/* Copyright (c) 2020, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "../ec_extra/internal.h" #include "../fipsmodule/ec/internal.h" #include "internal.h" typedef int (*hash_to_group_func_t)(const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t t[TRUST_TOKEN_NONCE_SIZE]); typedef int (*hash_to_scalar_func_t)(const EC_GROUP *group, EC_SCALAR *out, uint8_t *buf, size_t len); typedef struct { const EC_GROUP *group; // hash_to_group implements the HashToGroup operation for VOPRFs. It returns // one on success and zero on error. hash_to_group_func_t hash_to_group; // hash_to_scalar implements the HashToScalar operation for VOPRFs. It returns // one on success and zero on error. hash_to_scalar_func_t hash_to_scalar; } VOPRF_METHOD; static const uint8_t kDefaultAdditionalData[32] = {0}; static int voprf_init_method(VOPRF_METHOD *method, int curve_nid, hash_to_group_func_t hash_to_group, hash_to_scalar_func_t hash_to_scalar) { method->group = EC_GROUP_new_by_curve_name(curve_nid); if (method->group == NULL) { return 0; } method->hash_to_group = hash_to_group; method->hash_to_scalar = hash_to_scalar; return 1; } static int cbb_add_point(CBB *out, const EC_GROUP *group, const EC_AFFINE *point) { uint8_t *p; size_t len = ec_point_byte_len(group, POINT_CONVERSION_UNCOMPRESSED); return CBB_add_space(out, &p, len) && ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, p, len) == len && CBB_flush(out); } static int cbb_serialize_point(CBB *out, const EC_GROUP *group, const EC_AFFINE *point) { uint8_t *p; size_t len = ec_point_byte_len(group, POINT_CONVERSION_COMPRESSED); return CBB_add_u16(out, len) && CBB_add_space(out, &p, len) && ec_point_to_bytes(group, point, POINT_CONVERSION_COMPRESSED, p, len) == len && CBB_flush(out); } static int cbs_get_point(CBS *cbs, const EC_GROUP *group, EC_AFFINE *out) { CBS child; size_t plen = 1 + 2 * BN_num_bytes(&group->field); if (!CBS_get_bytes(cbs, &child, plen) || !ec_point_from_uncompressed(group, out, CBS_data(&child), CBS_len(&child))) { return 0; } return 1; } static int scalar_to_cbb(CBB *out, const EC_GROUP *group, const EC_SCALAR *scalar) { uint8_t *buf; size_t scalar_len = BN_num_bytes(&group->order); if (!CBB_add_space(out, &buf, scalar_len)) { return 0; } ec_scalar_to_bytes(group, buf, &scalar_len, scalar); return 1; } static int scalar_from_cbs(CBS *cbs, const EC_GROUP *group, EC_SCALAR *out) { size_t scalar_len = BN_num_bytes(&group->order); CBS tmp; if (!CBS_get_bytes(cbs, &tmp, scalar_len)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return 0; } ec_scalar_from_bytes(group, out, CBS_data(&tmp), CBS_len(&tmp)); return 1; } static int voprf_calculate_key(const VOPRF_METHOD *method, CBB *out_private, CBB *out_public, const EC_SCALAR *priv) { const EC_GROUP *group = method->group; EC_JACOBIAN pub; EC_AFFINE pub_affine; if (!ec_point_mul_scalar_base(group, &pub, priv) || !ec_jacobian_to_affine(group, &pub_affine, &pub)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE); return 0; } if (!scalar_to_cbb(out_private, group, priv) || !cbb_add_point(out_public, group, &pub_affine)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); return 0; } return 1; } static int voprf_generate_key(const VOPRF_METHOD *method, CBB *out_private, CBB *out_public) { EC_SCALAR priv; if (!ec_random_nonzero_scalar(method->group, &priv, kDefaultAdditionalData)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE); return 0; } return voprf_calculate_key(method, out_private, out_public, &priv); } static int voprf_derive_key_from_secret(const VOPRF_METHOD *method, CBB *out_private, CBB *out_public, const uint8_t *secret, size_t secret_len) { static const uint8_t kKeygenLabel[] = "TrustTokenVOPRFKeyGen"; EC_SCALAR priv; int ok = 0; CBB cbb; CBB_zero(&cbb); uint8_t *buf = NULL; size_t len; if (!CBB_init(&cbb, 0) || !CBB_add_bytes(&cbb, kKeygenLabel, sizeof(kKeygenLabel)) || !CBB_add_bytes(&cbb, secret, secret_len) || !CBB_finish(&cbb, &buf, &len) || !method->hash_to_scalar(method->group, &priv, buf, len)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE); goto err; } ok = voprf_calculate_key(method, out_private, out_public, &priv); err: CBB_cleanup(&cbb); OPENSSL_free(buf); return ok; } static int voprf_client_key_from_bytes(const VOPRF_METHOD *method, TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len) { const EC_GROUP *group = method->group; if (!ec_point_from_uncompressed(group, &key->pubs, in, len)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return 0; } return 1; } static int voprf_issuer_key_from_bytes(const VOPRF_METHOD *method, TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len) { const EC_GROUP *group = method->group; if (!ec_scalar_from_bytes(group, &key->xs, in, len)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return 0; } // Recompute the public key. EC_JACOBIAN pub; if (!ec_point_mul_scalar_base(group, &pub, &key->xs) || !ec_jacobian_to_affine(group, &key->pubs, &pub)) { return 0; } return 1; } static STACK_OF(TRUST_TOKEN_PRETOKEN) *voprf_blind(const VOPRF_METHOD *method, CBB *cbb, size_t count, int include_message, const uint8_t *msg, size_t msg_len) { SHA512_CTX hash_ctx; const EC_GROUP *group = method->group; STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens = sk_TRUST_TOKEN_PRETOKEN_new_null(); if (pretokens == NULL) { goto err; } for (size_t i = 0; i < count; i++) { // Insert |pretoken| into |pretokens| early to simplify error-handling. TRUST_TOKEN_PRETOKEN *pretoken = OPENSSL_malloc(sizeof(TRUST_TOKEN_PRETOKEN)); if (pretoken == NULL || !sk_TRUST_TOKEN_PRETOKEN_push(pretokens, pretoken)) { TRUST_TOKEN_PRETOKEN_free(pretoken); goto err; } RAND_bytes(pretoken->salt, sizeof(pretoken->salt)); if (include_message) { assert(SHA512_DIGEST_LENGTH == TRUST_TOKEN_NONCE_SIZE); SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, pretoken->salt, sizeof(pretoken->salt)); SHA512_Update(&hash_ctx, msg, msg_len); SHA512_Final(pretoken->t, &hash_ctx); } else { OPENSSL_memcpy(pretoken->t, pretoken->salt, TRUST_TOKEN_NONCE_SIZE); } // We sample r in Montgomery form to simplify inverting. EC_SCALAR r; if (!ec_random_nonzero_scalar(group, &r, kDefaultAdditionalData)) { goto err; } // pretoken->r is rinv. ec_scalar_inv0_montgomery(group, &pretoken->r, &r); // Convert both out of Montgomery form. ec_scalar_from_montgomery(group, &r, &r); ec_scalar_from_montgomery(group, &pretoken->r, &pretoken->r); // Tp is the blinded token in the VOPRF protocol. EC_JACOBIAN P, Tp; if (!method->hash_to_group(group, &P, pretoken->t) || !ec_point_mul_scalar(group, &Tp, &P, &r) || !ec_jacobian_to_affine(group, &pretoken->Tp, &Tp)) { goto err; } if (!cbb_add_point(cbb, group, &pretoken->Tp)) { goto err; } } return pretokens; err: sk_TRUST_TOKEN_PRETOKEN_pop_free(pretokens, TRUST_TOKEN_PRETOKEN_free); return NULL; } static int hash_to_scalar_dleq(const VOPRF_METHOD *method, EC_SCALAR *out, const EC_AFFINE *X, const EC_AFFINE *T, const EC_AFFINE *W, const EC_AFFINE *K0, const EC_AFFINE *K1) { static const uint8_t kDLEQLabel[] = "DLEQ"; int ok = 0; CBB cbb; CBB_zero(&cbb); uint8_t *buf = NULL; size_t len; if (!CBB_init(&cbb, 0) || !CBB_add_bytes(&cbb, kDLEQLabel, sizeof(kDLEQLabel)) || !cbb_add_point(&cbb, method->group, X) || !cbb_add_point(&cbb, method->group, T) || !cbb_add_point(&cbb, method->group, W) || !cbb_add_point(&cbb, method->group, K0) || !cbb_add_point(&cbb, method->group, K1) || !CBB_finish(&cbb, &buf, &len) || !method->hash_to_scalar(method->group, out, buf, len)) { goto err; } ok = 1; err: CBB_cleanup(&cbb); OPENSSL_free(buf); return ok; } static int hash_to_scalar_challenge(const VOPRF_METHOD *method, EC_SCALAR *out, const EC_AFFINE *Bm, const EC_AFFINE *a0, const EC_AFFINE *a1, const EC_AFFINE *a2, const EC_AFFINE *a3) { static const uint8_t kChallengeLabel[] = "Challenge"; CBB cbb; uint8_t transcript[5 * EC_MAX_COMPRESSED + 2 + sizeof(kChallengeLabel) - 1]; size_t len; if (!CBB_init_fixed(&cbb, transcript, sizeof(transcript)) || !cbb_serialize_point(&cbb, method->group, Bm) || !cbb_serialize_point(&cbb, method->group, a0) || !cbb_serialize_point(&cbb, method->group, a1) || !cbb_serialize_point(&cbb, method->group, a2) || !cbb_serialize_point(&cbb, method->group, a3) || !CBB_add_bytes(&cbb, kChallengeLabel, sizeof(kChallengeLabel) - 1) || !CBB_finish(&cbb, NULL, &len) || !method->hash_to_scalar(method->group, out, transcript, len)) { return 0; } return 1; } static int hash_to_scalar_batch(const VOPRF_METHOD *method, EC_SCALAR *out, const CBB *points, size_t index) { static const uint8_t kDLEQBatchLabel[] = "DLEQ BATCH"; if (index > 0xffff) { // The protocol supports only two-byte batches. OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); return 0; } int ok = 0; CBB cbb; CBB_zero(&cbb); uint8_t *buf = NULL; size_t len; if (!CBB_init(&cbb, 0) || !CBB_add_bytes(&cbb, kDLEQBatchLabel, sizeof(kDLEQBatchLabel)) || !CBB_add_bytes(&cbb, CBB_data(points), CBB_len(points)) || !CBB_add_u16(&cbb, (uint16_t)index) || !CBB_finish(&cbb, &buf, &len) || !method->hash_to_scalar(method->group, out, buf, len)) { goto err; } ok = 1; err: CBB_cleanup(&cbb); OPENSSL_free(buf); return ok; } static int dleq_generate(const VOPRF_METHOD *method, CBB *cbb, const TRUST_TOKEN_ISSUER_KEY *priv, const EC_JACOBIAN *T, const EC_JACOBIAN *W) { const EC_GROUP *group = method->group; enum { idx_T, idx_W, idx_k0, idx_k1, num_idx, }; EC_JACOBIAN jacobians[num_idx]; // Setup the DLEQ proof. EC_SCALAR r; if (// r <- Zp !ec_random_nonzero_scalar(group, &r, kDefaultAdditionalData) || // k0;k1 = r*(G;T) !ec_point_mul_scalar_base(group, &jacobians[idx_k0], &r) || !ec_point_mul_scalar(group, &jacobians[idx_k1], T, &r)) { return 0; } EC_AFFINE affines[num_idx]; jacobians[idx_T] = *T; jacobians[idx_W] = *W; if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) { return 0; } // Compute c = Hc(...). EC_SCALAR c; if (!hash_to_scalar_dleq(method, &c, &priv->pubs, &affines[idx_T], &affines[idx_W], &affines[idx_k0], &affines[idx_k1])) { return 0; } EC_SCALAR c_mont; ec_scalar_to_montgomery(group, &c_mont, &c); // u = r + c*xs EC_SCALAR u; ec_scalar_mul_montgomery(group, &u, &priv->xs, &c_mont); ec_scalar_add(group, &u, &r, &u); // Store DLEQ proof in transcript. if (!scalar_to_cbb(cbb, group, &c) || !scalar_to_cbb(cbb, group, &u)) { return 0; } return 1; } static int mul_public_2(const EC_GROUP *group, EC_JACOBIAN *out, const EC_JACOBIAN *p0, const EC_SCALAR *scalar0, const EC_JACOBIAN *p1, const EC_SCALAR *scalar1) { EC_JACOBIAN points[2] = {*p0, *p1}; EC_SCALAR scalars[2] = {*scalar0, *scalar1}; return ec_point_mul_scalar_public_batch(group, out, /*g_scalar=*/NULL, points, scalars, 2); } static int dleq_verify(const VOPRF_METHOD *method, CBS *cbs, const TRUST_TOKEN_CLIENT_KEY *pub, const EC_JACOBIAN *T, const EC_JACOBIAN *W) { const EC_GROUP *group = method->group; enum { idx_T, idx_W, idx_k0, idx_k1, num_idx, }; EC_JACOBIAN jacobians[num_idx]; // Decode the DLEQ proof. EC_SCALAR c, u; if (!scalar_from_cbs(cbs, group, &c) || !scalar_from_cbs(cbs, group, &u)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return 0; } // k0;k1 = u*(G;T) - c*(pub;W) EC_JACOBIAN pubs; ec_affine_to_jacobian(group, &pubs, &pub->pubs); EC_SCALAR minus_c; ec_scalar_neg(group, &minus_c, &c); if (!ec_point_mul_scalar_public(group, &jacobians[idx_k0], &u, &pubs, &minus_c) || !mul_public_2(group, &jacobians[idx_k1], T, &u, W, &minus_c)) { return 0; } // Check the DLEQ proof. EC_AFFINE affines[num_idx]; jacobians[idx_T] = *T; jacobians[idx_W] = *W; if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) { return 0; } // Compute c = Hc(...). EC_SCALAR calculated; if (!hash_to_scalar_dleq(method, &calculated, &pub->pubs, &affines[idx_T], &affines[idx_W], &affines[idx_k0], &affines[idx_k1])) { return 0; } // c == calculated if (!ec_scalar_equal_vartime(group, &c, &calculated)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_PROOF); return 0; } return 1; } static int voprf_sign_tt(const VOPRF_METHOD *method, const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue) { const EC_GROUP *group = method->group; if (num_requested < num_to_issue) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); return 0; } if (num_to_issue > ((size_t)-1) / sizeof(EC_JACOBIAN) || num_to_issue > ((size_t)-1) / sizeof(EC_SCALAR)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); return 0; } int ret = 0; EC_JACOBIAN *BTs = OPENSSL_malloc(num_to_issue * sizeof(EC_JACOBIAN)); EC_JACOBIAN *Zs = OPENSSL_malloc(num_to_issue * sizeof(EC_JACOBIAN)); EC_SCALAR *es = OPENSSL_malloc(num_to_issue * sizeof(EC_SCALAR)); CBB batch_cbb; CBB_zero(&batch_cbb); if (!BTs || !Zs || !es || !CBB_init(&batch_cbb, 0) || !cbb_add_point(&batch_cbb, method->group, &key->pubs)) { goto err; } for (size_t i = 0; i < num_to_issue; i++) { EC_AFFINE BT_affine, Z_affine; EC_JACOBIAN BT, Z; if (!cbs_get_point(cbs, group, &BT_affine)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); goto err; } ec_affine_to_jacobian(group, &BT, &BT_affine); if (!ec_point_mul_scalar(group, &Z, &BT, &key->xs) || !ec_jacobian_to_affine(group, &Z_affine, &Z) || !cbb_add_point(cbb, group, &Z_affine)) { goto err; } if (!cbb_add_point(&batch_cbb, group, &BT_affine) || !cbb_add_point(&batch_cbb, group, &Z_affine)) { goto err; } BTs[i] = BT; Zs[i] = Z; if (!CBB_flush(cbb)) { goto err; } } // The DLEQ batching construction is described in appendix B of // https://eprint.iacr.org/2020/072/20200324:214215. Note the additional // computations all act on public inputs. for (size_t i = 0; i < num_to_issue; i++) { if (!hash_to_scalar_batch(method, &es[i], &batch_cbb, i)) { goto err; } } EC_JACOBIAN BT_batch, Z_batch; if (!ec_point_mul_scalar_public_batch(group, &BT_batch, /*g_scalar=*/NULL, BTs, es, num_to_issue) || !ec_point_mul_scalar_public_batch(group, &Z_batch, /*g_scalar=*/NULL, Zs, es, num_to_issue)) { goto err; } CBB proof; if (!CBB_add_u16_length_prefixed(cbb, &proof) || !dleq_generate(method, &proof, key, &BT_batch, &Z_batch) || !CBB_flush(cbb)) { goto err; } // Skip over any unused requests. size_t point_len = 1 + 2 * BN_num_bytes(&group->field); if (!CBS_skip(cbs, point_len * (num_requested - num_to_issue))) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); goto err; } ret = 1; err: OPENSSL_free(BTs); OPENSSL_free(Zs); OPENSSL_free(es); CBB_cleanup(&batch_cbb); return ret; } static STACK_OF(TRUST_TOKEN) *voprf_unblind_tt( const VOPRF_METHOD *method, const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count, uint32_t key_id) { const EC_GROUP *group = method->group; if (count > sk_TRUST_TOKEN_PRETOKEN_num(pretokens)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return NULL; } if (count > ((size_t)-1) / sizeof(EC_JACOBIAN) || count > ((size_t)-1) / sizeof(EC_SCALAR)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); return NULL; } int ok = 0; STACK_OF(TRUST_TOKEN) *ret = sk_TRUST_TOKEN_new_null(); EC_JACOBIAN *BTs = OPENSSL_malloc(count * sizeof(EC_JACOBIAN)); EC_JACOBIAN *Zs = OPENSSL_malloc(count * sizeof(EC_JACOBIAN)); EC_SCALAR *es = OPENSSL_malloc(count * sizeof(EC_SCALAR)); CBB batch_cbb; CBB_zero(&batch_cbb); if (ret == NULL || BTs == NULL || Zs == NULL || es == NULL || !CBB_init(&batch_cbb, 0) || !cbb_add_point(&batch_cbb, method->group, &key->pubs)) { goto err; } for (size_t i = 0; i < count; i++) { const TRUST_TOKEN_PRETOKEN *pretoken = sk_TRUST_TOKEN_PRETOKEN_value(pretokens, i); EC_AFFINE Z_affine; if (!cbs_get_point(cbs, group, &Z_affine)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); goto err; } ec_affine_to_jacobian(group, &BTs[i], &pretoken->Tp); ec_affine_to_jacobian(group, &Zs[i], &Z_affine); if (!cbb_add_point(&batch_cbb, group, &pretoken->Tp) || !cbb_add_point(&batch_cbb, group, &Z_affine)) { goto err; } // Unblind the token. // pretoken->r is rinv. EC_JACOBIAN N; EC_AFFINE N_affine; if (!ec_point_mul_scalar(group, &N, &Zs[i], &pretoken->r) || !ec_jacobian_to_affine(group, &N_affine, &N)) { goto err; } // Serialize the token. Include |key_id| to avoid an extra copy in the layer // above. CBB token_cbb; size_t point_len = 1 + 2 * BN_num_bytes(&group->field); if (!CBB_init(&token_cbb, 4 + TRUST_TOKEN_NONCE_SIZE + (2 + point_len)) || !CBB_add_u32(&token_cbb, key_id) || !CBB_add_bytes(&token_cbb, pretoken->salt, TRUST_TOKEN_NONCE_SIZE) || !cbb_add_point(&token_cbb, group, &N_affine) || !CBB_flush(&token_cbb)) { CBB_cleanup(&token_cbb); goto err; } TRUST_TOKEN *token = TRUST_TOKEN_new(CBB_data(&token_cbb), CBB_len(&token_cbb)); CBB_cleanup(&token_cbb); if (token == NULL || !sk_TRUST_TOKEN_push(ret, token)) { TRUST_TOKEN_free(token); goto err; } } // The DLEQ batching construction is described in appendix B of // https://eprint.iacr.org/2020/072/20200324:214215. Note the additional // computations all act on public inputs. for (size_t i = 0; i < count; i++) { if (!hash_to_scalar_batch(method, &es[i], &batch_cbb, i)) { goto err; } } EC_JACOBIAN BT_batch, Z_batch; if (!ec_point_mul_scalar_public_batch(group, &BT_batch, /*g_scalar=*/NULL, BTs, es, count) || !ec_point_mul_scalar_public_batch(group, &Z_batch, /*g_scalar=*/NULL, Zs, es, count)) { goto err; } CBS proof; if (!CBS_get_u16_length_prefixed(cbs, &proof) || !dleq_verify(method, &proof, key, &BT_batch, &Z_batch) || CBS_len(&proof) != 0) { goto err; } ok = 1; err: OPENSSL_free(BTs); OPENSSL_free(Zs); OPENSSL_free(es); CBB_cleanup(&batch_cbb); if (!ok) { sk_TRUST_TOKEN_pop_free(ret, TRUST_TOKEN_free); ret = NULL; } return ret; } static void sha384_update_u16(SHA512_CTX *ctx, uint16_t v) { uint8_t buf[2] = {v >> 8, v & 0xff}; SHA384_Update(ctx, buf, 2); } static void sha384_update_point_with_length( SHA512_CTX *ctx, const EC_GROUP *group, const EC_AFFINE *point) { uint8_t buf[EC_MAX_COMPRESSED]; size_t len = ec_point_to_bytes(group, point, POINT_CONVERSION_COMPRESSED, buf, sizeof(buf)); assert(len > 0); sha384_update_u16(ctx, (uint16_t)len); SHA384_Update(ctx, buf, len); } static int compute_composite_seed(const VOPRF_METHOD *method, uint8_t out[SHA384_DIGEST_LENGTH], const EC_AFFINE *pub) { const EC_GROUP *group = method->group; static const uint8_t kSeedDST[] = "Seed-OPRFV1-\x01-P384-SHA384"; SHA512_CTX hash_ctx; SHA384_Init(&hash_ctx); sha384_update_point_with_length(&hash_ctx, group, pub); sha384_update_u16(&hash_ctx, sizeof(kSeedDST) - 1); SHA384_Update(&hash_ctx, kSeedDST, sizeof(kSeedDST) - 1); SHA384_Final(out, &hash_ctx); return 1; } static int compute_composite_element(const VOPRF_METHOD *method, uint8_t seed[SHA384_DIGEST_LENGTH], EC_SCALAR *di, size_t index, const EC_AFFINE *C, const EC_AFFINE *D) { static const uint8_t kCompositeLabel[] = "Composite"; const EC_GROUP *group = method->group; if (index > UINT16_MAX) { return 0; } CBB cbb; uint8_t transcript[2 + SHA384_DIGEST_LENGTH + 2 + 2 * EC_MAX_COMPRESSED + sizeof(kCompositeLabel) - 1]; size_t len; if (!CBB_init_fixed(&cbb, transcript, sizeof(transcript)) || !CBB_add_u16(&cbb, SHA384_DIGEST_LENGTH) || !CBB_add_bytes(&cbb, seed, SHA384_DIGEST_LENGTH) || !CBB_add_u16(&cbb, index) || !cbb_serialize_point(&cbb, group, C) || !cbb_serialize_point(&cbb, group, D) || !CBB_add_bytes(&cbb, kCompositeLabel, sizeof(kCompositeLabel) - 1) || !CBB_finish(&cbb, NULL, &len) || !method->hash_to_scalar(method->group, di, transcript, len)) { return 0; } return 1; } static int generate_proof(const VOPRF_METHOD *method, CBB *cbb, const TRUST_TOKEN_ISSUER_KEY *priv, const EC_SCALAR *r, const EC_JACOBIAN *M, const EC_JACOBIAN *Z) { const EC_GROUP *group = method->group; enum { idx_M, idx_Z, idx_t2, idx_t3, num_idx, }; EC_JACOBIAN jacobians[num_idx]; if (!ec_point_mul_scalar_base(group, &jacobians[idx_t2], r) || !ec_point_mul_scalar(group, &jacobians[idx_t3], M, r)) { return 0; } EC_AFFINE affines[num_idx]; jacobians[idx_M] = *M; jacobians[idx_Z] = *Z; if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) { return 0; } EC_SCALAR c; if (!hash_to_scalar_challenge(method, &c, &priv->pubs, &affines[idx_M], &affines[idx_Z], &affines[idx_t2], &affines[idx_t3])) { return 0; } EC_SCALAR c_mont; ec_scalar_to_montgomery(group, &c_mont, &c); // s = r - c*xs EC_SCALAR s; ec_scalar_mul_montgomery(group, &s, &priv->xs, &c_mont); ec_scalar_sub(group, &s, r, &s); // Store DLEQ proof in transcript. if (!scalar_to_cbb(cbb, group, &c) || !scalar_to_cbb(cbb, group, &s)) { return 0; } return 1; } static int verify_proof(const VOPRF_METHOD *method, CBS *cbs, const TRUST_TOKEN_CLIENT_KEY *pub, const EC_JACOBIAN *M, const EC_JACOBIAN *Z) { const EC_GROUP *group = method->group; enum { idx_M, idx_Z, idx_t2, idx_t3, num_idx, }; EC_JACOBIAN jacobians[num_idx]; EC_SCALAR c, s; if (!scalar_from_cbs(cbs, group, &c) || !scalar_from_cbs(cbs, group, &s)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return 0; } EC_JACOBIAN pubs; ec_affine_to_jacobian(group, &pubs, &pub->pubs); if (!ec_point_mul_scalar_public(group, &jacobians[idx_t2], &s, &pubs, &c) || !mul_public_2(group, &jacobians[idx_t3], M, &s, Z, &c)) { return 0; } EC_AFFINE affines[num_idx]; jacobians[idx_M] = *M; jacobians[idx_Z] = *Z; if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) { return 0; } EC_SCALAR expected_c; if (!hash_to_scalar_challenge(method, &expected_c, &pub->pubs, &affines[idx_M], &affines[idx_Z], &affines[idx_t2], &affines[idx_t3])) { return 0; } // c == expected_c if (!ec_scalar_equal_vartime(group, &c, &expected_c)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_PROOF); return 0; } return 1; } static int voprf_sign_impl(const VOPRF_METHOD *method, const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, const EC_SCALAR *proof_scalar) { const EC_GROUP *group = method->group; if (num_requested < num_to_issue) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); return 0; } if (num_to_issue > ((size_t)-1) / sizeof(EC_JACOBIAN) || num_to_issue > ((size_t)-1) / sizeof(EC_SCALAR)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); return 0; } int ret = 0; EC_JACOBIAN *BTs = OPENSSL_malloc(num_to_issue * sizeof(EC_JACOBIAN)); EC_JACOBIAN *Zs = OPENSSL_malloc(num_to_issue * sizeof(EC_JACOBIAN)); EC_SCALAR *dis = OPENSSL_malloc(num_to_issue * sizeof(EC_SCALAR)); if (!BTs || !Zs || !dis) { goto err; } uint8_t seed[SHA384_DIGEST_LENGTH]; if (!compute_composite_seed(method, seed, &key->pubs)) { goto err; } // This implements the BlindEvaluateBatch as defined in section 4 of // draft-robert-privacypass-batched-tokens-01, based on the constructions // in draft-irtf-cfrg-voprf-21. To optimize the computation of the proof, // the computation of di is done during the token signing and passed into // the proof generation. for (size_t i = 0; i < num_to_issue; i++) { EC_AFFINE BT_affine, Z_affine; EC_JACOBIAN BT, Z; if (!cbs_get_point(cbs, group, &BT_affine)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); goto err; } ec_affine_to_jacobian(group, &BT, &BT_affine); if (!ec_point_mul_scalar(group, &Z, &BT, &key->xs) || !ec_jacobian_to_affine(group, &Z_affine, &Z) || !cbb_add_point(cbb, group, &Z_affine)) { goto err; } BTs[i] = BT; Zs[i] = Z; if (!compute_composite_element(method, seed, &dis[i], i, &BT_affine, &Z_affine)) { goto err; } if (!CBB_flush(cbb)) { goto err; } } EC_JACOBIAN M, Z; if (!ec_point_mul_scalar_public_batch(group, &M, /*g_scalar=*/NULL, BTs, dis, num_to_issue) || !ec_point_mul_scalar(group, &Z, &M, &key->xs)) { goto err; } CBB proof; if (!CBB_add_u16_length_prefixed(cbb, &proof) || !generate_proof(method, &proof, key, proof_scalar, &M, &Z) || !CBB_flush(cbb)) { goto err; } // Skip over any unused requests. size_t point_len = 1 + 2 * BN_num_bytes(&group->field); if (!CBS_skip(cbs, point_len * (num_requested - num_to_issue))) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); goto err; } ret = 1; err: OPENSSL_free(BTs); OPENSSL_free(Zs); OPENSSL_free(dis); return ret; } static int voprf_sign(const VOPRF_METHOD *method, const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue) { EC_SCALAR proof_scalar; if (!ec_random_nonzero_scalar(method->group, &proof_scalar, kDefaultAdditionalData)) { return 0; } return voprf_sign_impl(method, key, cbb, cbs, num_requested, num_to_issue, &proof_scalar); } static int voprf_sign_with_proof_scalar_for_testing( const VOPRF_METHOD *method, const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, const uint8_t *proof_scalar_buf, size_t proof_scalar_len) { EC_SCALAR proof_scalar; if (!ec_scalar_from_bytes(method->group, &proof_scalar, proof_scalar_buf, proof_scalar_len)) { return 0; } return voprf_sign_impl(method, key, cbb, cbs, num_requested, num_to_issue, &proof_scalar); } static STACK_OF(TRUST_TOKEN) *voprf_unblind( const VOPRF_METHOD *method, const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count, uint32_t key_id) { const EC_GROUP *group = method->group; if (count > sk_TRUST_TOKEN_PRETOKEN_num(pretokens)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); return NULL; } if (count > ((size_t)-1) / sizeof(EC_JACOBIAN) || count > ((size_t)-1) / sizeof(EC_SCALAR)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); return NULL; } int ok = 0; STACK_OF(TRUST_TOKEN) *ret = sk_TRUST_TOKEN_new_null(); EC_JACOBIAN *BTs = OPENSSL_malloc(count * sizeof(EC_JACOBIAN)); EC_JACOBIAN *Zs = OPENSSL_malloc(count * sizeof(EC_JACOBIAN)); EC_SCALAR *dis = OPENSSL_malloc(count * sizeof(EC_SCALAR)); if (ret == NULL || !BTs || !Zs || !dis) { goto err; } uint8_t seed[SHA384_DIGEST_LENGTH]; if (!compute_composite_seed(method, seed, &key->pubs)) { goto err; } for (size_t i = 0; i < count; i++) { const TRUST_TOKEN_PRETOKEN *pretoken = sk_TRUST_TOKEN_PRETOKEN_value(pretokens, i); EC_AFFINE Z_affine; if (!cbs_get_point(cbs, group, &Z_affine)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); goto err; } ec_affine_to_jacobian(group, &BTs[i], &pretoken->Tp); ec_affine_to_jacobian(group, &Zs[i], &Z_affine); if (!compute_composite_element(method, seed, &dis[i], i, &pretoken->Tp, &Z_affine)) { goto err; } // Unblind the token. // pretoken->r is rinv. EC_JACOBIAN N; EC_AFFINE N_affine; if (!ec_point_mul_scalar(group, &N, &Zs[i], &pretoken->r) || !ec_jacobian_to_affine(group, &N_affine, &N)) { goto err; } // Serialize the token. Include |key_id| to avoid an extra copy in the layer // above. CBB token_cbb; size_t point_len = 1 + 2 * BN_num_bytes(&group->field); if (!CBB_init(&token_cbb, 4 + TRUST_TOKEN_NONCE_SIZE + (2 + point_len)) || !CBB_add_u32(&token_cbb, key_id) || !CBB_add_bytes(&token_cbb, pretoken->salt, TRUST_TOKEN_NONCE_SIZE) || !cbb_add_point(&token_cbb, group, &N_affine) || !CBB_flush(&token_cbb)) { CBB_cleanup(&token_cbb); goto err; } TRUST_TOKEN *token = TRUST_TOKEN_new(CBB_data(&token_cbb), CBB_len(&token_cbb)); CBB_cleanup(&token_cbb); if (token == NULL || !sk_TRUST_TOKEN_push(ret, token)) { TRUST_TOKEN_free(token); goto err; } } EC_JACOBIAN M, Z; if (!ec_point_mul_scalar_public_batch(group, &M, /*g_scalar=*/NULL, BTs, dis, count) || !ec_point_mul_scalar_public_batch(group, &Z, /*g_scalar=*/NULL, Zs, dis, count)) { goto err; } CBS proof; if (!CBS_get_u16_length_prefixed(cbs, &proof) || !verify_proof(method, &proof, key, &M, &Z) || CBS_len(&proof) != 0) { goto err; } ok = 1; err: OPENSSL_free(BTs); OPENSSL_free(Zs); OPENSSL_free(dis); if (!ok) { sk_TRUST_TOKEN_pop_free(ret, TRUST_TOKEN_free); ret = NULL; } return ret; } static int voprf_read(const VOPRF_METHOD *method, const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], const uint8_t *token, size_t token_len, int include_message, const uint8_t *msg, size_t msg_len) { const EC_GROUP *group = method->group; CBS cbs, salt; CBS_init(&cbs, token, token_len); EC_AFFINE Ws; if (!CBS_get_bytes(&cbs, &salt, TRUST_TOKEN_NONCE_SIZE) || !cbs_get_point(&cbs, group, &Ws) || CBS_len(&cbs) != 0) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_TOKEN); return 0; } if (include_message) { SHA512_CTX hash_ctx; assert(SHA512_DIGEST_LENGTH == TRUST_TOKEN_NONCE_SIZE); SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, CBS_data(&salt), CBS_len(&salt)); SHA512_Update(&hash_ctx, msg, msg_len); SHA512_Final(out_nonce, &hash_ctx); } else { OPENSSL_memcpy(out_nonce, CBS_data(&salt), CBS_len(&salt)); } EC_JACOBIAN T; if (!method->hash_to_group(group, &T, out_nonce)) { return 0; } EC_JACOBIAN Ws_calculated; if (!ec_point_mul_scalar(group, &Ws_calculated, &T, &key->xs) || !ec_affine_jacobian_equal(group, &Ws, &Ws_calculated)) { OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BAD_VALIDITY_CHECK); return 0; } return 1; } // VOPRF experiment v2. static int voprf_exp2_hash_to_group(const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t t[TRUST_TOKEN_NONCE_SIZE]) { const uint8_t kHashTLabel[] = "TrustToken VOPRF Experiment V2 HashToGroup"; return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( group, out, kHashTLabel, sizeof(kHashTLabel), t, TRUST_TOKEN_NONCE_SIZE); } static int voprf_exp2_hash_to_scalar(const EC_GROUP *group, EC_SCALAR *out, uint8_t *buf, size_t len) { const uint8_t kHashCLabel[] = "TrustToken VOPRF Experiment V2 HashToScalar"; return ec_hash_to_scalar_p384_xmd_sha512_draft07( group, out, kHashCLabel, sizeof(kHashCLabel), buf, len); } static int voprf_exp2_ok = 0; static VOPRF_METHOD voprf_exp2_method; static CRYPTO_once_t voprf_exp2_method_once = CRYPTO_ONCE_INIT; static void voprf_exp2_init_method_impl(void) { voprf_exp2_ok = voprf_init_method(&voprf_exp2_method, NID_secp384r1, voprf_exp2_hash_to_group, voprf_exp2_hash_to_scalar); } static int voprf_exp2_init_method(void) { CRYPTO_once(&voprf_exp2_method_once, voprf_exp2_init_method_impl); if (!voprf_exp2_ok) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); return 0; } return 1; } int voprf_exp2_generate_key(CBB *out_private, CBB *out_public) { if (!voprf_exp2_init_method()) { return 0; } return voprf_generate_key(&voprf_exp2_method, out_private, out_public); } int voprf_exp2_derive_key_from_secret(CBB *out_private, CBB *out_public, const uint8_t *secret, size_t secret_len) { if (!voprf_exp2_init_method()) { return 0; } return voprf_derive_key_from_secret(&voprf_exp2_method, out_private, out_public, secret, secret_len); } int voprf_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len) { if (!voprf_exp2_init_method()) { return 0; } return voprf_client_key_from_bytes(&voprf_exp2_method, key, in, len); } int voprf_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len) { if (!voprf_exp2_init_method()) { return 0; } return voprf_issuer_key_from_bytes(&voprf_exp2_method, key, in, len); } STACK_OF(TRUST_TOKEN_PRETOKEN) *voprf_exp2_blind(CBB *cbb, size_t count, int include_message, const uint8_t *msg, size_t msg_len) { if (!voprf_exp2_init_method()) { return NULL; } return voprf_blind(&voprf_exp2_method, cbb, count, include_message, msg, msg_len); } int voprf_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata) { if (!voprf_exp2_init_method() || private_metadata != 0) { return 0; } return voprf_sign_tt(&voprf_exp2_method, key, cbb, cbs, num_requested, num_to_issue); } STACK_OF(TRUST_TOKEN) *voprf_exp2_unblind( const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count, uint32_t key_id) { if (!voprf_exp2_init_method()) { return NULL; } return voprf_unblind_tt(&voprf_exp2_method, key, pretokens, cbs, count, key_id); } int voprf_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], uint8_t *out_private_metadata, const uint8_t *token, size_t token_len, int include_message, const uint8_t *msg, size_t msg_len) { if (!voprf_exp2_init_method()) { return 0; } return voprf_read(&voprf_exp2_method, key, out_nonce, token, token_len, include_message, msg, msg_len); } // VOPRF PST v1. static int voprf_pst1_hash_to_group(const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t t[TRUST_TOKEN_NONCE_SIZE]) { const uint8_t kHashTLabel[] = "HashToGroup-OPRFV1-\x01-P384-SHA384"; return ec_hash_to_curve_p384_xmd_sha384_sswu(group, out, kHashTLabel, sizeof(kHashTLabel) - 1, t, TRUST_TOKEN_NONCE_SIZE); } static int voprf_pst1_hash_to_scalar(const EC_GROUP *group, EC_SCALAR *out, uint8_t *buf, size_t len) { const uint8_t kHashCLabel[] = "HashToScalar-OPRFV1-\x01-P384-SHA384"; return ec_hash_to_scalar_p384_xmd_sha384(group, out, kHashCLabel, sizeof(kHashCLabel) - 1, buf, len); } static int voprf_pst1_ok = 0; static VOPRF_METHOD voprf_pst1_method; static CRYPTO_once_t voprf_pst1_method_once = CRYPTO_ONCE_INIT; static void voprf_pst1_init_method_impl(void) { voprf_pst1_ok = voprf_init_method(&voprf_pst1_method, NID_secp384r1, voprf_pst1_hash_to_group, voprf_pst1_hash_to_scalar); } static int voprf_pst1_init_method(void) { CRYPTO_once(&voprf_pst1_method_once, voprf_pst1_init_method_impl); if (!voprf_pst1_ok) { OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); return 0; } return 1; } int voprf_pst1_generate_key(CBB *out_private, CBB *out_public) { if (!voprf_pst1_init_method()) { return 0; } return voprf_generate_key(&voprf_pst1_method, out_private, out_public); } int voprf_pst1_derive_key_from_secret(CBB *out_private, CBB *out_public, const uint8_t *secret, size_t secret_len) { if (!voprf_pst1_init_method()) { return 0; } return voprf_derive_key_from_secret(&voprf_pst1_method, out_private, out_public, secret, secret_len); } int voprf_pst1_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len) { if (!voprf_pst1_init_method()) { return 0; } return voprf_client_key_from_bytes(&voprf_pst1_method, key, in, len); } int voprf_pst1_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len) { if (!voprf_pst1_init_method()) { return 0; } return voprf_issuer_key_from_bytes(&voprf_pst1_method, key, in, len); } STACK_OF(TRUST_TOKEN_PRETOKEN) *voprf_pst1_blind(CBB *cbb, size_t count, int include_message, const uint8_t *msg, size_t msg_len) { if (!voprf_pst1_init_method()) { return NULL; } return voprf_blind(&voprf_pst1_method, cbb, count, include_message, msg, msg_len); } int voprf_pst1_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata) { if (!voprf_pst1_init_method() || private_metadata != 0) { return 0; } return voprf_sign(&voprf_pst1_method, key, cbb, cbs, num_requested, num_to_issue); } int voprf_pst1_sign_with_proof_scalar_for_testing( const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata, const uint8_t *proof_scalar_buf, size_t proof_scalar_len) { if (!voprf_pst1_init_method() || private_metadata != 0) { return 0; } return voprf_sign_with_proof_scalar_for_testing( &voprf_pst1_method, key, cbb, cbs, num_requested, num_to_issue, proof_scalar_buf, proof_scalar_len); } STACK_OF(TRUST_TOKEN) *voprf_pst1_unblind( const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count, uint32_t key_id) { if (!voprf_pst1_init_method()) { return NULL; } return voprf_unblind(&voprf_pst1_method, key, pretokens, cbs, count, key_id); } int voprf_pst1_read(const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], uint8_t *out_private_metadata, const uint8_t *token, size_t token_len, int include_message, const uint8_t *msg, size_t msg_len) { if (!voprf_pst1_init_method()) { return 0; } return voprf_read(&voprf_pst1_method, key, out_nonce, token, token_len, include_message, msg, msg_len); }