.outsideBoundaryCondition == 'Outdoors' # these have already been counted # get the absoluteAzimuth for the surface so we can categorize it absoluteAzimuth = OpenStudio.convert(surface.azimuth, 'rad', 'deg').get + surface.space.get.directionofRelativeNorth + model.getBuilding.northAxis absoluteAzimuth -= 360.0 until absoluteAzimuth < 360.0 # add to proper are if necessary if (northRangeEnd < absoluteAzimuth) && (absoluteAzimuth < southRangeStart) # East exterior walls # do nothing elsif (southRangeStart <= absoluteAzimuth) && (absoluteAzimuth <= southRangeEnd) # South exterior walls if exteriorWallAreaSDaylight > 0 # only add interior surfaces if the starting value is greater than 0 exteriorWallAreaSDaylight += surface.grossArea end elsif (southRangeEnd < absoluteAzimuth) && (absoluteAzimuth < northRangeStart) # West exterior walls # do nothing else # North exterior walls if exteriorWallAreaNDaylight > 0 # only add interior surfaces if the starting value is greater than 0 exteriorWallAreaNDaylight += surface.grossArea end end end # populate space hash, and then spaceHash = {} spaceHash['floorArea'] = floorArea spaceHash['exteriorWallAreaNDaylight'] = exteriorWallAreaNDaylight spaceHash['exteriorWallAreaSDaylight'] = exteriorWallAreaSDaylight spaceHash['skylight'] = addSkylights # bool for this space if skylights should be added. Is only true if right space and if there is exterior roof spaceHash['thermalZone'] = space.thermalZone.get # thermal zone not nil, because spaces are in a loop of thermal zones spaceHash['lightingPower'] = space.lightingPower # (W) not sure if it has luminaires, but I would expect it would spaceHash['daylightNorthHash'] = daylightNorthHash spaceHash['daylightSouthHash'] = daylightSouthHash spaceHash['spaceHeight'] = ceilingSurfacesZValueArray.max - floorSurfacesZValueArray.min # add spaceHash to zoneSpacesHash with space object as key zoneSpacesHash[space] = spaceHash end zoneFloorArea = 0 zoneDaylightWallArea = 0 zoneSpaceDaylightFractionHash = {} zoneSkylightHash = {} # loop through space hash zoneSpacesHash.each do |space, hash| # populate sensor method default hash defaults = { 'name' => "#{space.name} sensor", 'space' => space, 'position' => nil, 'phiRotationAroundZAxis' => nil, 'illuminanceSetpoint' => targetFcGeneralInstruction, 'lightingControlType' => '1', # 1 = Continuous 'minInputPowerFractionContinuous' => nil, 'minOutputPowerFractionContinuous' => nil } # calculate sensor position if hash['skylight'] # find center of space and add sensor position = OsLib_Geometry.createPointAtCenterOfFloor(model, space, daylightSensorHeight) # customize default sensor values as needed options = defaults options['position'] = position # add sensor if !position.nil? pri_light_sensor = OsLib_LightingAndEquipment.addDaylightSensor(model, options) else runner.registerWarning("Couldn't find good Sensor Location for #{space.name}. Did not add daylight sensor.") end else # grab a floor surface to use in createPointInFromSubSurfaceAtSpecifiedHeight. (doesn't address sloped or stepped floor) referenceFloor = nil space.surfaces.each do |surface| if surface.surfaceType == 'Floor' referenceFloor = surface # just grabbing the first floor I find. Just want it to use as a plane. end end # add sensor for largest south window if it exists if !hash['daylightSouthHash'].empty? referenceWindow = hash['daylightSouthHash'].sort_by { |a| a[1] }.last # check for spaces taller than wide and adjust inputs as necessary estimatedRoomLength = hash['exteriorWallAreaSDaylight'] / hash['spaceHeight'] estimatedRoomWidth = hash['floorArea'] / estimatedRoomLength if hash['spaceHeight'] > estimatedRoomWidth distanceFromWindow = estimatedRoomWidth - daylightMinOppositeWallClearance else if hash['spaceHeight'] < estimatedRoomWidth - daylightMinOppositeWallClearance distanceFromWindow = hash['spaceHeight'] else distanceFromWindow = estimatedRoomWidth - daylightMinOppositeWallClearance end end position = OsLib_Geometry.createPointInFromSubSurfaceAtSpecifiedHeight(model, referenceWindow[0], referenceFloor, distanceFromWindow, daylightSensorHeight) # customize default sensor values as needed options = defaults options['position'] = position options['phiRotationAroundZAxis'] = OpenStudio.convert(referenceWindow[0].azimuth, 'rad', 'deg').get # add sensor if !position.nil? pri_light_sensor = OsLib_LightingAndEquipment.addDaylightSensor(model, options) else runner.registerWarning("Couldn't find good Sensor Location for #{space.name}. Did not add daylight sensor.") end end # add sensor for largest north window if it exists if !hash['daylightNorthHash'].empty? referenceWindow = hash['daylightNorthHash'].sort_by { |a| a[1] }.last # check for spaces taller than wide and adjust inputs as necessary estimatedRoomLength = hash['exteriorWallAreaNDaylight'] / hash['spaceHeight'] estimatedRoomWidth = hash['floorArea'] / estimatedRoomLength if hash['spaceHeight'] > estimatedRoomWidth distanceFromWindow = estimatedRoomWidth - daylightMinOppositeWallClearance else if hash['spaceHeight'] < estimatedRoomWidth - daylightMinOppositeWallClearance distanceFromWindow = hash['spaceHeight'] else distanceFromWindow = estimatedRoomWidth - daylightMinOppositeWallClearance end end position = OsLib_Geometry.createPointInFromSubSurfaceAtSpecifiedHeight(model, referenceWindow[0], referenceFloor, distanceFromWindow, daylightSensorHeight) # customize default sensor values as needed options = defaults options['position'] = position options['phiRotationAroundZAxis'] = OpenStudio.convert(referenceWindow[0].azimuth, 'rad', 'deg').get # add sensor if !position.nil? pri_light_sensor = OsLib_LightingAndEquipment.addDaylightSensor(model, options) else runner.registerWarning("Couldn't find good Sensor Location for #{space.name}. Did not add daylight sensor.") end end end # update floor area and wall area numbers zoneFloorArea += hash['floorArea'] if hash['skylight'] zoneDaylightWallArea_space = hash['floorArea'] # if the space has skylights then included the full floor area in daylit area else if hash['exteriorWallAreaNDaylight'] + hash['exteriorWallAreaSDaylight'] < hash['floorArea'] zoneDaylightWallArea_space = hash['exteriorWallAreaNDaylight'] + hash['exteriorWallAreaSDaylight'] else zoneDaylightWallArea_space = hash['floorArea'] # don't add more than floor area. This would occur on small room with tall wall, or with both north and south exposure end end # add space zone wall area to zone counter zoneDaylightWallArea += zoneDaylightWallArea_space # push each spaces fraction daylight to hash. This is to look for outliers. May also want to check for mixed side and top lighting zoneSpaceDaylightFractionHash[space] = zoneDaylightWallArea_space / hash['floorArea'] zoneSkylightHash[space] = hash['skylight'] end # identify which space to hook sensors to zone from maxLightingPower = 0 spaceToHookToZone = nil zoneSpacesHash.each do |space, hash| if maxLightingPower < hash['lightingPower'] maxLightingPower = hash['lightingPower'] spaceToHookToZone = space end end if !spaceToHookToZone.nil? # get fractional value zoneDaylightFraction = zoneDaylightWallArea / zoneFloorArea # connect daylighting controls if spaceToHookToZone.daylightingControls.size > 1 thermalZone.setPrimaryDaylightingControl(spaceToHookToZone.daylightingControls[0]) thermalZone.setSecondaryDaylightingControl(spaceToHookToZone.daylightingControls[1]) thermalZone.setFractionofZoneControlledbyPrimaryDaylightingControl(0.5 * zoneDaylightFraction) thermalZone.setFractionofZoneControlledbySecondaryDaylightingControl(0.5 * zoneDaylightFraction) elsif !spaceToHookToZone.daylightingControls.empty? thermalZone.setPrimaryDaylightingControl(spaceToHookToZone.daylightingControls[0]) thermalZone.setFractionofZoneControlledbyPrimaryDaylightingControl(zoneDaylightFraction) end end end # issue a info if cap has to be set manually above if wwrCapFlag > 0 runner.registerInfo("#{wwrCapFlag} surfaces had the window to wall ratio capped at #{wwrCapValue}. This may be due to a deep space or a space with limited exterior exposure.") end # warn user if any spaces were not in thermal zones. Those spaces are not looked at by this measure. orphanSpaces = false model.getSpaces.each do |space| if space.thermalZone.empty? runner.registerInfo('One or more spaces in the model are not associated with thermal zones. Existing translucent exterior fenestration was removed, but no new fenestration was added. Note that untill you add these spaces to thermal zones they will not be part of the simulation and may create boundary condition issues in adjacent spaces.') orphanSpaces == true break end end # populate AEDG tip keys aedgTips = [] # envelope tips aedgTips.push('EN24', 'EN25', 'EN26', 'EN27', 'EN28', 'EN29', 'EN30') # batch push daylighting tips 1 through 42 counter = 1 until counter == 43 if counter < 10 aedgTips.push("DL0#{counter}") else aedgTips.push("DL#{counter}") end counter += 1 end # populate how to tip messages aedgTipsLong = OsLib_AedgMeasures.getLongHowToTips('K12', aedgTips.uniq, runner) # removed sort, which was used in other AEDG measures if !aedgTipsLong return false # this should only happen if measure writer passes bad values to getLongHowToTips end # get window to wall ratio for initial condition finalGrossWWR = OsLib_Geometry.getExteriorWindowToWallRatio(model.getSpaces) finalNetWWR = OsLib_Geometry.getExteriorWindowToWallRatio(spacesPartOfFloorArea) # store original cost of construction objects for use in final condition. finalEnvelopeCost = OsLib_Constructions.getTotalCostOfSelectedConstructions(model.getConstructions) # reporting final condition of model if spacesPartOfFloorArea.size < model.getSpaces.size runner.registerFinalCondition("The building has a final gross window to wall ratio of #{OpenStudio.toNeatString(finalGrossWWR, 2, true)} and a final net window to wall ratio of #{OpenStudio.toNeatString(finalNetWWR, 2, true)}. Cost increase due to this measure is $#{OpenStudio.toNeatString(finalEnvelopeCost - initialEnvelopeCost, 0, true)}. #{aedgTipsLong}") else runner.registerFinalCondition("The building has a final window to wall ratio of #{OpenStudio.toNeatString(finalGrossWWR, 2, true)}. Cost increase due to this measure is $#{OpenStudio.toNeatString(finalEnvelopeCost - initialEnvelopeCost, 0, true)}. #{aedgTipsLong}") end return true end end # this allows the measure to be use by the application AedgK12FenestrationAndDaylightingControls.new.registerWithApplication