//! A frontend for building Cranelift IR from other languages. use crate::ssa::{SSABuilder, SideEffects}; use crate::variable::Variable; use alloc::vec::Vec; use core::fmt::{self, Debug}; use cranelift_codegen::cursor::{Cursor, CursorPosition, FuncCursor}; use cranelift_codegen::entity::{EntityRef, EntitySet, SecondaryMap}; use cranelift_codegen::ir; use cranelift_codegen::ir::condcodes::IntCC; use cranelift_codegen::ir::{ types, AbiParam, Block, DataFlowGraph, DynamicStackSlot, DynamicStackSlotData, ExtFuncData, ExternalName, FuncRef, Function, GlobalValue, GlobalValueData, Inst, InstBuilder, InstBuilderBase, InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, RelSourceLoc, SigRef, Signature, StackSlot, StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments, ValueLabelStart, }; use cranelift_codegen::isa::TargetFrontendConfig; use cranelift_codegen::packed_option::PackedOption; use cranelift_codegen::traversals::Dfs; use smallvec::SmallVec; mod safepoints; /// Structure used for translating a series of functions into Cranelift IR. /// /// In order to reduce memory reallocations when compiling multiple functions, /// [`FunctionBuilderContext`] holds various data structures which are cleared between /// functions, rather than dropped, preserving the underlying allocations. #[derive(Default)] pub struct FunctionBuilderContext { ssa: SSABuilder, status: SecondaryMap, types: SecondaryMap, stack_map_vars: EntitySet, stack_map_values: EntitySet, safepoints: safepoints::SafepointSpiller, } /// Temporary object used to build a single Cranelift IR [`Function`]. pub struct FunctionBuilder<'a> { /// The function currently being built. /// This field is public so the function can be re-borrowed. pub func: &'a mut Function, /// Source location to assign to all new instructions. srcloc: ir::SourceLoc, func_ctx: &'a mut FunctionBuilderContext, position: PackedOption, } #[derive(Clone, Default, Eq, PartialEq)] enum BlockStatus { /// No instructions have been added. #[default] Empty, /// Some instructions have been added, but no terminator. Partial, /// A terminator has been added; no further instructions may be added. Filled, } impl FunctionBuilderContext { /// Creates a [`FunctionBuilderContext`] structure. The structure is automatically cleared after /// each [`FunctionBuilder`] completes translating a function. pub fn new() -> Self { Self::default() } fn clear(&mut self) { let FunctionBuilderContext { ssa, status, types, stack_map_vars, stack_map_values, safepoints, } = self; ssa.clear(); status.clear(); types.clear(); stack_map_values.clear(); stack_map_vars.clear(); safepoints.clear(); } fn is_empty(&self) -> bool { self.ssa.is_empty() && self.status.is_empty() && self.types.is_empty() } } /// Implementation of the [`InstBuilder`] that has /// one convenience method per Cranelift IR instruction. pub struct FuncInstBuilder<'short, 'long: 'short> { builder: &'short mut FunctionBuilder<'long>, block: Block, } impl<'short, 'long> FuncInstBuilder<'short, 'long> { fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self { Self { builder, block } } } impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> { fn data_flow_graph(&self) -> &DataFlowGraph { &self.builder.func.dfg } fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph { &mut self.builder.func.dfg } // This implementation is richer than `InsertBuilder` because we use the data of the // instruction being inserted to add related info to the DFG and the SSA building system, // and perform debug sanity checks. fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) { // We only insert the Block in the layout when an instruction is added to it self.builder.ensure_inserted_block(); let inst = self.builder.func.dfg.make_inst(data); self.builder.func.dfg.make_inst_results(inst, ctrl_typevar); self.builder.func.layout.append_inst(inst, self.block); if !self.builder.srcloc.is_default() { self.builder.func.set_srcloc(inst, self.builder.srcloc); } match &self.builder.func.dfg.insts[inst] { ir::InstructionData::Jump { destination: dest, .. } => { // If the user has supplied jump arguments we must adapt the arguments of // the destination block let block = dest.block(&self.builder.func.dfg.value_lists); self.builder.declare_successor(block, inst); } ir::InstructionData::Brif { blocks: [branch_then, branch_else], .. } => { let block_then = branch_then.block(&self.builder.func.dfg.value_lists); let block_else = branch_else.block(&self.builder.func.dfg.value_lists); self.builder.declare_successor(block_then, inst); if block_then != block_else { self.builder.declare_successor(block_else, inst); } } ir::InstructionData::BranchTable { table, .. } => { let pool = &self.builder.func.dfg.value_lists; // Unlike all other jumps/branches, jump tables are // capable of having the same successor appear // multiple times, so we must deduplicate. let mut unique = EntitySet::::new(); for dest_block in self .builder .func .stencil .dfg .jump_tables .get(*table) .expect("you are referencing an undeclared jump table") .all_branches() { let block = dest_block.block(pool); if !unique.insert(block) { continue; } // Call `declare_block_predecessor` instead of `declare_successor` for // avoiding the borrow checker. self.builder .func_ctx .ssa .declare_block_predecessor(block, inst); } } inst => debug_assert!(!inst.opcode().is_branch()), } if data.opcode().is_terminator() { self.builder.fill_current_block() } (inst, &mut self.builder.func.dfg) } } #[derive(Debug, Copy, Clone, PartialEq, Eq)] /// An error encountered when calling [`FunctionBuilder::try_use_var`]. pub enum UseVariableError { UsedBeforeDeclared(Variable), } impl fmt::Display for UseVariableError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { UseVariableError::UsedBeforeDeclared(variable) => { write!( f, "variable {} was used before it was defined", variable.index() )?; } } Ok(()) } } impl std::error::Error for UseVariableError {} #[derive(Debug, Copy, Clone, Eq, PartialEq)] /// An error encountered when calling [`FunctionBuilder::try_declare_var`]. pub enum DeclareVariableError { DeclaredMultipleTimes(Variable), } impl std::error::Error for DeclareVariableError {} impl fmt::Display for DeclareVariableError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { DeclareVariableError::DeclaredMultipleTimes(variable) => { write!( f, "variable {} was declared multiple times", variable.index() )?; } } Ok(()) } } #[derive(Debug, Copy, Clone, Eq, PartialEq)] /// An error encountered when defining the initial value of a variable. pub enum DefVariableError { /// The variable was instantiated with a value of the wrong type. /// /// note: to obtain the type of the value, you can call /// [`cranelift_codegen::ir::dfg::DataFlowGraph::value_type`] (using the /// `FunctionBuilder.func.dfg` field) TypeMismatch(Variable, Value), /// The value was defined (in a call to [`FunctionBuilder::def_var`]) before /// it was declared (in a call to [`FunctionBuilder::declare_var`]). DefinedBeforeDeclared(Variable), } impl fmt::Display for DefVariableError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { DefVariableError::TypeMismatch(variable, value) => { write!( f, "the types of variable {} and value {} are not the same. The `Value` supplied to `def_var` must be of the same type as the variable was declared to be of in `declare_var`.", variable.index(), value.as_u32() )?; } DefVariableError::DefinedBeforeDeclared(variable) => { write!( f, "the value of variable {} was declared before it was defined", variable.index() )?; } } Ok(()) } } /// This module allows you to create a function in Cranelift IR in a straightforward way, hiding /// all the complexity of its internal representation. /// /// The module is parametrized by one type which is the representation of variables in your /// origin language. It offers a way to conveniently append instruction to your program flow. /// You are responsible to split your instruction flow into extended blocks (declared with /// [`create_block`](Self::create_block)) whose properties are: /// /// - branch and jump instructions can only point at the top of extended blocks; /// - the last instruction of each block is a terminator instruction which has no natural successor, /// and those instructions can only appear at the end of extended blocks. /// /// The parameters of Cranelift IR instructions are Cranelift IR values, which can only be created /// as results of other Cranelift IR instructions. To be able to create variables redefined multiple /// times in your program, use the [`def_var`](Self::def_var) and [`use_var`](Self::use_var) command, /// that will maintain the correspondence between your variables and Cranelift IR SSA values. /// /// The first block for which you call [`switch_to_block`](Self::switch_to_block) will be assumed to /// be the beginning of the function. /// /// At creation, a [`FunctionBuilder`] instance borrows an already allocated `Function` which it /// modifies with the information stored in the mutable borrowed /// [`FunctionBuilderContext`]. The function passed in argument should be newly created with /// [`Function::with_name_signature()`], whereas the [`FunctionBuilderContext`] can be kept as is /// between two function translations. /// /// # Errors /// /// The functions below will panic in debug mode whenever you try to modify the Cranelift IR /// function in a way that violate the coherence of the code. For instance: switching to a new /// [`Block`] when you haven't filled the current one with a terminator instruction, inserting a /// return instruction with arguments that don't match the function's signature. impl<'a> FunctionBuilder<'a> { /// Creates a new [`FunctionBuilder`] structure that will operate on a [`Function`] using a /// [`FunctionBuilderContext`]. pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self { debug_assert!(func_ctx.is_empty()); Self { func, srcloc: Default::default(), func_ctx, position: Default::default(), } } /// Get the block that this builder is currently at. pub fn current_block(&self) -> Option { self.position.expand() } /// Set the source location that should be assigned to all new instructions. pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) { self.srcloc = srcloc; } /// Creates a new [`Block`] and returns its reference. pub fn create_block(&mut self) -> Block { let block = self.func.dfg.make_block(); self.func_ctx.ssa.declare_block(block); block } /// Mark a block as "cold". /// /// This will try to move it out of the ordinary path of execution /// when lowered to machine code. pub fn set_cold_block(&mut self, block: Block) { self.func.layout.set_cold(block); } /// Insert `block` in the layout *after* the existing block `after`. pub fn insert_block_after(&mut self, block: Block, after: Block) { self.func.layout.insert_block_after(block, after); } /// After the call to this function, new instructions will be inserted into the designated /// block, in the order they are declared. You must declare the types of the [`Block`] arguments /// you will use here. /// /// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate /// successor), the block will be declared filled and it will not be possible to append /// instructions to it. pub fn switch_to_block(&mut self, block: Block) { // First we check that the previous block has been filled. debug_assert!( self.position.is_none() || self.is_unreachable() || self.is_pristine(self.position.unwrap()) || self.is_filled(self.position.unwrap()), "you have to fill your block before switching" ); // We cannot switch to a filled block debug_assert!( !self.is_filled(block), "you cannot switch to a block which is already filled" ); // Then we change the cursor position. self.position = PackedOption::from(block); } /// Declares that all the predecessors of this block are known. /// /// Function to call with `block` as soon as the last branch instruction to `block` has been /// created. Forgetting to call this method on every block will cause inconsistencies in the /// produced functions. pub fn seal_block(&mut self, block: Block) { let side_effects = self.func_ctx.ssa.seal_block(block, self.func); self.handle_ssa_side_effects(side_effects); } /// Effectively calls [seal_block](Self::seal_block) on all unsealed blocks in the function. /// /// It's more efficient to seal [`Block`]s as soon as possible, during /// translation, but for frontends where this is impractical to do, this /// function can be used at the end of translating all blocks to ensure /// that everything is sealed. pub fn seal_all_blocks(&mut self) { let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func); self.handle_ssa_side_effects(side_effects); } /// Declares the type of a variable. /// /// This allows the variable to be used later (by calling /// [`FunctionBuilder::use_var`]). /// /// # Errors /// /// This function will return an error if the variable has been previously /// declared. pub fn try_declare_var(&mut self, var: Variable, ty: Type) -> Result<(), DeclareVariableError> { if self.func_ctx.types[var] != types::INVALID { return Err(DeclareVariableError::DeclaredMultipleTimes(var)); } self.func_ctx.types[var] = ty; Ok(()) } /// Declares the type of a variable, panicking if it is already declared. /// /// # Panics /// /// Panics if the variable has already been declared. pub fn declare_var(&mut self, var: Variable, ty: Type) { self.try_declare_var(var, ty) .unwrap_or_else(|_| panic!("the variable {var:?} has been declared multiple times")) } /// Declare that all uses of the given variable must be included in stack /// map metadata. /// /// All values that are uses of this variable will be spilled to the stack /// before each safepoint and their location on the stack included in stack /// maps. Stack maps allow the garbage collector to identify the on-stack GC /// roots. /// /// This does not affect any pre-existing uses of the variable. /// /// # Panics /// /// Panics if the variable's type is larger than 16 bytes or if this /// variable has not been declared yet. pub fn declare_var_needs_stack_map(&mut self, var: Variable) { log::trace!("declare_var_needs_stack_map({var:?})"); let ty = self.func_ctx.types[var]; assert!(ty != types::INVALID); assert!(ty.bytes() <= 16); self.func_ctx.stack_map_vars.insert(var); } /// Returns the Cranelift IR necessary to use a previously defined user /// variable, returning an error if this is not possible. pub fn try_use_var(&mut self, var: Variable) -> Result { // Assert that we're about to add instructions to this block using the definition of the // given variable. ssa.use_var is the only part of this crate which can add block parameters // behind the caller's back. If we disallow calling append_block_param as soon as use_var is // called, then we enforce a strict separation between user parameters and SSA parameters. self.ensure_inserted_block(); let (val, side_effects) = { let ty = *self .func_ctx .types .get(var) .ok_or(UseVariableError::UsedBeforeDeclared(var))?; debug_assert_ne!( ty, types::INVALID, "variable {var:?} is used but its type has not been declared" ); self.func_ctx .ssa .use_var(self.func, var, ty, self.position.unwrap()) }; self.handle_ssa_side_effects(side_effects); // If the variable was declared as needing stack maps, then propagate // that requirement to all values derived from using the variable. if self.func_ctx.stack_map_vars.contains(var) { self.declare_value_needs_stack_map(val); } Ok(val) } /// Returns the Cranelift IR value corresponding to the utilization at the current program /// position of a previously defined user variable. pub fn use_var(&mut self, var: Variable) -> Value { self.try_use_var(var).unwrap_or_else(|_| { panic!("variable {var:?} is used but its type has not been declared") }) } /// Registers a new definition of a user variable. This function will return /// an error if the value supplied does not match the type the variable was /// declared to have. pub fn try_def_var(&mut self, var: Variable, val: Value) -> Result<(), DefVariableError> { let var_ty = *self .func_ctx .types .get(var) .ok_or(DefVariableError::DefinedBeforeDeclared(var))?; if var_ty != self.func.dfg.value_type(val) { return Err(DefVariableError::TypeMismatch(var, val)); } // If `var` needs inclusion in stack maps, then `val` does too. if self.func_ctx.stack_map_vars.contains(var) { self.declare_value_needs_stack_map(val); } self.func_ctx.ssa.def_var(var, val, self.position.unwrap()); Ok(()) } /// Register a new definition of a user variable. The type of the value must be /// the same as the type registered for the variable. pub fn def_var(&mut self, var: Variable, val: Value) { self.try_def_var(var, val) .unwrap_or_else(|error| match error { DefVariableError::TypeMismatch(var, val) => { panic!("declared type of variable {var:?} doesn't match type of value {val}"); } DefVariableError::DefinedBeforeDeclared(var) => { panic!("variable {var:?} is used but its type has not been declared"); } }) } /// Set label for [`Value`] /// /// This will not do anything unless /// [`func.dfg.collect_debug_info`](DataFlowGraph::collect_debug_info) is called first. pub fn set_val_label(&mut self, val: Value, label: ValueLabel) { if let Some(values_labels) = self.func.stencil.dfg.values_labels.as_mut() { use alloc::collections::btree_map::Entry; let start = ValueLabelStart { from: RelSourceLoc::from_base_offset(self.func.params.base_srcloc(), self.srcloc), label, }; match values_labels.entry(val) { Entry::Occupied(mut e) => match e.get_mut() { ValueLabelAssignments::Starts(starts) => starts.push(start), _ => panic!("Unexpected ValueLabelAssignments at this stage"), }, Entry::Vacant(e) => { e.insert(ValueLabelAssignments::Starts(vec![start])); } } } } /// Declare that the given value is a GC reference that requires inclusion /// in a stack map when it is live across GC safepoints. /// /// At the current moment, values that need inclusion in stack maps are /// spilled before safepoints, but they are not reloaded afterwards. This /// means that moving GCs are not yet supported, however the intention is to /// add this support in the near future. /// /// # Panics /// /// Panics if `val` is larger than 16 bytes. pub fn declare_value_needs_stack_map(&mut self, val: Value) { log::trace!("declare_value_needs_stack_map({val:?})"); // We rely on these properties in `insert_safepoint_spills`. let size = self.func.dfg.value_type(val).bytes(); assert!(size <= 16); assert!(size.is_power_of_two()); self.func_ctx.stack_map_values.insert(val); } /// Creates a jump table in the function, to be used by [`br_table`](InstBuilder::br_table) instructions. pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable { self.func.create_jump_table(data) } /// Creates a sized stack slot in the function, to be used by [`stack_load`](InstBuilder::stack_load), /// [`stack_store`](InstBuilder::stack_store) and [`stack_addr`](InstBuilder::stack_addr) instructions. pub fn create_sized_stack_slot(&mut self, data: StackSlotData) -> StackSlot { self.func.create_sized_stack_slot(data) } /// Creates a dynamic stack slot in the function, to be used by /// [`dynamic_stack_load`](InstBuilder::dynamic_stack_load), /// [`dynamic_stack_store`](InstBuilder::dynamic_stack_store) and /// [`dynamic_stack_addr`](InstBuilder::dynamic_stack_addr) instructions. pub fn create_dynamic_stack_slot(&mut self, data: DynamicStackSlotData) -> DynamicStackSlot { self.func.create_dynamic_stack_slot(data) } /// Adds a signature which can later be used to declare an external function import. pub fn import_signature(&mut self, signature: Signature) -> SigRef { self.func.import_signature(signature) } /// Declare an external function import. pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef { self.func.import_function(data) } /// Declares a global value accessible to the function. pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue { self.func.create_global_value(data) } /// Returns an object with the [`InstBuilder`] /// trait that allows to conveniently append an instruction to the current [`Block`] being built. pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> { let block = self .position .expect("Please call switch_to_block before inserting instructions"); FuncInstBuilder::new(self, block) } /// Make sure that the current block is inserted in the layout. pub fn ensure_inserted_block(&mut self) { let block = self.position.unwrap(); if self.is_pristine(block) { if !self.func.layout.is_block_inserted(block) { self.func.layout.append_block(block); } self.func_ctx.status[block] = BlockStatus::Partial; } else { debug_assert!( !self.is_filled(block), "you cannot add an instruction to a block already filled" ); } } /// Returns a [`FuncCursor`] pointed at the current position ready for inserting instructions. /// /// This can be used to insert SSA code that doesn't need to access locals and that doesn't /// need to know about [`FunctionBuilder`] at all. pub fn cursor(&mut self) -> FuncCursor { self.ensure_inserted_block(); FuncCursor::new(self.func) .with_srcloc(self.srcloc) .at_bottom(self.position.unwrap()) } /// Append parameters to the given [`Block`] corresponding to the function /// parameters. This can be used to set up the block parameters for the /// entry block. pub fn append_block_params_for_function_params(&mut self, block: Block) { debug_assert!( !self.func_ctx.ssa.has_any_predecessors(block), "block parameters for function parameters should only be added to the entry block" ); // These parameters count as "user" parameters here because they aren't // inserted by the SSABuilder. debug_assert!( self.is_pristine(block), "You can't add block parameters after adding any instruction" ); for argtyp in &self.func.stencil.signature.params { self.func .stencil .dfg .append_block_param(block, argtyp.value_type); } } /// Append parameters to the given [`Block`] corresponding to the function /// return values. This can be used to set up the block parameters for a /// function exit block. pub fn append_block_params_for_function_returns(&mut self, block: Block) { // These parameters count as "user" parameters here because they aren't // inserted by the SSABuilder. debug_assert!( self.is_pristine(block), "You can't add block parameters after adding any instruction" ); for argtyp in &self.func.stencil.signature.returns { self.func .stencil .dfg .append_block_param(block, argtyp.value_type); } } /// Declare that translation of the current function is complete. /// /// This resets the state of the [`FunctionBuilderContext`] in preparation to /// be used for another function. pub fn finalize(mut self) { // Check that all the `Block`s are filled and sealed. #[cfg(debug_assertions)] { for block in self.func_ctx.status.keys() { if !self.is_pristine(block) { assert!( self.func_ctx.ssa.is_sealed(block), "FunctionBuilder finalized, but block {block} is not sealed", ); assert!( self.is_filled(block), "FunctionBuilder finalized, but block {block} is not filled", ); } } } // In debug mode, check that all blocks are valid basic blocks. #[cfg(debug_assertions)] { // Iterate manually to provide more helpful error messages. for block in self.func_ctx.status.keys() { if let Err((inst, msg)) = self.func.is_block_basic(block) { let inst_str = self.func.dfg.display_inst(inst); panic!("{block} failed basic block invariants on {inst_str}: {msg}"); } } } if !self.func_ctx.stack_map_values.is_empty() { self.func_ctx .safepoints .run(&mut self.func, &self.func_ctx.stack_map_values); } // Clear the state (but preserve the allocated buffers) in preparation // for translation another function. self.func_ctx.clear(); } } /// All the functions documented in the previous block are write-only and help you build a valid /// Cranelift IR functions via multiple debug asserts. However, you might need to improve the /// performance of your translation perform more complex transformations to your Cranelift IR /// function. The functions below help you inspect the function you're creating and modify it /// in ways that can be unsafe if used incorrectly. impl<'a> FunctionBuilder<'a> { /// Retrieves all the parameters for a [`Block`] currently inferred from the jump instructions /// inserted that target it and the SSA construction. pub fn block_params(&self, block: Block) -> &[Value] { self.func.dfg.block_params(block) } /// Retrieves the signature with reference `sigref` previously added with /// [`import_signature`](Self::import_signature). pub fn signature(&self, sigref: SigRef) -> Option<&Signature> { self.func.dfg.signatures.get(sigref) } /// Creates a parameter for a specific [`Block`] by appending it to the list of already existing /// parameters. /// /// **Note:** this function has to be called at the creation of the `Block` before adding /// instructions to it, otherwise this could interfere with SSA construction. pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value { debug_assert!( self.is_pristine(block), "You can't add block parameters after adding any instruction" ); self.func.dfg.append_block_param(block, ty) } /// Returns the result values of an instruction. pub fn inst_results(&self, inst: Inst) -> &[Value] { self.func.dfg.inst_results(inst) } /// Changes the destination of a jump instruction after creation. /// /// **Note:** You are responsible for maintaining the coherence with the arguments of /// other jump instructions. pub fn change_jump_destination(&mut self, inst: Inst, old_block: Block, new_block: Block) { let dfg = &mut self.func.dfg; for block in dfg.insts[inst].branch_destination_mut(&mut dfg.jump_tables) { if block.block(&dfg.value_lists) == old_block { self.func_ctx.ssa.remove_block_predecessor(old_block, inst); block.set_block(new_block, &mut dfg.value_lists); self.func_ctx.ssa.declare_block_predecessor(new_block, inst); } } } /// Returns `true` if and only if the current [`Block`] is sealed and has no predecessors declared. /// /// The entry block of a function is never unreachable. pub fn is_unreachable(&self) -> bool { let is_entry = match self.func.layout.entry_block() { None => false, Some(entry) => self.position.unwrap() == entry, }; !is_entry && self.func_ctx.ssa.is_sealed(self.position.unwrap()) && !self .func_ctx .ssa .has_any_predecessors(self.position.unwrap()) } /// Returns `true` if and only if no instructions have been added since the last call to /// [`switch_to_block`](Self::switch_to_block). fn is_pristine(&self, block: Block) -> bool { self.func_ctx.status[block] == BlockStatus::Empty } /// Returns `true` if and only if a terminator instruction has been inserted since the /// last call to [`switch_to_block`](Self::switch_to_block). fn is_filled(&self, block: Block) -> bool { self.func_ctx.status[block] == BlockStatus::Filled } } /// Helper functions impl<'a> FunctionBuilder<'a> { /// Calls libc.memcpy /// /// Copies the `size` bytes from `src` to `dest`, assumes that `src + size` /// won't overlap onto `dest`. If `dest` and `src` overlap, the behavior is /// undefined. Applications in which `dest` and `src` might overlap should /// use `call_memmove` instead. pub fn call_memcpy( &mut self, config: TargetFrontendConfig, dest: Value, src: Value, size: Value, ) { let pointer_type = config.pointer_type(); let signature = { let mut s = Signature::new(config.default_call_conv); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(pointer_type)); s.returns.push(AbiParam::new(pointer_type)); self.import_signature(s) }; let libc_memcpy = self.import_function(ExtFuncData { name: ExternalName::LibCall(LibCall::Memcpy), signature, colocated: false, }); self.ins().call(libc_memcpy, &[dest, src, size]); } /// Optimised memcpy or memmove for small copies. /// /// # Codegen safety /// /// The following properties must hold to prevent UB: /// /// * `src_align` and `dest_align` are an upper-bound on the alignment of `src` respectively `dest`. /// * If `non_overlapping` is true, then this must be correct. pub fn emit_small_memory_copy( &mut self, config: TargetFrontendConfig, dest: Value, src: Value, size: u64, dest_align: u8, src_align: u8, non_overlapping: bool, mut flags: MemFlags, ) { // Currently the result of guess work, not actual profiling. const THRESHOLD: u64 = 4; if size == 0 { return; } let access_size = greatest_divisible_power_of_two(size); assert!( access_size.is_power_of_two(), "`size` is not a power of two" ); assert!( access_size >= u64::from(::core::cmp::min(src_align, dest_align)), "`size` is smaller than `dest` and `src`'s alignment value." ); let (access_size, int_type) = if access_size <= 8 { (access_size, Type::int((access_size * 8) as u16).unwrap()) } else { (8, types::I64) }; let load_and_store_amount = size / access_size; if load_and_store_amount > THRESHOLD { let size_value = self.ins().iconst(config.pointer_type(), size as i64); if non_overlapping { self.call_memcpy(config, dest, src, size_value); } else { self.call_memmove(config, dest, src, size_value); } return; } if u64::from(src_align) >= access_size && u64::from(dest_align) >= access_size { flags.set_aligned(); } // Load all of the memory first. This is necessary in case `dest` overlaps. // It can also improve performance a bit. let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount) .map(|i| { let offset = (access_size * i) as i32; (self.ins().load(int_type, flags, src, offset), offset) }) .collect(); for (value, offset) in registers { self.ins().store(flags, value, dest, offset); } } /// Calls libc.memset /// /// Writes `size` bytes of i8 value `ch` to memory starting at `buffer`. pub fn call_memset( &mut self, config: TargetFrontendConfig, buffer: Value, ch: Value, size: Value, ) { let pointer_type = config.pointer_type(); let signature = { let mut s = Signature::new(config.default_call_conv); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(types::I32)); s.params.push(AbiParam::new(pointer_type)); s.returns.push(AbiParam::new(pointer_type)); self.import_signature(s) }; let libc_memset = self.import_function(ExtFuncData { name: ExternalName::LibCall(LibCall::Memset), signature, colocated: false, }); let ch = self.ins().uextend(types::I32, ch); self.ins().call(libc_memset, &[buffer, ch, size]); } /// Calls libc.memset /// /// Writes `size` bytes of value `ch` to memory starting at `buffer`. pub fn emit_small_memset( &mut self, config: TargetFrontendConfig, buffer: Value, ch: u8, size: u64, buffer_align: u8, mut flags: MemFlags, ) { // Currently the result of guess work, not actual profiling. const THRESHOLD: u64 = 4; if size == 0 { return; } let access_size = greatest_divisible_power_of_two(size); assert!( access_size.is_power_of_two(), "`size` is not a power of two" ); assert!( access_size >= u64::from(buffer_align), "`size` is smaller than `dest` and `src`'s alignment value." ); let (access_size, int_type) = if access_size <= 8 { (access_size, Type::int((access_size * 8) as u16).unwrap()) } else { (8, types::I64) }; let load_and_store_amount = size / access_size; if load_and_store_amount > THRESHOLD { let ch = self.ins().iconst(types::I8, i64::from(ch)); let size = self.ins().iconst(config.pointer_type(), size as i64); self.call_memset(config, buffer, ch, size); } else { if u64::from(buffer_align) >= access_size { flags.set_aligned(); } let ch = u64::from(ch); let raw_value = if int_type == types::I64 { ch * 0x0101010101010101_u64 } else if int_type == types::I32 { ch * 0x01010101_u64 } else if int_type == types::I16 { (ch << 8) | ch } else { assert_eq!(int_type, types::I8); ch }; let value = self.ins().iconst(int_type, raw_value as i64); for i in 0..load_and_store_amount { let offset = (access_size * i) as i32; self.ins().store(flags, value, buffer, offset); } } } /// Calls libc.memmove /// /// Copies `size` bytes from memory starting at `source` to memory starting /// at `dest`. `source` is always read before writing to `dest`. pub fn call_memmove( &mut self, config: TargetFrontendConfig, dest: Value, source: Value, size: Value, ) { let pointer_type = config.pointer_type(); let signature = { let mut s = Signature::new(config.default_call_conv); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(pointer_type)); s.returns.push(AbiParam::new(pointer_type)); self.import_signature(s) }; let libc_memmove = self.import_function(ExtFuncData { name: ExternalName::LibCall(LibCall::Memmove), signature, colocated: false, }); self.ins().call(libc_memmove, &[dest, source, size]); } /// Calls libc.memcmp /// /// Compares `size` bytes from memory starting at `left` to memory starting /// at `right`. Returns `0` if all `n` bytes are equal. If the first difference /// is at offset `i`, returns a positive integer if `ugt(left[i], right[i])` /// and a negative integer if `ult(left[i], right[i])`. /// /// Returns a C `int`, which is currently always [`types::I32`]. pub fn call_memcmp( &mut self, config: TargetFrontendConfig, left: Value, right: Value, size: Value, ) -> Value { let pointer_type = config.pointer_type(); let signature = { let mut s = Signature::new(config.default_call_conv); s.params.reserve(3); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(pointer_type)); s.params.push(AbiParam::new(pointer_type)); s.returns.push(AbiParam::new(types::I32)); self.import_signature(s) }; let libc_memcmp = self.import_function(ExtFuncData { name: ExternalName::LibCall(LibCall::Memcmp), signature, colocated: false, }); let call = self.ins().call(libc_memcmp, &[left, right, size]); self.func.dfg.first_result(call) } /// Optimised [`Self::call_memcmp`] for small copies. /// /// This implements the byte slice comparison `int_cc(left[..size], right[..size])`. /// /// `left_align` and `right_align` are the statically-known alignments of the /// `left` and `right` pointers respectively. These are used to know whether /// to mark `load`s as aligned. It's always fine to pass `1` for these, but /// passing something higher than the true alignment may trap or otherwise /// misbehave as described in [`MemFlags::aligned`]. /// /// Note that `memcmp` is a *big-endian* and *unsigned* comparison. /// As such, this panics when called with `IntCC::Signed*`. pub fn emit_small_memory_compare( &mut self, config: TargetFrontendConfig, int_cc: IntCC, left: Value, right: Value, size: u64, left_align: std::num::NonZeroU8, right_align: std::num::NonZeroU8, flags: MemFlags, ) -> Value { use IntCC::*; let (zero_cc, empty_imm) = match int_cc { // Equal => (Equal, 1), NotEqual => (NotEqual, 0), UnsignedLessThan => (SignedLessThan, 0), UnsignedGreaterThanOrEqual => (SignedGreaterThanOrEqual, 1), UnsignedGreaterThan => (SignedGreaterThan, 0), UnsignedLessThanOrEqual => (SignedLessThanOrEqual, 1), SignedLessThan | SignedGreaterThanOrEqual | SignedGreaterThan | SignedLessThanOrEqual => { panic!("Signed comparison {int_cc} not supported by memcmp") } }; if size == 0 { return self.ins().iconst(types::I8, empty_imm); } // Future work could consider expanding this to handle more-complex scenarios. if let Some(small_type) = size.try_into().ok().and_then(Type::int_with_byte_size) { if let Equal | NotEqual = zero_cc { let mut left_flags = flags; if size == left_align.get() as u64 { left_flags.set_aligned(); } let mut right_flags = flags; if size == right_align.get() as u64 { right_flags.set_aligned(); } let left_val = self.ins().load(small_type, left_flags, left, 0); let right_val = self.ins().load(small_type, right_flags, right, 0); return self.ins().icmp(int_cc, left_val, right_val); } else if small_type == types::I8 { // Once the big-endian loads from wasmtime#2492 are implemented in // the backends, we could easily handle comparisons for more sizes here. // But for now, just handle single bytes where we don't need to worry. let mut aligned_flags = flags; aligned_flags.set_aligned(); let left_val = self.ins().load(small_type, aligned_flags, left, 0); let right_val = self.ins().load(small_type, aligned_flags, right, 0); return self.ins().icmp(int_cc, left_val, right_val); } } let pointer_type = config.pointer_type(); let size = self.ins().iconst(pointer_type, size as i64); let cmp = self.call_memcmp(config, left, right, size); self.ins().icmp_imm(zero_cc, cmp, 0) } } fn greatest_divisible_power_of_two(size: u64) -> u64 { (size as i64 & -(size as i64)) as u64 } // Helper functions impl<'a> FunctionBuilder<'a> { /// A Block is 'filled' when a terminator instruction is present. fn fill_current_block(&mut self) { self.func_ctx.status[self.position.unwrap()] = BlockStatus::Filled; } fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) { self.func_ctx .ssa .declare_block_predecessor(dest_block, jump_inst); } fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) { for modified_block in side_effects.instructions_added_to_blocks { if self.is_pristine(modified_block) { self.func_ctx.status[modified_block] = BlockStatus::Partial; } } } } #[cfg(test)] mod tests { use super::greatest_divisible_power_of_two; use crate::frontend::{ DeclareVariableError, DefVariableError, FunctionBuilder, FunctionBuilderContext, UseVariableError, }; use crate::Variable; use alloc::string::ToString; use cranelift_codegen::entity::EntityRef; use cranelift_codegen::ir::condcodes::IntCC; use cranelift_codegen::ir::{types::*, UserFuncName}; use cranelift_codegen::ir::{AbiParam, Function, InstBuilder, MemFlags, Signature, Value}; use cranelift_codegen::isa::{CallConv, TargetFrontendConfig, TargetIsa}; use cranelift_codegen::settings; use cranelift_codegen::verifier::verify_function; use target_lexicon::PointerWidth; fn sample_function(lazy_seal: bool) { let mut sig = Signature::new(CallConv::SystemV); sig.returns.push(AbiParam::new(I32)); sig.params.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let block1 = builder.create_block(); let block2 = builder.create_block(); let block3 = builder.create_block(); let x = Variable::new(0); let y = Variable::new(1); let z = Variable::new(2); builder.declare_var(x, I32); builder.declare_var(y, I32); builder.declare_var(z, I32); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); if !lazy_seal { builder.seal_block(block0); } { let tmp = builder.block_params(block0)[0]; // the first function parameter builder.def_var(x, tmp); } { let tmp = builder.ins().iconst(I32, 2); builder.def_var(y, tmp); } { let arg1 = builder.use_var(x); let arg2 = builder.use_var(y); let tmp = builder.ins().iadd(arg1, arg2); builder.def_var(z, tmp); } builder.ins().jump(block1, &[]); builder.switch_to_block(block1); { let arg1 = builder.use_var(y); let arg2 = builder.use_var(z); let tmp = builder.ins().iadd(arg1, arg2); builder.def_var(z, tmp); } { let arg = builder.use_var(y); builder.ins().brif(arg, block3, &[], block2, &[]); } builder.switch_to_block(block2); if !lazy_seal { builder.seal_block(block2); } { let arg1 = builder.use_var(z); let arg2 = builder.use_var(x); let tmp = builder.ins().isub(arg1, arg2); builder.def_var(z, tmp); } { let arg = builder.use_var(y); builder.ins().return_(&[arg]); } builder.switch_to_block(block3); if !lazy_seal { builder.seal_block(block3); } { let arg1 = builder.use_var(y); let arg2 = builder.use_var(x); let tmp = builder.ins().isub(arg1, arg2); builder.def_var(y, tmp); } builder.ins().jump(block1, &[]); if !lazy_seal { builder.seal_block(block1); } if lazy_seal { builder.seal_all_blocks(); } builder.finalize(); } let flags = settings::Flags::new(settings::builder()); // println!("{}", func.display(None)); if let Err(errors) = verify_function(&func, &flags) { panic!("{}\n{}", func.display(), errors) } } #[test] fn sample() { sample_function(false) } #[test] fn sample_with_lazy_seal() { sample_function(true) } #[track_caller] fn check(func: &Function, expected_ir: &str) { let expected_ir = expected_ir.trim(); let actual_ir = func.display().to_string(); let actual_ir = actual_ir.trim(); assert!( expected_ir == actual_ir, "Expected:\n{expected_ir}\nGot:\n{actual_ir}" ); } /// Helper function to construct a fixed frontend configuration. fn systemv_frontend_config() -> TargetFrontendConfig { TargetFrontendConfig { default_call_conv: CallConv::SystemV, pointer_width: PointerWidth::U64, page_size_align_log2: 12, } } #[test] fn memcpy() { let frontend_config = systemv_frontend_config(); let mut sig = Signature::new(frontend_config.default_call_conv); sig.returns.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let x = Variable::new(0); let y = Variable::new(1); let z = Variable::new(2); builder.declare_var(x, frontend_config.pointer_type()); builder.declare_var(y, frontend_config.pointer_type()); builder.declare_var(z, I32); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let src = builder.use_var(x); let dest = builder.use_var(y); let size = builder.use_var(y); builder.call_memcpy(frontend_config, dest, src, size); builder.ins().return_(&[size]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i32 system_v { sig0 = (i64, i64, i64) -> i64 system_v fn0 = %Memcpy sig0 block0: v4 = iconst.i64 0 v1 -> v4 v3 = iconst.i64 0 v0 -> v3 v2 = call fn0(v1, v0, v1) ; v1 = 0, v0 = 0, v1 = 0 return v1 ; v1 = 0 } ", ); } #[test] fn small_memcpy() { let frontend_config = systemv_frontend_config(); let mut sig = Signature::new(frontend_config.default_call_conv); sig.returns.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let x = Variable::new(0); let y = Variable::new(16); builder.declare_var(x, frontend_config.pointer_type()); builder.declare_var(y, frontend_config.pointer_type()); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let src = builder.use_var(x); let dest = builder.use_var(y); let size = 8; builder.emit_small_memory_copy( frontend_config, dest, src, size, 8, 8, true, MemFlags::new(), ); builder.ins().return_(&[dest]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i32 system_v { block0: v4 = iconst.i64 0 v1 -> v4 v3 = iconst.i64 0 v0 -> v3 v2 = load.i64 aligned v0 ; v0 = 0 store aligned v2, v1 ; v1 = 0 return v1 ; v1 = 0 } ", ); } #[test] fn not_so_small_memcpy() { let frontend_config = systemv_frontend_config(); let mut sig = Signature::new(frontend_config.default_call_conv); sig.returns.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let x = Variable::new(0); let y = Variable::new(16); builder.declare_var(x, frontend_config.pointer_type()); builder.declare_var(y, frontend_config.pointer_type()); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let src = builder.use_var(x); let dest = builder.use_var(y); let size = 8192; builder.emit_small_memory_copy( frontend_config, dest, src, size, 8, 8, true, MemFlags::new(), ); builder.ins().return_(&[dest]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i32 system_v { sig0 = (i64, i64, i64) -> i64 system_v fn0 = %Memcpy sig0 block0: v5 = iconst.i64 0 v1 -> v5 v4 = iconst.i64 0 v0 -> v4 v2 = iconst.i64 8192 v3 = call fn0(v1, v0, v2) ; v1 = 0, v0 = 0, v2 = 8192 return v1 ; v1 = 0 } ", ); } #[test] fn small_memset() { let frontend_config = systemv_frontend_config(); let mut sig = Signature::new(frontend_config.default_call_conv); sig.returns.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let y = Variable::new(16); builder.declare_var(y, frontend_config.pointer_type()); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let dest = builder.use_var(y); let size = 8; builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new()); builder.ins().return_(&[dest]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i32 system_v { block0: v2 = iconst.i64 0 v0 -> v2 v1 = iconst.i64 0x0101_0101_0101_0101 store aligned v1, v0 ; v1 = 0x0101_0101_0101_0101, v0 = 0 return v0 ; v0 = 0 } ", ); } #[test] fn not_so_small_memset() { let frontend_config = systemv_frontend_config(); let mut sig = Signature::new(frontend_config.default_call_conv); sig.returns.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let y = Variable::new(16); builder.declare_var(y, frontend_config.pointer_type()); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let dest = builder.use_var(y); let size = 8192; builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new()); builder.ins().return_(&[dest]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i32 system_v { sig0 = (i64, i32, i64) -> i64 system_v fn0 = %Memset sig0 block0: v5 = iconst.i64 0 v0 -> v5 v1 = iconst.i8 1 v2 = iconst.i64 8192 v3 = uextend.i32 v1 ; v1 = 1 v4 = call fn0(v0, v3, v2) ; v0 = 0, v2 = 8192 return v0 ; v0 = 0 } ", ); } #[test] fn memcmp() { use core::str::FromStr; use cranelift_codegen::isa; let shared_builder = settings::builder(); let shared_flags = settings::Flags::new(shared_builder); let triple = ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple"); let target = isa::lookup(triple) .ok() .map(|b| b.finish(shared_flags)) .expect("This test requires x86_64 support.") .expect("Should be able to create backend with default flags"); let mut sig = Signature::new(target.default_call_conv()); sig.returns.push(AbiParam::new(I32)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let x = Variable::new(0); let y = Variable::new(1); let z = Variable::new(2); builder.declare_var(x, target.pointer_type()); builder.declare_var(y, target.pointer_type()); builder.declare_var(z, target.pointer_type()); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let left = builder.use_var(x); let right = builder.use_var(y); let size = builder.use_var(z); let cmp = builder.call_memcmp(target.frontend_config(), left, right, size); builder.ins().return_(&[cmp]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i32 system_v { sig0 = (i64, i64, i64) -> i32 system_v fn0 = %Memcmp sig0 block0: v6 = iconst.i64 0 v2 -> v6 v5 = iconst.i64 0 v1 -> v5 v4 = iconst.i64 0 v0 -> v4 v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 0 return v3 } ", ); } #[test] fn small_memcmp_zero_size() { let align_eight = std::num::NonZeroU8::new(8).unwrap(); small_memcmp_helper( " block0: v4 = iconst.i64 0 v1 -> v4 v3 = iconst.i64 0 v0 -> v3 v2 = iconst.i8 1 return v2 ; v2 = 1", |builder, target, x, y| { builder.emit_small_memory_compare( target.frontend_config(), IntCC::UnsignedGreaterThanOrEqual, x, y, 0, align_eight, align_eight, MemFlags::new(), ) }, ); } #[test] fn small_memcmp_byte_ugt() { let align_one = std::num::NonZeroU8::new(1).unwrap(); small_memcmp_helper( " block0: v6 = iconst.i64 0 v1 -> v6 v5 = iconst.i64 0 v0 -> v5 v2 = load.i8 aligned v0 ; v0 = 0 v3 = load.i8 aligned v1 ; v1 = 0 v4 = icmp ugt v2, v3 return v4", |builder, target, x, y| { builder.emit_small_memory_compare( target.frontend_config(), IntCC::UnsignedGreaterThan, x, y, 1, align_one, align_one, MemFlags::new(), ) }, ); } #[test] fn small_memcmp_aligned_eq() { let align_four = std::num::NonZeroU8::new(4).unwrap(); small_memcmp_helper( " block0: v6 = iconst.i64 0 v1 -> v6 v5 = iconst.i64 0 v0 -> v5 v2 = load.i32 aligned v0 ; v0 = 0 v3 = load.i32 aligned v1 ; v1 = 0 v4 = icmp eq v2, v3 return v4", |builder, target, x, y| { builder.emit_small_memory_compare( target.frontend_config(), IntCC::Equal, x, y, 4, align_four, align_four, MemFlags::new(), ) }, ); } #[test] fn small_memcmp_ipv6_ne() { let align_two = std::num::NonZeroU8::new(2).unwrap(); small_memcmp_helper( " block0: v6 = iconst.i64 0 v1 -> v6 v5 = iconst.i64 0 v0 -> v5 v2 = load.i128 v0 ; v0 = 0 v3 = load.i128 v1 ; v1 = 0 v4 = icmp ne v2, v3 return v4", |builder, target, x, y| { builder.emit_small_memory_compare( target.frontend_config(), IntCC::NotEqual, x, y, 16, align_two, align_two, MemFlags::new(), ) }, ); } #[test] fn small_memcmp_odd_size_uge() { let one = std::num::NonZeroU8::new(1).unwrap(); small_memcmp_helper( " sig0 = (i64, i64, i64) -> i32 system_v fn0 = %Memcmp sig0 block0: v6 = iconst.i64 0 v1 -> v6 v5 = iconst.i64 0 v0 -> v5 v2 = iconst.i64 3 v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 3 v4 = icmp_imm sge v3, 0 return v4", |builder, target, x, y| { builder.emit_small_memory_compare( target.frontend_config(), IntCC::UnsignedGreaterThanOrEqual, x, y, 3, one, one, MemFlags::new(), ) }, ); } fn small_memcmp_helper( expected: &str, f: impl FnOnce(&mut FunctionBuilder, &dyn TargetIsa, Value, Value) -> Value, ) { use core::str::FromStr; use cranelift_codegen::isa; let shared_builder = settings::builder(); let shared_flags = settings::Flags::new(shared_builder); let triple = ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple"); let target = isa::lookup(triple) .ok() .map(|b| b.finish(shared_flags)) .expect("This test requires x86_64 support.") .expect("Should be able to create backend with default flags"); let mut sig = Signature::new(target.default_call_conv()); sig.returns.push(AbiParam::new(I8)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let x = Variable::new(0); let y = Variable::new(1); builder.declare_var(x, target.pointer_type()); builder.declare_var(y, target.pointer_type()); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); let left = builder.use_var(x); let right = builder.use_var(y); let ret = f(&mut builder, &*target, left, right); builder.ins().return_(&[ret]); builder.seal_all_blocks(); builder.finalize(); } check( &func, &format!("function %sample() -> i8 system_v {{{expected}\n}}\n"), ); } #[test] fn undef_vector_vars() { let mut sig = Signature::new(CallConv::SystemV); sig.returns.push(AbiParam::new(I8X16)); sig.returns.push(AbiParam::new(I8X16)); sig.returns.push(AbiParam::new(F32X4)); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); let a = Variable::new(0); let b = Variable::new(1); let c = Variable::new(2); builder.declare_var(a, I8X16); builder.declare_var(b, I8X16); builder.declare_var(c, F32X4); builder.switch_to_block(block0); let a = builder.use_var(a); let b = builder.use_var(b); let c = builder.use_var(c); builder.ins().return_(&[a, b, c]); builder.seal_all_blocks(); builder.finalize(); } check( &func, "function %sample() -> i8x16, i8x16, f32x4 system_v { const0 = 0x00000000000000000000000000000000 block0: v5 = f32const 0.0 v6 = splat.f32x4 v5 ; v5 = 0.0 v2 -> v6 v4 = vconst.i8x16 const0 v1 -> v4 v3 = vconst.i8x16 const0 v0 -> v3 return v0, v1, v2 ; v0 = const0, v1 = const0 } ", ); } #[test] fn test_greatest_divisible_power_of_two() { assert_eq!(64, greatest_divisible_power_of_two(64)); assert_eq!(16, greatest_divisible_power_of_two(48)); assert_eq!(8, greatest_divisible_power_of_two(24)); assert_eq!(1, greatest_divisible_power_of_two(25)); } #[test] fn try_use_var() { let sig = Signature::new(CallConv::SystemV); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); { let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); builder.append_block_params_for_function_params(block0); builder.switch_to_block(block0); assert_eq!( builder.try_use_var(Variable::from_u32(0)), Err(UseVariableError::UsedBeforeDeclared(Variable::from_u32(0))) ); let value = builder.ins().iconst(cranelift_codegen::ir::types::I32, 0); assert_eq!( builder.try_def_var(Variable::from_u32(0), value), Err(DefVariableError::DefinedBeforeDeclared(Variable::from_u32( 0 ))) ); builder.declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32); assert_eq!( builder.try_declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32), Err(DeclareVariableError::DeclaredMultipleTimes( Variable::from_u32(0) )) ); } } #[test] fn test_builder_with_iconst_and_negative_constant() { let sig = Signature::new(CallConv::SystemV); let mut fn_ctx = FunctionBuilderContext::new(); let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); let block0 = builder.create_block(); builder.switch_to_block(block0); builder.ins().iconst(I32, -1); builder.ins().return_(&[]); builder.seal_all_blocks(); builder.finalize(); let flags = cranelift_codegen::settings::Flags::new(cranelift_codegen::settings::builder()); let ctx = cranelift_codegen::Context::for_function(func); ctx.verify(&flags).expect("should be valid"); check( &ctx.func, "function %sample() system_v { block0: v0 = iconst.i32 -1 return }", ); } }