(function (global, factory) {
  if (typeof define === "function" && define.amd) {
    define(["exports"], factory);
  } else if (typeof exports !== "undefined") {
    factory(exports);
  } else {
    var mod = {
      exports: {}
    };
    factory(mod.exports);
    global.fflateModule = mod.exports;
  }
})(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports) {
  "use strict";

  Object.defineProperty(_exports, "__esModule", {
    value: true
  });
  _exports.Zlib = _exports.ZipPassThrough = _exports.ZipDeflate = _exports.Zip = _exports.Unzlib = _exports.UnzipPassThrough = _exports.UnzipInflate = _exports.Unzip = _exports.Inflate = _exports.Gzip = _exports.Gunzip = _exports.EncodeUTF8 = _exports.Deflate = _exports.Decompress = _exports.DecodeUTF8 = _exports.Compress = _exports.AsyncZlib = _exports.AsyncZipDeflate = _exports.AsyncUnzlib = _exports.AsyncUnzipInflate = _exports.AsyncInflate = _exports.AsyncGzip = _exports.AsyncGunzip = _exports.AsyncDeflate = _exports.AsyncDecompress = _exports.AsyncCompress = void 0;
  _exports.decompress = decompress;
  _exports.decompressSync = decompressSync;
  _exports.deflate = deflate;
  _exports.deflateSync = deflateSync;
  _exports.gunzip = gunzip;
  _exports.gunzipSync = gunzipSync;
  _exports.compress = _exports.gzip = gzip;
  _exports.compressSync = _exports.gzipSync = gzipSync;
  _exports.inflate = inflate;
  _exports.inflateSync = inflateSync;
  _exports.strFromU8 = strFromU8;
  _exports.strToU8 = strToU8;
  _exports.unzip = unzip;
  _exports.unzipSync = unzipSync;
  _exports.unzlib = unzlib;
  _exports.unzlibSync = unzlibSync;
  _exports.zip = zip;
  _exports.zipSync = zipSync;
  _exports.zlib = zlib;
  _exports.zlibSync = zlibSync;

  /*!
  fflate - fast JavaScript compression/decompression
  <https://101arrowz.github.io/fflate>
  Licensed under MIT. https://github.com/101arrowz/fflate/blob/master/LICENSE
  version 0.6.9
  */
  // DEFLATE is a complex format; to read this code, you should probably check the RFC first:
  // https://tools.ietf.org/html/rfc1951
  // You may also wish to take a look at the guide I made about this program:
  // https://gist.github.com/101arrowz/253f31eb5abc3d9275ab943003ffecad
  // Some of the following code is similar to that of UZIP.js:
  // https://github.com/photopea/UZIP.js
  // However, the vast majority of the codebase has diverged from UZIP.js to increase performance and reduce bundle size.
  // Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint
  // is better for memory in most engines (I *think*).
  var ch2 = {};

  var durl = function durl(c) {
    return URL.createObjectURL(new Blob([c], {
      type: 'text/javascript'
    }));
  };

  var cwk = function cwk(u) {
    return new Worker(u);
  };

  try {
    URL.revokeObjectURL(durl(''));
  } catch (e) {
    // We're in Deno or a very old browser
    durl = function durl(c) {
      return 'data:application/javascript;charset=UTF-8,' + encodeURI(c);
    }; // If Deno, this is necessary; if not, this changes nothing


    cwk = function cwk(u) {
      return new Worker(u, {
        type: 'module'
      });
    };
  }

  var wk = function wk(c, id, msg, transfer, cb) {
    var w = cwk(ch2[id] || (ch2[id] = durl(c)));

    w.onerror = function (e) {
      return cb(e.error, null);
    };

    w.onmessage = function (e) {
      return cb(null, e.data);
    };

    w.postMessage(msg, transfer);
    return w;
  }; // aliases for shorter compressed code (most minifers don't do this)


  var u8 = Uint8Array,
      u16 = Uint16Array,
      u32 = Uint32Array; // fixed length extra bits

  var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0,
  /* unused */
  0, 0,
  /* impossible */
  0]); // fixed distance extra bits
  // see fleb note

  var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
  /* unused */
  0, 0]); // code length index map

  var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]); // get base, reverse index map from extra bits

  var freb = function freb(eb, start) {
    var b = new u16(31);

    for (var i = 0; i < 31; ++i) {
      b[i] = start += 1 << eb[i - 1];
    } // numbers here are at max 18 bits


    var r = new u32(b[30]);

    for (var i = 1; i < 30; ++i) {
      for (var j = b[i]; j < b[i + 1]; ++j) {
        r[j] = j - b[i] << 5 | i;
      }
    }

    return [b, r];
  };

  var _a = freb(fleb, 2),
      fl = _a[0],
      revfl = _a[1]; // we can ignore the fact that the other numbers are wrong; they never happen anyway


  fl[28] = 258, revfl[258] = 28;

  var _b = freb(fdeb, 0),
      fd = _b[0],
      revfd = _b[1]; // map of value to reverse (assuming 16 bits)


  var rev = new u16(32768);

  for (var i = 0; i < 32768; ++i) {
    // reverse table algorithm from SO
    var x = (i & 0xAAAA) >>> 1 | (i & 0x5555) << 1;
    x = (x & 0xCCCC) >>> 2 | (x & 0x3333) << 2;
    x = (x & 0xF0F0) >>> 4 | (x & 0x0F0F) << 4;
    rev[i] = ((x & 0xFF00) >>> 8 | (x & 0x00FF) << 8) >>> 1;
  } // create huffman tree from u8 "map": index -> code length for code index
  // mb (max bits) must be at most 15
  // TODO: optimize/split up?


  var hMap = function hMap(cd, mb, r) {
    var s = cd.length; // index

    var i = 0; // u16 "map": index -> # of codes with bit length = index

    var l = new u16(mb); // length of cd must be 288 (total # of codes)

    for (; i < s; ++i) {
      ++l[cd[i] - 1];
    } // u16 "map": index -> minimum code for bit length = index


    var le = new u16(mb);

    for (i = 0; i < mb; ++i) {
      le[i] = le[i - 1] + l[i - 1] << 1;
    }

    var co;

    if (r) {
      // u16 "map": index -> number of actual bits, symbol for code
      co = new u16(1 << mb); // bits to remove for reverser

      var rvb = 15 - mb;

      for (i = 0; i < s; ++i) {
        // ignore 0 lengths
        if (cd[i]) {
          // num encoding both symbol and bits read
          var sv = i << 4 | cd[i]; // free bits

          var r_1 = mb - cd[i]; // start value

          var v = le[cd[i] - 1]++ << r_1; // m is end value

          for (var m = v | (1 << r_1) - 1; v <= m; ++v) {
            // every 16 bit value starting with the code yields the same result
            co[rev[v] >>> rvb] = sv;
          }
        }
      }
    } else {
      co = new u16(s);

      for (i = 0; i < s; ++i) {
        if (cd[i]) {
          co[i] = rev[le[cd[i] - 1]++] >>> 15 - cd[i];
        }
      }
    }

    return co;
  }; // fixed length tree


  var flt = new u8(288);

  for (var i = 0; i < 144; ++i) {
    flt[i] = 8;
  }

  for (var i = 144; i < 256; ++i) {
    flt[i] = 9;
  }

  for (var i = 256; i < 280; ++i) {
    flt[i] = 7;
  }

  for (var i = 280; i < 288; ++i) {
    flt[i] = 8;
  } // fixed distance tree


  var fdt = new u8(32);

  for (var i = 0; i < 32; ++i) {
    fdt[i] = 5;
  } // fixed length map


  var flm = /*#__PURE__*/hMap(flt, 9, 0),
      flrm = /*#__PURE__*/hMap(flt, 9, 1); // fixed distance map

  var fdm = /*#__PURE__*/hMap(fdt, 5, 0),
      fdrm = /*#__PURE__*/hMap(fdt, 5, 1); // find max of array

  var max = function max(a) {
    var m = a[0];

    for (var i = 1; i < a.length; ++i) {
      if (a[i] > m) m = a[i];
    }

    return m;
  }; // read d, starting at bit p and mask with m


  var bits = function bits(d, p, m) {
    var o = p / 8 | 0;
    return (d[o] | d[o + 1] << 8) >> (p & 7) & m;
  }; // read d, starting at bit p continuing for at least 16 bits


  var bits16 = function bits16(d, p) {
    var o = p / 8 | 0;
    return (d[o] | d[o + 1] << 8 | d[o + 2] << 16) >> (p & 7);
  }; // get end of byte


  var shft = function shft(p) {
    return (p / 8 | 0) + (p & 7 && 1);
  }; // typed array slice - allows garbage collector to free original reference,
  // while being more compatible than .slice


  var slc = function slc(v, s, e) {
    if (s == null || s < 0) s = 0;
    if (e == null || e > v.length) e = v.length; // can't use .constructor in case user-supplied

    var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s);
    n.set(v.subarray(s, e));
    return n;
  }; // expands raw DEFLATE data


  var inflt = function inflt(dat, buf, st) {
    // source length
    var sl = dat.length;
    if (!sl || st && !st.l && sl < 5) return buf || new u8(0); // have to estimate size

    var noBuf = !buf || st; // no state

    var noSt = !st || st.i;
    if (!st) st = {}; // Assumes roughly 33% compression ratio average

    if (!buf) buf = new u8(sl * 3); // ensure buffer can fit at least l elements

    var cbuf = function cbuf(l) {
      var bl = buf.length; // need to increase size to fit

      if (l > bl) {
        // Double or set to necessary, whichever is greater
        var nbuf = new u8(Math.max(bl * 2, l));
        nbuf.set(buf);
        buf = nbuf;
      }
    }; //  last chunk         bitpos           bytes


    var final = st.f || 0,
        pos = st.p || 0,
        bt = st.b || 0,
        lm = st.l,
        dm = st.d,
        lbt = st.m,
        dbt = st.n; // total bits

    var tbts = sl * 8;

    do {
      if (!lm) {
        // BFINAL - this is only 1 when last chunk is next
        st.f = final = bits(dat, pos, 1); // type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman

        var type = bits(dat, pos + 1, 3);
        pos += 3;

        if (!type) {
          // go to end of byte boundary
          var s = shft(pos) + 4,
              l = dat[s - 4] | dat[s - 3] << 8,
              t = s + l;

          if (t > sl) {
            if (noSt) throw 'unexpected EOF';
            break;
          } // ensure size


          if (noBuf) cbuf(bt + l); // Copy over uncompressed data

          buf.set(dat.subarray(s, t), bt); // Get new bitpos, update byte count

          st.b = bt += l, st.p = pos = t * 8;
          continue;
        } else if (type == 1) lm = flrm, dm = fdrm, lbt = 9, dbt = 5;else if (type == 2) {
          //  literal                            lengths
          var hLit = bits(dat, pos, 31) + 257,
              hcLen = bits(dat, pos + 10, 15) + 4;
          var tl = hLit + bits(dat, pos + 5, 31) + 1;
          pos += 14; // length+distance tree

          var ldt = new u8(tl); // code length tree

          var clt = new u8(19);

          for (var i = 0; i < hcLen; ++i) {
            // use index map to get real code
            clt[clim[i]] = bits(dat, pos + i * 3, 7);
          }

          pos += hcLen * 3; // code lengths bits

          var clb = max(clt),
              clbmsk = (1 << clb) - 1; // code lengths map

          var clm = hMap(clt, clb, 1);

          for (var i = 0; i < tl;) {
            var r = clm[bits(dat, pos, clbmsk)]; // bits read

            pos += r & 15; // symbol

            var s = r >>> 4; // code length to copy

            if (s < 16) {
              ldt[i++] = s;
            } else {
              //  copy   count
              var c = 0,
                  n = 0;
              if (s == 16) n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1];else if (s == 17) n = 3 + bits(dat, pos, 7), pos += 3;else if (s == 18) n = 11 + bits(dat, pos, 127), pos += 7;

              while (n--) {
                ldt[i++] = c;
              }
            }
          } //    length tree                 distance tree


          var lt = ldt.subarray(0, hLit),
              dt = ldt.subarray(hLit); // max length bits

          lbt = max(lt); // max dist bits

          dbt = max(dt);
          lm = hMap(lt, lbt, 1);
          dm = hMap(dt, dbt, 1);
        } else throw 'invalid block type';

        if (pos > tbts) {
          if (noSt) throw 'unexpected EOF';
          break;
        }
      } // Make sure the buffer can hold this + the largest possible addition
      // Maximum chunk size (practically, theoretically infinite) is 2^17;


      if (noBuf) cbuf(bt + 131072);
      var lms = (1 << lbt) - 1,
          dms = (1 << dbt) - 1;
      var lpos = pos;

      for (;; lpos = pos) {
        // bits read, code
        var c = lm[bits16(dat, pos) & lms],
            sym = c >>> 4;
        pos += c & 15;

        if (pos > tbts) {
          if (noSt) throw 'unexpected EOF';
          break;
        }

        if (!c) throw 'invalid length/literal';
        if (sym < 256) buf[bt++] = sym;else if (sym == 256) {
          lpos = pos, lm = null;
          break;
        } else {
          var add = sym - 254; // no extra bits needed if less

          if (sym > 264) {
            // index
            var i = sym - 257,
                b = fleb[i];
            add = bits(dat, pos, (1 << b) - 1) + fl[i];
            pos += b;
          } // dist


          var d = dm[bits16(dat, pos) & dms],
              dsym = d >>> 4;
          if (!d) throw 'invalid distance';
          pos += d & 15;
          var dt = fd[dsym];

          if (dsym > 3) {
            var b = fdeb[dsym];
            dt += bits16(dat, pos) & (1 << b) - 1, pos += b;
          }

          if (pos > tbts) {
            if (noSt) throw 'unexpected EOF';
            break;
          }

          if (noBuf) cbuf(bt + 131072);
          var end = bt + add;

          for (; bt < end; bt += 4) {
            buf[bt] = buf[bt - dt];
            buf[bt + 1] = buf[bt + 1 - dt];
            buf[bt + 2] = buf[bt + 2 - dt];
            buf[bt + 3] = buf[bt + 3 - dt];
          }

          bt = end;
        }
      }

      st.l = lm, st.p = lpos, st.b = bt;
      if (lm) final = 1, st.m = lbt, st.d = dm, st.n = dbt;
    } while (!final);

    return bt == buf.length ? buf : slc(buf, 0, bt);
  }; // starting at p, write the minimum number of bits that can hold v to d


  var wbits = function wbits(d, p, v) {
    v <<= p & 7;
    var o = p / 8 | 0;
    d[o] |= v;
    d[o + 1] |= v >>> 8;
  }; // starting at p, write the minimum number of bits (>8) that can hold v to d


  var wbits16 = function wbits16(d, p, v) {
    v <<= p & 7;
    var o = p / 8 | 0;
    d[o] |= v;
    d[o + 1] |= v >>> 8;
    d[o + 2] |= v >>> 16;
  }; // creates code lengths from a frequency table


  var hTree = function hTree(d, mb) {
    // Need extra info to make a tree
    var t = [];

    for (var i = 0; i < d.length; ++i) {
      if (d[i]) t.push({
        s: i,
        f: d[i]
      });
    }

    var s = t.length;
    var t2 = t.slice();
    if (!s) return [et, 0];

    if (s == 1) {
      var v = new u8(t[0].s + 1);
      v[t[0].s] = 1;
      return [v, 1];
    }

    t.sort(function (a, b) {
      return a.f - b.f;
    }); // after i2 reaches last ind, will be stopped
    // freq must be greater than largest possible number of symbols

    t.push({
      s: -1,
      f: 25001
    });
    var l = t[0],
        r = t[1],
        i0 = 0,
        i1 = 1,
        i2 = 2;
    t[0] = {
      s: -1,
      f: l.f + r.f,
      l: l,
      r: r
    }; // efficient algorithm from UZIP.js
    // i0 is lookbehind, i2 is lookahead - after processing two low-freq
    // symbols that combined have high freq, will start processing i2 (high-freq,
    // non-composite) symbols instead
    // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/

    while (i1 != s - 1) {
      l = t[t[i0].f < t[i2].f ? i0++ : i2++];
      r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++];
      t[i1++] = {
        s: -1,
        f: l.f + r.f,
        l: l,
        r: r
      };
    }

    var maxSym = t2[0].s;

    for (var i = 1; i < s; ++i) {
      if (t2[i].s > maxSym) maxSym = t2[i].s;
    } // code lengths


    var tr = new u16(maxSym + 1); // max bits in tree

    var mbt = ln(t[i1 - 1], tr, 0);

    if (mbt > mb) {
      // more algorithms from UZIP.js
      // TODO: find out how this code works (debt)
      //  ind    debt
      var i = 0,
          dt = 0; //    left            cost

      var lft = mbt - mb,
          cst = 1 << lft;
      t2.sort(function (a, b) {
        return tr[b.s] - tr[a.s] || a.f - b.f;
      });

      for (; i < s; ++i) {
        var i2_1 = t2[i].s;

        if (tr[i2_1] > mb) {
          dt += cst - (1 << mbt - tr[i2_1]);
          tr[i2_1] = mb;
        } else break;
      }

      dt >>>= lft;

      while (dt > 0) {
        var i2_2 = t2[i].s;
        if (tr[i2_2] < mb) dt -= 1 << mb - tr[i2_2]++ - 1;else ++i;
      }

      for (; i >= 0 && dt; --i) {
        var i2_3 = t2[i].s;

        if (tr[i2_3] == mb) {
          --tr[i2_3];
          ++dt;
        }
      }

      mbt = mb;
    }

    return [new u8(tr), mbt];
  }; // get the max length and assign length codes


  var ln = function ln(n, l, d) {
    return n.s == -1 ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1)) : l[n.s] = d;
  }; // length codes generation


  var lc = function lc(c) {
    var s = c.length; // Note that the semicolon was intentional

    while (s && !c[--s]) {
      ;
    }

    var cl = new u16(++s); //  ind      num         streak

    var cli = 0,
        cln = c[0],
        cls = 1;

    var w = function w(v) {
      cl[cli++] = v;
    };

    for (var i = 1; i <= s; ++i) {
      if (c[i] == cln && i != s) ++cls;else {
        if (!cln && cls > 2) {
          for (; cls > 138; cls -= 138) {
            w(32754);
          }

          if (cls > 2) {
            w(cls > 10 ? cls - 11 << 5 | 28690 : cls - 3 << 5 | 12305);
            cls = 0;
          }
        } else if (cls > 3) {
          w(cln), --cls;

          for (; cls > 6; cls -= 6) {
            w(8304);
          }

          if (cls > 2) w(cls - 3 << 5 | 8208), cls = 0;
        }

        while (cls--) {
          w(cln);
        }

        cls = 1;
        cln = c[i];
      }
    }

    return [cl.subarray(0, cli), s];
  }; // calculate the length of output from tree, code lengths


  var clen = function clen(cf, cl) {
    var l = 0;

    for (var i = 0; i < cl.length; ++i) {
      l += cf[i] * cl[i];
    }

    return l;
  }; // writes a fixed block
  // returns the new bit pos


  var wfblk = function wfblk(out, pos, dat) {
    // no need to write 00 as type: TypedArray defaults to 0
    var s = dat.length;
    var o = shft(pos + 2);
    out[o] = s & 255;
    out[o + 1] = s >>> 8;
    out[o + 2] = out[o] ^ 255;
    out[o + 3] = out[o + 1] ^ 255;

    for (var i = 0; i < s; ++i) {
      out[o + i + 4] = dat[i];
    }

    return (o + 4 + s) * 8;
  }; // writes a block


  var wblk = function wblk(dat, out, final, syms, lf, df, eb, li, bs, bl, p) {
    wbits(out, p++, final);
    ++lf[256];

    var _a = hTree(lf, 15),
        dlt = _a[0],
        mlb = _a[1];

    var _b = hTree(df, 15),
        ddt = _b[0],
        mdb = _b[1];

    var _c = lc(dlt),
        lclt = _c[0],
        nlc = _c[1];

    var _d = lc(ddt),
        lcdt = _d[0],
        ndc = _d[1];

    var lcfreq = new u16(19);

    for (var i = 0; i < lclt.length; ++i) {
      lcfreq[lclt[i] & 31]++;
    }

    for (var i = 0; i < lcdt.length; ++i) {
      lcfreq[lcdt[i] & 31]++;
    }

    var _e = hTree(lcfreq, 7),
        lct = _e[0],
        mlcb = _e[1];

    var nlcc = 19;

    for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc) {
      ;
    }

    var flen = bl + 5 << 3;
    var ftlen = clen(lf, flt) + clen(df, fdt) + eb;
    var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
    if (flen <= ftlen && flen <= dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl));
    var lm, ll, dm, dl;
    wbits(out, p, 1 + (dtlen < ftlen)), p += 2;

    if (dtlen < ftlen) {
      lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt;
      var llm = hMap(lct, mlcb, 0);
      wbits(out, p, nlc - 257);
      wbits(out, p + 5, ndc - 1);
      wbits(out, p + 10, nlcc - 4);
      p += 14;

      for (var i = 0; i < nlcc; ++i) {
        wbits(out, p + 3 * i, lct[clim[i]]);
      }

      p += 3 * nlcc;
      var lcts = [lclt, lcdt];

      for (var it = 0; it < 2; ++it) {
        var clct = lcts[it];

        for (var i = 0; i < clct.length; ++i) {
          var len = clct[i] & 31;
          wbits(out, p, llm[len]), p += lct[len];
          if (len > 15) wbits(out, p, clct[i] >>> 5 & 127), p += clct[i] >>> 12;
        }
      }
    } else {
      lm = flm, ll = flt, dm = fdm, dl = fdt;
    }

    for (var i = 0; i < li; ++i) {
      if (syms[i] > 255) {
        var len = syms[i] >>> 18 & 31;
        wbits16(out, p, lm[len + 257]), p += ll[len + 257];
        if (len > 7) wbits(out, p, syms[i] >>> 23 & 31), p += fleb[len];
        var dst = syms[i] & 31;
        wbits16(out, p, dm[dst]), p += dl[dst];
        if (dst > 3) wbits16(out, p, syms[i] >>> 5 & 8191), p += fdeb[dst];
      } else {
        wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
      }
    }

    wbits16(out, p, lm[256]);
    return p + ll[256];
  }; // deflate options (nice << 13) | chain


  var deo = /*#__PURE__*/new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]); // empty

  var et = /*#__PURE__*/new u8(0); // compresses data into a raw DEFLATE buffer

  var dflt = function dflt(dat, lvl, plvl, pre, post, lst) {
    var s = dat.length;
    var o = new u8(pre + s + 5 * (1 + Math.ceil(s / 7000)) + post); // writing to this writes to the output buffer

    var w = o.subarray(pre, o.length - post);
    var pos = 0;

    if (!lvl || s < 8) {
      for (var i = 0; i <= s; i += 65535) {
        // end
        var e = i + 65535;

        if (e < s) {
          // write full block
          pos = wfblk(w, pos, dat.subarray(i, e));
        } else {
          // write final block
          w[i] = lst;
          pos = wfblk(w, pos, dat.subarray(i, s));
        }
      }
    } else {
      var opt = deo[lvl - 1];
      var n = opt >>> 13,
          c = opt & 8191;
      var msk_1 = (1 << plvl) - 1; //    prev 2-byte val map    curr 2-byte val map

      var prev = new u16(32768),
          head = new u16(msk_1 + 1);
      var bs1_1 = Math.ceil(plvl / 3),
          bs2_1 = 2 * bs1_1;

      var hsh = function hsh(i) {
        return (dat[i] ^ dat[i + 1] << bs1_1 ^ dat[i + 2] << bs2_1) & msk_1;
      }; // 24576 is an arbitrary number of maximum symbols per block
      // 424 buffer for last block


      var syms = new u32(25000); // length/literal freq   distance freq

      var lf = new u16(288),
          df = new u16(32); //  l/lcnt  exbits  index  l/lind  waitdx  bitpos

      var lc_1 = 0,
          eb = 0,
          i = 0,
          li = 0,
          wi = 0,
          bs = 0;

      for (; i < s; ++i) {
        // hash value
        // deopt when i > s - 3 - at end, deopt acceptable
        var hv = hsh(i); // index mod 32768    previous index mod

        var imod = i & 32767,
            pimod = head[hv];
        prev[imod] = pimod;
        head[hv] = imod; // We always should modify head and prev, but only add symbols if
        // this data is not yet processed ("wait" for wait index)

        if (wi <= i) {
          // bytes remaining
          var rem = s - i;

          if ((lc_1 > 7000 || li > 24576) && rem > 423) {
            pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
            li = lc_1 = eb = 0, bs = i;

            for (var j = 0; j < 286; ++j) {
              lf[j] = 0;
            }

            for (var j = 0; j < 30; ++j) {
              df[j] = 0;
            }
          } //  len    dist   chain


          var l = 2,
              d = 0,
              ch_1 = c,
              dif = imod - pimod & 32767;

          if (rem > 2 && hv == hsh(i - dif)) {
            var maxn = Math.min(n, rem) - 1;
            var maxd = Math.min(32767, i); // max possible length
            // not capped at dif because decompressors implement "rolling" index population

            var ml = Math.min(258, rem);

            while (dif <= maxd && --ch_1 && imod != pimod) {
              if (dat[i + l] == dat[i + l - dif]) {
                var nl = 0;

                for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl) {
                  ;
                }

                if (nl > l) {
                  l = nl, d = dif; // break out early when we reach "nice" (we are satisfied enough)

                  if (nl > maxn) break; // now, find the rarest 2-byte sequence within this
                  // length of literals and search for that instead.
                  // Much faster than just using the start

                  var mmd = Math.min(dif, nl - 2);
                  var md = 0;

                  for (var j = 0; j < mmd; ++j) {
                    var ti = i - dif + j + 32768 & 32767;
                    var pti = prev[ti];
                    var cd = ti - pti + 32768 & 32767;
                    if (cd > md) md = cd, pimod = ti;
                  }
                }
              } // check the previous match


              imod = pimod, pimod = prev[imod];
              dif += imod - pimod + 32768 & 32767;
            }
          } // d will be nonzero only when a match was found


          if (d) {
            // store both dist and len data in one Uint32
            // Make sure this is recognized as a len/dist with 28th bit (2^28)
            syms[li++] = 268435456 | revfl[l] << 18 | revfd[d];
            var lin = revfl[l] & 31,
                din = revfd[d] & 31;
            eb += fleb[lin] + fdeb[din];
            ++lf[257 + lin];
            ++df[din];
            wi = i + l;
            ++lc_1;
          } else {
            syms[li++] = dat[i];
            ++lf[dat[i]];
          }
        }
      }

      pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos); // this is the easiest way to avoid needing to maintain state

      if (!lst && pos & 7) pos = wfblk(w, pos + 1, et);
    }

    return slc(o, 0, pre + shft(pos) + post);
  }; // CRC32 table


  var crct = /*#__PURE__*/function () {
    var t = new u32(256);

    for (var i = 0; i < 256; ++i) {
      var c = i,
          k = 9;

      while (--k) {
        c = (c & 1 && 0xEDB88320) ^ c >>> 1;
      }

      t[i] = c;
    }

    return t;
  }(); // CRC32


  var crc = function crc() {
    var c = -1;
    return {
      p: function p(d) {
        // closures have awful performance
        var cr = c;

        for (var i = 0; i < d.length; ++i) {
          cr = crct[cr & 255 ^ d[i]] ^ cr >>> 8;
        }

        c = cr;
      },
      d: function d() {
        return ~c;
      }
    };
  }; // Alder32


  var adler = function adler() {
    var a = 1,
        b = 0;
    return {
      p: function p(d) {
        // closures have awful performance
        var n = a,
            m = b;
        var l = d.length;

        for (var i = 0; i != l;) {
          var e = Math.min(i + 2655, l);

          for (; i < e; ++i) {
            m += n += d[i];
          }

          n = (n & 65535) + 15 * (n >> 16), m = (m & 65535) + 15 * (m >> 16);
        }

        a = n, b = m;
      },
      d: function d() {
        a %= 65521, b %= 65521;
        return (a & 255) << 24 | a >>> 8 << 16 | (b & 255) << 8 | b >>> 8;
      }
    };
  };

  ; // deflate with opts

  var dopt = function dopt(dat, opt, pre, post, st) {
    return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : 12 + opt.mem, pre, post, !st);
  }; // Walmart object spread


  var mrg = function mrg(a, b) {
    var o = {};

    for (var k in a) {
      o[k] = a[k];
    }

    for (var k in b) {
      o[k] = b[k];
    }

    return o;
  }; // worker clone
  // This is possibly the craziest part of the entire codebase, despite how simple it may seem.
  // The only parameter to this function is a closure that returns an array of variables outside of the function scope.
  // We're going to try to figure out the variable names used in the closure as strings because that is crucial for workerization.
  // We will return an object mapping of true variable name to value (basically, the current scope as a JS object).
  // The reason we can't just use the original variable names is minifiers mangling the toplevel scope.
  // This took me three weeks to figure out how to do.


  var wcln = function wcln(fn, fnStr, td) {
    var dt = fn();
    var st = fn.toString();
    var ks = st.slice(st.indexOf('[') + 1, st.lastIndexOf(']')).replace(/ /g, '').split(',');

    for (var i = 0; i < dt.length; ++i) {
      var v = dt[i],
          k = ks[i];

      if (typeof v == 'function') {
        fnStr += ';' + k + '=';
        var st_1 = v.toString();

        if (v.prototype) {
          // for global objects
          if (st_1.indexOf('[native code]') != -1) {
            var spInd = st_1.indexOf(' ', 8) + 1;
            fnStr += st_1.slice(spInd, st_1.indexOf('(', spInd));
          } else {
            fnStr += st_1;

            for (var t in v.prototype) {
              fnStr += ';' + k + '.prototype.' + t + '=' + v.prototype[t].toString();
            }
          }
        } else fnStr += st_1;
      } else td[k] = v;
    }

    return [fnStr, td];
  };

  var ch = []; // clone bufs

  var cbfs = function cbfs(v) {
    var tl = [];

    for (var k in v) {
      if (v[k] instanceof u8 || v[k] instanceof u16 || v[k] instanceof u32) tl.push((v[k] = new v[k].constructor(v[k])).buffer);
    }

    return tl;
  }; // use a worker to execute code


  var wrkr = function wrkr(fns, init, id, cb) {
    var _a;

    if (!ch[id]) {
      var fnStr = '',
          td_1 = {},
          m = fns.length - 1;

      for (var i = 0; i < m; ++i) {
        _a = wcln(fns[i], fnStr, td_1), fnStr = _a[0], td_1 = _a[1];
      }

      ch[id] = wcln(fns[m], fnStr, td_1);
    }

    var td = mrg({}, ch[id][1]);
    return wk(ch[id][0] + ';onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=' + init.toString() + '}', id, td, cbfs(td), cb);
  }; // base async inflate fn


  var bInflt = function bInflt() {
    return [u8, u16, u32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, hMap, max, bits, bits16, shft, slc, inflt, inflateSync, pbf, gu8];
  };

  var bDflt = function bDflt() {
    return [u8, u16, u32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf];
  }; // gzip extra


  var gze = function gze() {
    return [gzh, gzhl, wbytes, crc, crct];
  }; // gunzip extra


  var guze = function guze() {
    return [gzs, gzl];
  }; // zlib extra


  var zle = function zle() {
    return [zlh, wbytes, adler];
  }; // unzlib extra


  var zule = function zule() {
    return [zlv];
  }; // post buf


  var pbf = function pbf(msg) {
    return postMessage(msg, [msg.buffer]);
  }; // get u8


  var gu8 = function gu8(o) {
    return o && o.size && new u8(o.size);
  }; // async helper


  var cbify = function cbify(dat, opts, fns, init, id, cb) {
    var w = wrkr(fns, init, id, function (err, dat) {
      w.terminate();
      cb(err, dat);
    });
    w.postMessage([dat, opts], opts.consume ? [dat.buffer] : []);
    return function () {
      w.terminate();
    };
  }; // auto stream


  var astrm = function astrm(strm) {
    strm.ondata = function (dat, final) {
      return postMessage([dat, final], [dat.buffer]);
    };

    return function (ev) {
      return strm.push(ev.data[0], ev.data[1]);
    };
  }; // async stream attach


  var astrmify = function astrmify(fns, strm, opts, init, id) {
    var t;
    var w = wrkr(fns, init, id, function (err, dat) {
      if (err) w.terminate(), strm.ondata.call(strm, err);else {
        if (dat[1]) w.terminate();
        strm.ondata.call(strm, err, dat[0], dat[1]);
      }
    });
    w.postMessage(opts);

    strm.push = function (d, f) {
      if (t) throw 'stream finished';
      if (!strm.ondata) throw 'no stream handler';
      w.postMessage([d, t = f], [d.buffer]);
    };

    strm.terminate = function () {
      w.terminate();
    };
  }; // read 2 bytes


  var b2 = function b2(d, b) {
    return d[b] | d[b + 1] << 8;
  }; // read 4 bytes


  var b4 = function b4(d, b) {
    return (d[b] | d[b + 1] << 8 | d[b + 2] << 16 | d[b + 3] << 24) >>> 0;
  };

  var b8 = function b8(d, b) {
    return b4(d, b) + b4(d, b + 4) * 4294967296;
  }; // write bytes


  var wbytes = function wbytes(d, b, v) {
    for (; v; ++b) {
      d[b] = v, v >>>= 8;
    }
  }; // gzip header


  var gzh = function gzh(c, o) {
    var fn = o.filename;
    c[0] = 31, c[1] = 139, c[2] = 8, c[8] = o.level < 2 ? 4 : o.level == 9 ? 2 : 0, c[9] = 3; // assume Unix

    if (o.mtime != 0) wbytes(c, 4, Math.floor(new Date(o.mtime || Date.now()) / 1000));

    if (fn) {
      c[3] = 8;

      for (var i = 0; i <= fn.length; ++i) {
        c[i + 10] = fn.charCodeAt(i);
      }
    }
  }; // gzip footer: -8 to -4 = CRC, -4 to -0 is length
  // gzip start


  var gzs = function gzs(d) {
    if (d[0] != 31 || d[1] != 139 || d[2] != 8) throw 'invalid gzip data';
    var flg = d[3];
    var st = 10;
    if (flg & 4) st += d[10] | (d[11] << 8) + 2;

    for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++]) {
      ;
    }

    return st + (flg & 2);
  }; // gzip length


  var gzl = function gzl(d) {
    var l = d.length;
    return (d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16 | d[l - 1] << 24) >>> 0;
  }; // gzip header length


  var gzhl = function gzhl(o) {
    return 10 + (o.filename && o.filename.length + 1 || 0);
  }; // zlib header


  var zlh = function zlh(c, o) {
    var lv = o.level,
        fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2;
    c[0] = 120, c[1] = fl << 6 | (fl ? 32 - 2 * fl : 1);
  }; // zlib valid


  var zlv = function zlv(d) {
    if ((d[0] & 15) != 8 || d[0] >>> 4 > 7 || (d[0] << 8 | d[1]) % 31) throw 'invalid zlib data';
    if (d[1] & 32) throw 'invalid zlib data: preset dictionaries not supported';
  };

  function AsyncCmpStrm(opts, cb) {
    if (!cb && typeof opts == 'function') cb = opts, opts = {};
    this.ondata = cb;
    return opts;
  } // zlib footer: -4 to -0 is Adler32

  /**
   * Streaming DEFLATE compression
   */


  var Deflate = /*#__PURE__*/function () {
    function Deflate(opts, cb) {
      if (!cb && typeof opts == 'function') cb = opts, opts = {};
      this.ondata = cb;
      this.o = opts || {};
    }

    Deflate.prototype.p = function (c, f) {
      this.ondata(dopt(c, this.o, 0, 0, !f), f);
    };
    /**
     * Pushes a chunk to be deflated
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Deflate.prototype.push = function (chunk, final) {
      if (this.d) throw 'stream finished';
      if (!this.ondata) throw 'no stream handler';
      this.d = final;
      this.p(chunk, final || false);
    };

    return Deflate;
  }();

  _exports.Deflate = Deflate;

  /**
   * Asynchronous streaming DEFLATE compression
   */
  var AsyncDeflate = /*#__PURE__*/function () {
    function AsyncDeflate(opts, cb) {
      astrmify([bDflt, function () {
        return [astrm, Deflate];
      }], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
        var strm = new Deflate(ev.data);
        onmessage = astrm(strm);
      }, 6);
    }

    return AsyncDeflate;
  }();

  _exports.AsyncDeflate = AsyncDeflate;

  function deflate(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return cbify(data, opts, [bDflt], function (ev) {
      return pbf(deflateSync(ev.data[0], ev.data[1]));
    }, 0, cb);
  }
  /**
   * Compresses data with DEFLATE without any wrapper
   * @param data The data to compress
   * @param opts The compression options
   * @returns The deflated version of the data
   */


  function deflateSync(data, opts) {
    return dopt(data, opts || {}, 0, 0);
  }
  /**
   * Streaming DEFLATE decompression
   */


  var Inflate = /*#__PURE__*/function () {
    /**
     * Creates an inflation stream
     * @param cb The callback to call whenever data is inflated
     */
    function Inflate(cb) {
      this.s = {};
      this.p = new u8(0);
      this.ondata = cb;
    }

    Inflate.prototype.e = function (c) {
      if (this.d) throw 'stream finished';
      if (!this.ondata) throw 'no stream handler';
      var l = this.p.length;
      var n = new u8(l + c.length);
      n.set(this.p), n.set(c, l), this.p = n;
    };

    Inflate.prototype.c = function (final) {
      this.d = this.s.i = final || false;
      var bts = this.s.b;
      var dt = inflt(this.p, this.o, this.s);
      this.ondata(slc(dt, bts, this.s.b), this.d);
      this.o = slc(dt, this.s.b - 32768), this.s.b = this.o.length;
      this.p = slc(this.p, this.s.p / 8 | 0), this.s.p &= 7;
    };
    /**
     * Pushes a chunk to be inflated
     * @param chunk The chunk to push
     * @param final Whether this is the final chunk
     */


    Inflate.prototype.push = function (chunk, final) {
      this.e(chunk), this.c(final);
    };

    return Inflate;
  }();

  _exports.Inflate = Inflate;

  /**
   * Asynchronous streaming DEFLATE decompression
   */
  var AsyncInflate = /*#__PURE__*/function () {
    /**
     * Creates an asynchronous inflation stream
     * @param cb The callback to call whenever data is deflated
     */
    function AsyncInflate(cb) {
      this.ondata = cb;
      astrmify([bInflt, function () {
        return [astrm, Inflate];
      }], this, 0, function () {
        var strm = new Inflate();
        onmessage = astrm(strm);
      }, 7);
    }

    return AsyncInflate;
  }();

  _exports.AsyncInflate = AsyncInflate;

  function inflate(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return cbify(data, opts, [bInflt], function (ev) {
      return pbf(inflateSync(ev.data[0], gu8(ev.data[1])));
    }, 1, cb);
  }
  /**
   * Expands DEFLATE data with no wrapper
   * @param data The data to decompress
   * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
   * @returns The decompressed version of the data
   */


  function inflateSync(data, out) {
    return inflt(data, out);
  } // before you yell at me for not just using extends, my reason is that TS inheritance is hard to workerize.

  /**
   * Streaming GZIP compression
   */


  var Gzip = /*#__PURE__*/function () {
    function Gzip(opts, cb) {
      this.c = crc();
      this.l = 0;
      this.v = 1;
      Deflate.call(this, opts, cb);
    }
    /**
     * Pushes a chunk to be GZIPped
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Gzip.prototype.push = function (chunk, final) {
      Deflate.prototype.push.call(this, chunk, final);
    };

    Gzip.prototype.p = function (c, f) {
      this.c.p(c);
      this.l += c.length;
      var raw = dopt(c, this.o, this.v && gzhl(this.o), f && 8, !f);
      if (this.v) gzh(raw, this.o), this.v = 0;
      if (f) wbytes(raw, raw.length - 8, this.c.d()), wbytes(raw, raw.length - 4, this.l);
      this.ondata(raw, f);
    };

    return Gzip;
  }();

  _exports.Compress = _exports.Gzip = Gzip;

  /**
   * Asynchronous streaming GZIP compression
   */
  var AsyncGzip = /*#__PURE__*/function () {
    function AsyncGzip(opts, cb) {
      astrmify([bDflt, gze, function () {
        return [astrm, Deflate, Gzip];
      }], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
        var strm = new Gzip(ev.data);
        onmessage = astrm(strm);
      }, 8);
    }

    return AsyncGzip;
  }();

  _exports.AsyncCompress = _exports.AsyncGzip = AsyncGzip;

  function gzip(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return cbify(data, opts, [bDflt, gze, function () {
      return [gzipSync];
    }], function (ev) {
      return pbf(gzipSync(ev.data[0], ev.data[1]));
    }, 2, cb);
  }
  /**
   * Compresses data with GZIP
   * @param data The data to compress
   * @param opts The compression options
   * @returns The gzipped version of the data
   */


  function gzipSync(data, opts) {
    if (!opts) opts = {};
    var c = crc(),
        l = data.length;
    c.p(data);
    var d = dopt(data, opts, gzhl(opts), 8),
        s = d.length;
    return gzh(d, opts), wbytes(d, s - 8, c.d()), wbytes(d, s - 4, l), d;
  }
  /**
   * Streaming GZIP decompression
   */


  var Gunzip = /*#__PURE__*/function () {
    /**
     * Creates a GUNZIP stream
     * @param cb The callback to call whenever data is inflated
     */
    function Gunzip(cb) {
      this.v = 1;
      Inflate.call(this, cb);
    }
    /**
     * Pushes a chunk to be GUNZIPped
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Gunzip.prototype.push = function (chunk, final) {
      Inflate.prototype.e.call(this, chunk);

      if (this.v) {
        var s = this.p.length > 3 ? gzs(this.p) : 4;
        if (s >= this.p.length && !final) return;
        this.p = this.p.subarray(s), this.v = 0;
      }

      if (final) {
        if (this.p.length < 8) throw 'invalid gzip stream';
        this.p = this.p.subarray(0, -8);
      } // necessary to prevent TS from using the closure value
      // This allows for workerization to function correctly


      Inflate.prototype.c.call(this, final);
    };

    return Gunzip;
  }();

  _exports.Gunzip = Gunzip;

  /**
   * Asynchronous streaming GZIP decompression
   */
  var AsyncGunzip = /*#__PURE__*/function () {
    /**
     * Creates an asynchronous GUNZIP stream
     * @param cb The callback to call whenever data is deflated
     */
    function AsyncGunzip(cb) {
      this.ondata = cb;
      astrmify([bInflt, guze, function () {
        return [astrm, Inflate, Gunzip];
      }], this, 0, function () {
        var strm = new Gunzip();
        onmessage = astrm(strm);
      }, 9);
    }

    return AsyncGunzip;
  }();

  _exports.AsyncGunzip = AsyncGunzip;

  function gunzip(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return cbify(data, opts, [bInflt, guze, function () {
      return [gunzipSync];
    }], function (ev) {
      return pbf(gunzipSync(ev.data[0]));
    }, 3, cb);
  }
  /**
   * Expands GZIP data
   * @param data The data to decompress
   * @param out Where to write the data. GZIP already encodes the output size, so providing this doesn't save memory.
   * @returns The decompressed version of the data
   */


  function gunzipSync(data, out) {
    return inflt(data.subarray(gzs(data), -8), out || new u8(gzl(data)));
  }
  /**
   * Streaming Zlib compression
   */


  var Zlib = /*#__PURE__*/function () {
    function Zlib(opts, cb) {
      this.c = adler();
      this.v = 1;
      Deflate.call(this, opts, cb);
    }
    /**
     * Pushes a chunk to be zlibbed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Zlib.prototype.push = function (chunk, final) {
      Deflate.prototype.push.call(this, chunk, final);
    };

    Zlib.prototype.p = function (c, f) {
      this.c.p(c);
      var raw = dopt(c, this.o, this.v && 2, f && 4, !f);
      if (this.v) zlh(raw, this.o), this.v = 0;
      if (f) wbytes(raw, raw.length - 4, this.c.d());
      this.ondata(raw, f);
    };

    return Zlib;
  }();

  _exports.Zlib = Zlib;

  /**
   * Asynchronous streaming Zlib compression
   */
  var AsyncZlib = /*#__PURE__*/function () {
    function AsyncZlib(opts, cb) {
      astrmify([bDflt, zle, function () {
        return [astrm, Deflate, Zlib];
      }], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
        var strm = new Zlib(ev.data);
        onmessage = astrm(strm);
      }, 10);
    }

    return AsyncZlib;
  }();

  _exports.AsyncZlib = AsyncZlib;

  function zlib(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return cbify(data, opts, [bDflt, zle, function () {
      return [zlibSync];
    }], function (ev) {
      return pbf(zlibSync(ev.data[0], ev.data[1]));
    }, 4, cb);
  }
  /**
   * Compress data with Zlib
   * @param data The data to compress
   * @param opts The compression options
   * @returns The zlib-compressed version of the data
   */


  function zlibSync(data, opts) {
    if (!opts) opts = {};
    var a = adler();
    a.p(data);
    var d = dopt(data, opts, 2, 4);
    return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d;
  }
  /**
   * Streaming Zlib decompression
   */


  var Unzlib = /*#__PURE__*/function () {
    /**
     * Creates a Zlib decompression stream
     * @param cb The callback to call whenever data is inflated
     */
    function Unzlib(cb) {
      this.v = 1;
      Inflate.call(this, cb);
    }
    /**
     * Pushes a chunk to be unzlibbed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Unzlib.prototype.push = function (chunk, final) {
      Inflate.prototype.e.call(this, chunk);

      if (this.v) {
        if (this.p.length < 2 && !final) return;
        this.p = this.p.subarray(2), this.v = 0;
      }

      if (final) {
        if (this.p.length < 4) throw 'invalid zlib stream';
        this.p = this.p.subarray(0, -4);
      } // necessary to prevent TS from using the closure value
      // This allows for workerization to function correctly


      Inflate.prototype.c.call(this, final);
    };

    return Unzlib;
  }();

  _exports.Unzlib = Unzlib;

  /**
   * Asynchronous streaming Zlib decompression
   */
  var AsyncUnzlib = /*#__PURE__*/function () {
    /**
     * Creates an asynchronous Zlib decompression stream
     * @param cb The callback to call whenever data is deflated
     */
    function AsyncUnzlib(cb) {
      this.ondata = cb;
      astrmify([bInflt, zule, function () {
        return [astrm, Inflate, Unzlib];
      }], this, 0, function () {
        var strm = new Unzlib();
        onmessage = astrm(strm);
      }, 11);
    }

    return AsyncUnzlib;
  }();

  _exports.AsyncUnzlib = AsyncUnzlib;

  function unzlib(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return cbify(data, opts, [bInflt, zule, function () {
      return [unzlibSync];
    }], function (ev) {
      return pbf(unzlibSync(ev.data[0], gu8(ev.data[1])));
    }, 5, cb);
  }
  /**
   * Expands Zlib data
   * @param data The data to decompress
   * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
   * @returns The decompressed version of the data
   */


  function unzlibSync(data, out) {
    return inflt((zlv(data), data.subarray(2, -4)), out);
  } // Default algorithm for compression (used because having a known output size allows faster decompression)


  /**
   * Streaming GZIP, Zlib, or raw DEFLATE decompression
   */
  var Decompress = /*#__PURE__*/function () {
    /**
     * Creates a decompression stream
     * @param cb The callback to call whenever data is decompressed
     */
    function Decompress(cb) {
      this.G = Gunzip;
      this.I = Inflate;
      this.Z = Unzlib;
      this.ondata = cb;
    }
    /**
     * Pushes a chunk to be decompressed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Decompress.prototype.push = function (chunk, final) {
      if (!this.ondata) throw 'no stream handler';

      if (!this.s) {
        if (this.p && this.p.length) {
          var n = new u8(this.p.length + chunk.length);
          n.set(this.p), n.set(chunk, this.p.length);
        } else this.p = chunk;

        if (this.p.length > 2) {
          var _this_1 = this;

          var cb = function cb() {
            _this_1.ondata.apply(_this_1, arguments);
          };

          this.s = this.p[0] == 31 && this.p[1] == 139 && this.p[2] == 8 ? new this.G(cb) : (this.p[0] & 15) != 8 || this.p[0] >> 4 > 7 || (this.p[0] << 8 | this.p[1]) % 31 ? new this.I(cb) : new this.Z(cb);
          this.s.push(this.p, final);
          this.p = null;
        }
      } else this.s.push(chunk, final);
    };

    return Decompress;
  }();

  _exports.Decompress = Decompress;

  /**
   * Asynchronous streaming GZIP, Zlib, or raw DEFLATE decompression
   */
  var AsyncDecompress = /*#__PURE__*/function () {
    /**
    * Creates an asynchronous decompression stream
    * @param cb The callback to call whenever data is decompressed
    */
    function AsyncDecompress(cb) {
      this.G = AsyncGunzip;
      this.I = AsyncInflate;
      this.Z = AsyncUnzlib;
      this.ondata = cb;
    }
    /**
     * Pushes a chunk to be decompressed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    AsyncDecompress.prototype.push = function (chunk, final) {
      Decompress.prototype.push.call(this, chunk, final);
    };

    return AsyncDecompress;
  }();

  _exports.AsyncDecompress = AsyncDecompress;

  function decompress(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    return data[0] == 31 && data[1] == 139 && data[2] == 8 ? gunzip(data, opts, cb) : (data[0] & 15) != 8 || data[0] >> 4 > 7 || (data[0] << 8 | data[1]) % 31 ? inflate(data, opts, cb) : unzlib(data, opts, cb);
  }
  /**
   * Expands compressed GZIP, Zlib, or raw DEFLATE data, automatically detecting the format
   * @param data The data to decompress
   * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
   * @returns The decompressed version of the data
   */


  function decompressSync(data, out) {
    return data[0] == 31 && data[1] == 139 && data[2] == 8 ? gunzipSync(data, out) : (data[0] & 15) != 8 || data[0] >> 4 > 7 || (data[0] << 8 | data[1]) % 31 ? inflateSync(data, out) : unzlibSync(data, out);
  } // flatten a directory structure


  var fltn = function fltn(d, p, t, o) {
    for (var k in d) {
      var val = d[k],
          n = p + k;
      if (val instanceof u8) t[n] = [val, o];else if (Array.isArray(val)) t[n] = [val[0], mrg(o, val[1])];else fltn(val, n + '/', t, o);
    }
  }; // text encoder


  var te = typeof TextEncoder != 'undefined' && /*#__PURE__*/new TextEncoder(); // text decoder

  var td = typeof TextDecoder != 'undefined' && /*#__PURE__*/new TextDecoder(); // text decoder stream

  var tds = 0;

  try {
    td.decode(et, {
      stream: true
    });
    tds = 1;
  } catch (e) {} // decode UTF8


  var dutf8 = function dutf8(d) {
    for (var r = '', i = 0;;) {
      var c = d[i++];
      var eb = (c > 127) + (c > 223) + (c > 239);
      if (i + eb > d.length) return [r, slc(d, i - 1)];
      if (!eb) r += String.fromCharCode(c);else if (eb == 3) {
        c = ((c & 15) << 18 | (d[i++] & 63) << 12 | (d[i++] & 63) << 6 | d[i++] & 63) - 65536, r += String.fromCharCode(55296 | c >> 10, 56320 | c & 1023);
      } else if (eb & 1) r += String.fromCharCode((c & 31) << 6 | d[i++] & 63);else r += String.fromCharCode((c & 15) << 12 | (d[i++] & 63) << 6 | d[i++] & 63);
    }
  };
  /**
   * Streaming UTF-8 decoding
   */


  var DecodeUTF8 = /*#__PURE__*/function () {
    /**
     * Creates a UTF-8 decoding stream
     * @param cb The callback to call whenever data is decoded
     */
    function DecodeUTF8(cb) {
      this.ondata = cb;
      if (tds) this.t = new TextDecoder();else this.p = et;
    }
    /**
     * Pushes a chunk to be decoded from UTF-8 binary
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    DecodeUTF8.prototype.push = function (chunk, final) {
      if (!this.ondata) throw 'no callback';
      final = !!final;

      if (this.t) {
        this.ondata(this.t.decode(chunk, {
          stream: true
        }), final);

        if (final) {
          if (this.t.decode().length) throw 'invalid utf-8 data';
          this.t = null;
        }

        return;
      }

      if (!this.p) throw 'stream finished';
      var dat = new u8(this.p.length + chunk.length);
      dat.set(this.p);
      dat.set(chunk, this.p.length);

      var _a = dutf8(dat),
          ch = _a[0],
          np = _a[1];

      if (final) {
        if (np.length) throw 'invalid utf-8 data';
        this.p = null;
      } else this.p = np;

      this.ondata(ch, final);
    };

    return DecodeUTF8;
  }();

  _exports.DecodeUTF8 = DecodeUTF8;

  /**
   * Streaming UTF-8 encoding
   */
  var EncodeUTF8 = /*#__PURE__*/function () {
    /**
     * Creates a UTF-8 decoding stream
     * @param cb The callback to call whenever data is encoded
     */
    function EncodeUTF8(cb) {
      this.ondata = cb;
    }
    /**
     * Pushes a chunk to be encoded to UTF-8
     * @param chunk The string data to push
     * @param final Whether this is the last chunk
     */


    EncodeUTF8.prototype.push = function (chunk, final) {
      if (!this.ondata) throw 'no callback';
      if (this.d) throw 'stream finished';
      this.ondata(strToU8(chunk), this.d = final || false);
    };

    return EncodeUTF8;
  }();

  _exports.EncodeUTF8 = EncodeUTF8;

  /**
   * Converts a string into a Uint8Array for use with compression/decompression methods
   * @param str The string to encode
   * @param latin1 Whether or not to interpret the data as Latin-1. This should
   *               not need to be true unless decoding a binary string.
   * @returns The string encoded in UTF-8/Latin-1 binary
   */
  function strToU8(str, latin1) {
    if (latin1) {
      var ar_1 = new u8(str.length);

      for (var i = 0; i < str.length; ++i) {
        ar_1[i] = str.charCodeAt(i);
      }

      return ar_1;
    }

    if (te) return te.encode(str);
    var l = str.length;
    var ar = new u8(str.length + (str.length >> 1));
    var ai = 0;

    var w = function w(v) {
      ar[ai++] = v;
    };

    for (var i = 0; i < l; ++i) {
      if (ai + 5 > ar.length) {
        var n = new u8(ai + 8 + (l - i << 1));
        n.set(ar);
        ar = n;
      }

      var c = str.charCodeAt(i);
      if (c < 128 || latin1) w(c);else if (c < 2048) w(192 | c >> 6), w(128 | c & 63);else if (c > 55295 && c < 57344) c = 65536 + (c & 1023 << 10) | str.charCodeAt(++i) & 1023, w(240 | c >> 18), w(128 | c >> 12 & 63), w(128 | c >> 6 & 63), w(128 | c & 63);else w(224 | c >> 12), w(128 | c >> 6 & 63), w(128 | c & 63);
    }

    return slc(ar, 0, ai);
  }
  /**
   * Converts a Uint8Array to a string
   * @param dat The data to decode to string
   * @param latin1 Whether or not to interpret the data as Latin-1. This should
   *               not need to be true unless encoding to binary string.
   * @returns The original UTF-8/Latin-1 string
   */


  function strFromU8(dat, latin1) {
    if (latin1) {
      var r = '';

      for (var i = 0; i < dat.length; i += 16384) {
        r += String.fromCharCode.apply(null, dat.subarray(i, i + 16384));
      }

      return r;
    } else if (td) return td.decode(dat);else {
      var _a = dutf8(dat),
          out = _a[0],
          ext = _a[1];

      if (ext.length) throw 'invalid utf-8 data';
      return out;
    }
  }

  ; // deflate bit flag

  var dbf = function dbf(l) {
    return l == 1 ? 3 : l < 6 ? 2 : l == 9 ? 1 : 0;
  }; // skip local zip header


  var slzh = function slzh(d, b) {
    return b + 30 + b2(d, b + 26) + b2(d, b + 28);
  }; // read zip header


  var zh = function zh(d, b, z) {
    var fnl = b2(d, b + 28),
        fn = strFromU8(d.subarray(b + 46, b + 46 + fnl), !(b2(d, b + 8) & 2048)),
        es = b + 46 + fnl,
        bs = b4(d, b + 20);

    var _a = z && bs == 4294967295 ? z64e(d, es) : [bs, b4(d, b + 24), b4(d, b + 42)],
        sc = _a[0],
        su = _a[1],
        off = _a[2];

    return [b2(d, b + 10), sc, su, fn, es + b2(d, b + 30) + b2(d, b + 32), off];
  }; // read zip64 extra field


  var z64e = function z64e(d, b) {
    for (; b2(d, b) != 1; b += 4 + b2(d, b + 2)) {
      ;
    }

    return [b8(d, b + 12), b8(d, b + 4), b8(d, b + 20)];
  }; // extra field length


  var exfl = function exfl(ex) {
    var le = 0;

    if (ex) {
      for (var k in ex) {
        var l = ex[k].length;
        if (l > 65535) throw 'extra field too long';
        le += l + 4;
      }
    }

    return le;
  }; // write zip header


  var wzh = function wzh(d, b, f, fn, u, c, ce, co) {
    var fl = fn.length,
        ex = f.extra,
        col = co && co.length;
    var exl = exfl(ex);
    wbytes(d, b, ce != null ? 0x2014B50 : 0x4034B50), b += 4;
    if (ce != null) d[b++] = 20, d[b++] = f.os;
    d[b] = 20, b += 2; // spec compliance? what's that?

    d[b++] = f.flag << 1 | (c == null && 8), d[b++] = u && 8;
    d[b++] = f.compression & 255, d[b++] = f.compression >> 8;
    var dt = new Date(f.mtime == null ? Date.now() : f.mtime),
        y = dt.getFullYear() - 1980;
    if (y < 0 || y > 119) throw 'date not in range 1980-2099';
    wbytes(d, b, y << 25 | dt.getMonth() + 1 << 21 | dt.getDate() << 16 | dt.getHours() << 11 | dt.getMinutes() << 5 | dt.getSeconds() >>> 1), b += 4;

    if (c != null) {
      wbytes(d, b, f.crc);
      wbytes(d, b + 4, c);
      wbytes(d, b + 8, f.size);
    }

    wbytes(d, b + 12, fl);
    wbytes(d, b + 14, exl), b += 16;

    if (ce != null) {
      wbytes(d, b, col);
      wbytes(d, b + 6, f.attrs);
      wbytes(d, b + 10, ce), b += 14;
    }

    d.set(fn, b);
    b += fl;

    if (exl) {
      for (var k in ex) {
        var exf = ex[k],
            l = exf.length;
        wbytes(d, b, +k);
        wbytes(d, b + 2, l);
        d.set(exf, b + 4), b += 4 + l;
      }
    }

    if (col) d.set(co, b), b += col;
    return b;
  }; // write zip footer (end of central directory)


  var wzf = function wzf(o, b, c, d, e) {
    wbytes(o, b, 0x6054B50); // skip disk

    wbytes(o, b + 8, c);
    wbytes(o, b + 10, c);
    wbytes(o, b + 12, d);
    wbytes(o, b + 16, e);
  };
  /**
   * A pass-through stream to keep data uncompressed in a ZIP archive.
   */


  var ZipPassThrough = /*#__PURE__*/function () {
    /**
     * Creates a pass-through stream that can be added to ZIP archives
     * @param filename The filename to associate with this data stream
     */
    function ZipPassThrough(filename) {
      this.filename = filename;
      this.c = crc();
      this.size = 0;
      this.compression = 0;
    }
    /**
     * Processes a chunk and pushes to the output stream. You can override this
     * method in a subclass for custom behavior, but by default this passes
     * the data through. You must call this.ondata(err, chunk, final) at some
     * point in this method.
     * @param chunk The chunk to process
     * @param final Whether this is the last chunk
     */


    ZipPassThrough.prototype.process = function (chunk, final) {
      this.ondata(null, chunk, final);
    };
    /**
     * Pushes a chunk to be added. If you are subclassing this with a custom
     * compression algorithm, note that you must push data from the source
     * file only, pre-compression.
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    ZipPassThrough.prototype.push = function (chunk, final) {
      if (!this.ondata) throw 'no callback - add to ZIP archive before pushing';
      this.c.p(chunk);
      this.size += chunk.length;
      if (final) this.crc = this.c.d();
      this.process(chunk, final || false);
    };

    return ZipPassThrough;
  }();

  _exports.ZipPassThrough = ZipPassThrough;

  // I don't extend because TypeScript extension adds 1kB of runtime bloat

  /**
   * Streaming DEFLATE compression for ZIP archives. Prefer using AsyncZipDeflate
   * for better performance
   */
  var ZipDeflate = /*#__PURE__*/function () {
    /**
     * Creates a DEFLATE stream that can be added to ZIP archives
     * @param filename The filename to associate with this data stream
     * @param opts The compression options
     */
    function ZipDeflate(filename, opts) {
      var _this_1 = this;

      if (!opts) opts = {};
      ZipPassThrough.call(this, filename);
      this.d = new Deflate(opts, function (dat, final) {
        _this_1.ondata(null, dat, final);
      });
      this.compression = 8;
      this.flag = dbf(opts.level);
    }

    ZipDeflate.prototype.process = function (chunk, final) {
      try {
        this.d.push(chunk, final);
      } catch (e) {
        this.ondata(e, null, final);
      }
    };
    /**
     * Pushes a chunk to be deflated
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    ZipDeflate.prototype.push = function (chunk, final) {
      ZipPassThrough.prototype.push.call(this, chunk, final);
    };

    return ZipDeflate;
  }();

  _exports.ZipDeflate = ZipDeflate;

  /**
   * Asynchronous streaming DEFLATE compression for ZIP archives
   */
  var AsyncZipDeflate = /*#__PURE__*/function () {
    /**
     * Creates a DEFLATE stream that can be added to ZIP archives
     * @param filename The filename to associate with this data stream
     * @param opts The compression options
     */
    function AsyncZipDeflate(filename, opts) {
      var _this_1 = this;

      if (!opts) opts = {};
      ZipPassThrough.call(this, filename);
      this.d = new AsyncDeflate(opts, function (err, dat, final) {
        _this_1.ondata(err, dat, final);
      });
      this.compression = 8;
      this.flag = dbf(opts.level);
      this.terminate = this.d.terminate;
    }

    AsyncZipDeflate.prototype.process = function (chunk, final) {
      this.d.push(chunk, final);
    };
    /**
     * Pushes a chunk to be deflated
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    AsyncZipDeflate.prototype.push = function (chunk, final) {
      ZipPassThrough.prototype.push.call(this, chunk, final);
    };

    return AsyncZipDeflate;
  }();

  _exports.AsyncZipDeflate = AsyncZipDeflate;

  // TODO: Better tree shaking

  /**
   * A zippable archive to which files can incrementally be added
   */
  var Zip = /*#__PURE__*/function () {
    /**
     * Creates an empty ZIP archive to which files can be added
     * @param cb The callback to call whenever data for the generated ZIP archive
     *           is available
     */
    function Zip(cb) {
      this.ondata = cb;
      this.u = [];
      this.d = 1;
    }
    /**
     * Adds a file to the ZIP archive
     * @param file The file stream to add
     */


    Zip.prototype.add = function (file) {
      var _this_1 = this;

      if (this.d & 2) throw 'stream finished';
      var f = strToU8(file.filename),
          fl = f.length;
      var com = file.comment,
          o = com && strToU8(com);
      var u = fl != file.filename.length || o && com.length != o.length;
      var hl = fl + exfl(file.extra) + 30;
      if (fl > 65535) throw 'filename too long';
      var header = new u8(hl);
      wzh(header, 0, file, f, u);
      var chks = [header];

      var pAll = function pAll() {
        for (var _i = 0, chks_1 = chks; _i < chks_1.length; _i++) {
          var chk = chks_1[_i];

          _this_1.ondata(null, chk, false);
        }

        chks = [];
      };

      var tr = this.d;
      this.d = 0;
      var ind = this.u.length;
      var uf = mrg(file, {
        f: f,
        u: u,
        o: o,
        t: function t() {
          if (file.terminate) file.terminate();
        },
        r: function r() {
          pAll();

          if (tr) {
            var nxt = _this_1.u[ind + 1];
            if (nxt) nxt.r();else _this_1.d = 1;
          }

          tr = 1;
        }
      });
      var cl = 0;

      file.ondata = function (err, dat, final) {
        if (err) {
          _this_1.ondata(err, dat, final);

          _this_1.terminate();
        } else {
          cl += dat.length;
          chks.push(dat);

          if (final) {
            var dd = new u8(16);
            wbytes(dd, 0, 0x8074B50);
            wbytes(dd, 4, file.crc);
            wbytes(dd, 8, cl);
            wbytes(dd, 12, file.size);
            chks.push(dd);
            uf.c = cl, uf.b = hl + cl + 16, uf.crc = file.crc, uf.size = file.size;
            if (tr) uf.r();
            tr = 1;
          } else if (tr) pAll();
        }
      };

      this.u.push(uf);
    };
    /**
     * Ends the process of adding files and prepares to emit the final chunks.
     * This *must* be called after adding all desired files for the resulting
     * ZIP file to work properly.
     */


    Zip.prototype.end = function () {
      var _this_1 = this;

      if (this.d & 2) {
        if (this.d & 1) throw 'stream finishing';
        throw 'stream finished';
      }

      if (this.d) this.e();else this.u.push({
        r: function r() {
          if (!(_this_1.d & 1)) return;

          _this_1.u.splice(-1, 1);

          _this_1.e();
        },
        t: function t() {}
      });
      this.d = 3;
    };

    Zip.prototype.e = function () {
      var bt = 0,
          l = 0,
          tl = 0;

      for (var _i = 0, _a = this.u; _i < _a.length; _i++) {
        var f = _a[_i];
        tl += 46 + f.f.length + exfl(f.extra) + (f.o ? f.o.length : 0);
      }

      var out = new u8(tl + 22);

      for (var _b = 0, _c = this.u; _b < _c.length; _b++) {
        var f = _c[_b];
        wzh(out, bt, f, f.f, f.u, f.c, l, f.o);
        bt += 46 + f.f.length + exfl(f.extra) + (f.o ? f.o.length : 0), l += f.b;
      }

      wzf(out, bt, this.u.length, tl, l);
      this.ondata(null, out, true);
      this.d = 2;
    };
    /**
     * A method to terminate any internal workers used by the stream. Subsequent
     * calls to add() will fail.
     */


    Zip.prototype.terminate = function () {
      for (var _i = 0, _a = this.u; _i < _a.length; _i++) {
        var f = _a[_i];
        f.t();
      }

      this.d = 2;
    };

    return Zip;
  }();

  _exports.Zip = Zip;

  function zip(data, opts, cb) {
    if (!cb) cb = opts, opts = {};
    if (typeof cb != 'function') throw 'no callback';
    var r = {};
    fltn(data, '', r, opts);
    var k = Object.keys(r);
    var lft = k.length,
        o = 0,
        tot = 0;
    var slft = lft,
        files = new Array(lft);
    var term = [];

    var tAll = function tAll() {
      for (var i = 0; i < term.length; ++i) {
        term[i]();
      }
    };

    var cbf = function cbf() {
      var out = new u8(tot + 22),
          oe = o,
          cdl = tot - o;
      tot = 0;

      for (var i = 0; i < slft; ++i) {
        var f = files[i];

        try {
          var l = f.c.length;
          wzh(out, tot, f, f.f, f.u, l);
          var badd = 30 + f.f.length + exfl(f.extra);
          var loc = tot + badd;
          out.set(f.c, loc);
          wzh(out, o, f, f.f, f.u, l, tot, f.m), o += 16 + badd + (f.m ? f.m.length : 0), tot = loc + l;
        } catch (e) {
          return cb(e, null);
        }
      }

      wzf(out, o, files.length, cdl, oe);
      cb(null, out);
    };

    if (!lft) cbf();

    var _loop_1 = function _loop_1(i) {
      var fn = k[i];
      var _a = r[fn],
          file = _a[0],
          p = _a[1];
      var c = crc(),
          size = file.length;
      c.p(file);
      var f = strToU8(fn),
          s = f.length;
      var com = p.comment,
          m = com && strToU8(com),
          ms = m && m.length;
      var exl = exfl(p.extra);
      var compression = p.level == 0 ? 0 : 8;

      var cbl = function cbl(e, d) {
        if (e) {
          tAll();
          cb(e, null);
        } else {
          var l = d.length;
          files[i] = mrg(p, {
            size: size,
            crc: c.d(),
            c: d,
            f: f,
            m: m,
            u: s != fn.length || m && com.length != ms,
            compression: compression
          });
          o += 30 + s + exl + l;
          tot += 76 + 2 * (s + exl) + (ms || 0) + l;
          if (! --lft) cbf();
        }
      };

      if (s > 65535) cbl('filename too long', null);
      if (!compression) cbl(null, file);else if (size < 160000) {
        try {
          cbl(null, deflateSync(file, p));
        } catch (e) {
          cbl(e, null);
        }
      } else term.push(deflate(file, p, cbl));
    }; // Cannot use lft because it can decrease


    for (var i = 0; i < slft; ++i) {
      _loop_1(i);
    }

    return tAll;
  }
  /**
   * Synchronously creates a ZIP file. Prefer using `zip` for better performance
   * with more than one file.
   * @param data The directory structure for the ZIP archive
   * @param opts The main options, merged with per-file options
   * @returns The generated ZIP archive
   */


  function zipSync(data, opts) {
    if (!opts) opts = {};
    var r = {};
    var files = [];
    fltn(data, '', r, opts);
    var o = 0;
    var tot = 0;

    for (var fn in r) {
      var _a = r[fn],
          file = _a[0],
          p = _a[1];
      var compression = p.level == 0 ? 0 : 8;
      var f = strToU8(fn),
          s = f.length;
      var com = p.comment,
          m = com && strToU8(com),
          ms = m && m.length;
      var exl = exfl(p.extra);
      if (s > 65535) throw 'filename too long';
      var d = compression ? deflateSync(file, p) : file,
          l = d.length;
      var c = crc();
      c.p(file);
      files.push(mrg(p, {
        size: file.length,
        crc: c.d(),
        c: d,
        f: f,
        m: m,
        u: s != fn.length || m && com.length != ms,
        o: o,
        compression: compression
      }));
      o += 30 + s + exl + l;
      tot += 76 + 2 * (s + exl) + (ms || 0) + l;
    }

    var out = new u8(tot + 22),
        oe = o,
        cdl = tot - o;

    for (var i = 0; i < files.length; ++i) {
      var f = files[i];
      wzh(out, f.o, f, f.f, f.u, f.c.length);
      var badd = 30 + f.f.length + exfl(f.extra);
      out.set(f.c, f.o + badd);
      wzh(out, o, f, f.f, f.u, f.c.length, f.o, f.m), o += 16 + badd + (f.m ? f.m.length : 0);
    }

    wzf(out, o, files.length, cdl, oe);
    return out;
  }
  /**
   * Streaming pass-through decompression for ZIP archives
   */


  var UnzipPassThrough = /*#__PURE__*/function () {
    function UnzipPassThrough() {}

    UnzipPassThrough.prototype.push = function (data, final) {
      this.ondata(null, data, final);
    };

    UnzipPassThrough.compression = 0;
    return UnzipPassThrough;
  }();

  _exports.UnzipPassThrough = UnzipPassThrough;

  /**
   * Streaming DEFLATE decompression for ZIP archives. Prefer AsyncZipInflate for
   * better performance.
   */
  var UnzipInflate = /*#__PURE__*/function () {
    /**
     * Creates a DEFLATE decompression that can be used in ZIP archives
     */
    function UnzipInflate() {
      var _this_1 = this;

      this.i = new Inflate(function (dat, final) {
        _this_1.ondata(null, dat, final);
      });
    }

    UnzipInflate.prototype.push = function (data, final) {
      try {
        this.i.push(data, final);
      } catch (e) {
        this.ondata(e, data, final);
      }
    };

    UnzipInflate.compression = 8;
    return UnzipInflate;
  }();

  _exports.UnzipInflate = UnzipInflate;

  /**
   * Asynchronous streaming DEFLATE decompression for ZIP archives
   */
  var AsyncUnzipInflate = /*#__PURE__*/function () {
    /**
     * Creates a DEFLATE decompression that can be used in ZIP archives
     */
    function AsyncUnzipInflate(_, sz) {
      var _this_1 = this;

      if (sz < 320000) {
        this.i = new Inflate(function (dat, final) {
          _this_1.ondata(null, dat, final);
        });
      } else {
        this.i = new AsyncInflate(function (err, dat, final) {
          _this_1.ondata(err, dat, final);
        });
        this.terminate = this.i.terminate;
      }
    }

    AsyncUnzipInflate.prototype.push = function (data, final) {
      if (this.i.terminate) data = slc(data, 0);
      this.i.push(data, final);
    };

    AsyncUnzipInflate.compression = 8;
    return AsyncUnzipInflate;
  }();

  _exports.AsyncUnzipInflate = AsyncUnzipInflate;

  /**
   * A ZIP archive decompression stream that emits files as they are discovered
   */
  var Unzip = /*#__PURE__*/function () {
    /**
     * Creates a ZIP decompression stream
     * @param cb The callback to call whenever a file in the ZIP archive is found
     */
    function Unzip(cb) {
      this.onfile = cb;
      this.k = [];
      this.o = {
        0: UnzipPassThrough
      };
      this.p = et;
    }
    /**
     * Pushes a chunk to be unzipped
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */


    Unzip.prototype.push = function (chunk, final) {
      var _this_1 = this;

      if (!this.onfile) throw 'no callback';
      if (!this.p) throw 'stream finished';

      if (this.c > 0) {
        var len = Math.min(this.c, chunk.length);
        var toAdd = chunk.subarray(0, len);
        this.c -= len;
        if (this.d) this.d.push(toAdd, !this.c);else this.k[0].push(toAdd);
        chunk = chunk.subarray(len);
        if (chunk.length) return this.push(chunk, final);
      } else {
        var f = 0,
            i = 0,
            is = void 0,
            buf = void 0;
        if (!this.p.length) buf = chunk;else if (!chunk.length) buf = this.p;else {
          buf = new u8(this.p.length + chunk.length);
          buf.set(this.p), buf.set(chunk, this.p.length);
        }
        var l = buf.length,
            oc = this.c,
            add = oc && this.d;

        var _loop_2 = function _loop_2() {
          var _a;

          var sig = b4(buf, i);

          if (sig == 0x4034B50) {
            f = 1, is = i;
            this_1.d = null;
            this_1.c = 0;
            var bf = b2(buf, i + 6),
                cmp_1 = b2(buf, i + 8),
                u = bf & 2048,
                dd = bf & 8,
                fnl = b2(buf, i + 26),
                es = b2(buf, i + 28);

            if (l > i + 30 + fnl + es) {
              var chks_2 = [];
              this_1.k.unshift(chks_2);
              f = 2;
              var sc_1 = b4(buf, i + 18),
                  su_1 = b4(buf, i + 22);
              var fn_1 = strFromU8(buf.subarray(i + 30, i += 30 + fnl), !u);

              if (sc_1 == 4294967295) {
                _a = dd ? [-2] : z64e(buf, i), sc_1 = _a[0], su_1 = _a[1];
              } else if (dd) sc_1 = -1;

              i += es;
              this_1.c = sc_1;
              var d_1;
              var file_1 = {
                name: fn_1,
                compression: cmp_1,
                start: function start() {
                  if (!file_1.ondata) throw 'no callback';
                  if (!sc_1) file_1.ondata(null, et, true);else {
                    var ctr = _this_1.o[cmp_1];
                    if (!ctr) throw 'unknown compression type ' + cmp_1;
                    d_1 = sc_1 < 0 ? new ctr(fn_1) : new ctr(fn_1, sc_1, su_1);

                    d_1.ondata = function (err, dat, final) {
                      file_1.ondata(err, dat, final);
                    };

                    for (var _i = 0, chks_3 = chks_2; _i < chks_3.length; _i++) {
                      var dat = chks_3[_i];
                      d_1.push(dat, false);
                    }

                    if (_this_1.k[0] == chks_2 && _this_1.c) _this_1.d = d_1;else d_1.push(et, true);
                  }
                },
                terminate: function terminate() {
                  if (d_1 && d_1.terminate) d_1.terminate();
                }
              };
              if (sc_1 >= 0) file_1.size = sc_1, file_1.originalSize = su_1;
              this_1.onfile(file_1);
            }

            return "break";
          } else if (oc) {
            if (sig == 0x8074B50) {
              is = i += 12 + (oc == -2 && 8), f = 3, this_1.c = 0;
              return "break";
            } else if (sig == 0x2014B50) {
              is = i -= 4, f = 3, this_1.c = 0;
              return "break";
            }
          }
        };

        var this_1 = this;

        for (; i < l - 4; ++i) {
          var state_1 = _loop_2();

          if (state_1 === "break") break;
        }

        this.p = et;

        if (oc < 0) {
          var dat = f ? buf.subarray(0, is - 12 - (oc == -2 && 8) - (b4(buf, is - 16) == 0x8074B50 && 4)) : buf.subarray(0, i);
          if (add) add.push(dat, !!f);else this.k[+(f == 2)].push(dat);
        }

        if (f & 2) return this.push(buf.subarray(i), final);
        this.p = buf.subarray(i);
      }

      if (final) {
        if (this.c) throw 'invalid zip file';
        this.p = null;
      }
    };
    /**
     * Registers a decoder with the stream, allowing for files compressed with
     * the compression type provided to be expanded correctly
     * @param decoder The decoder constructor
     */


    Unzip.prototype.register = function (decoder) {
      this.o[decoder.compression] = decoder;
    };

    return Unzip;
  }();

  _exports.Unzip = Unzip;

  /**
   * Asynchronously decompresses a ZIP archive
   * @param data The raw compressed ZIP file
   * @param cb The callback to call with the decompressed files
   * @returns A function that can be used to immediately terminate the unzipping
   */
  function unzip(data, cb) {
    if (typeof cb != 'function') throw 'no callback';
    var term = [];

    var tAll = function tAll() {
      for (var i = 0; i < term.length; ++i) {
        term[i]();
      }
    };

    var files = {};
    var e = data.length - 22;

    for (; b4(data, e) != 0x6054B50; --e) {
      if (!e || data.length - e > 65558) {
        cb('invalid zip file', null);
        return;
      }
    }

    ;
    var lft = b2(data, e + 8);
    if (!lft) cb(null, {});
    var c = lft;
    var o = b4(data, e + 16);
    var z = o == 4294967295;

    if (z) {
      e = b4(data, e - 12);

      if (b4(data, e) != 0x6064B50) {
        cb('invalid zip file', null);
        return;
      }

      c = lft = b4(data, e + 32);
      o = b4(data, e + 48);
    }

    var _loop_3 = function _loop_3(i) {
      var _a = zh(data, o, z),
          c_1 = _a[0],
          sc = _a[1],
          su = _a[2],
          fn = _a[3],
          no = _a[4],
          off = _a[5],
          b = slzh(data, off);

      o = no;

      var cbl = function cbl(e, d) {
        if (e) {
          tAll();
          cb(e, null);
        } else {
          files[fn] = d;
          if (! --lft) cb(null, files);
        }
      };

      if (!c_1) cbl(null, slc(data, b, b + sc));else if (c_1 == 8) {
        var infl = data.subarray(b, b + sc);

        if (sc < 320000) {
          try {
            cbl(null, inflateSync(infl, new u8(su)));
          } catch (e) {
            cbl(e, null);
          }
        } else term.push(inflate(infl, {
          size: su
        }, cbl));
      } else cbl('unknown compression type ' + c_1, null);
    };

    for (var i = 0; i < c; ++i) {
      _loop_3(i);
    }

    return tAll;
  }
  /**
   * Synchronously decompresses a ZIP archive. Prefer using `unzip` for better
   * performance with more than one file.
   * @param data The raw compressed ZIP file
   * @returns The decompressed files
   */


  function unzipSync(data) {
    var files = {};
    var e = data.length - 22;

    for (; b4(data, e) != 0x6054B50; --e) {
      if (!e || data.length - e > 65558) throw 'invalid zip file';
    }

    ;
    var c = b2(data, e + 8);
    if (!c) return {};
    var o = b4(data, e + 16);
    var z = o == 4294967295;

    if (z) {
      e = b4(data, e - 12);
      if (b4(data, e) != 0x6064B50) throw 'invalid zip file';
      c = b4(data, e + 32);
      o = b4(data, e + 48);
    }

    for (var i = 0; i < c; ++i) {
      var _a = zh(data, o, z),
          c_2 = _a[0],
          sc = _a[1],
          su = _a[2],
          fn = _a[3],
          no = _a[4],
          off = _a[5],
          b = slzh(data, off);

      o = no;
      if (!c_2) files[fn] = slc(data, b, b + sc);else if (c_2 == 8) files[fn] = inflateSync(data.subarray(b, b + sc), new u8(su));else throw 'unknown compression type ' + c_2;
    }

    return files;
  }
});