# A variety of pump calculation methods that are the same regardless of pump type. # These methods are available to PumpConstantSpeed, PumpVariableSpeed module Pump # @!group Pump # Set the pressure rise that cooresponds to the # target power per flow number, given the standard # pump efficiency and the default EnergyPlus pump impeller efficiency # of 0.78. # # @param target_w_per_gpm [Double] the target power per flow, in W/gpm # @return [Bool] return true if successful, false if not # @author jmarrec def pump_apply_prm_pressure_rise_and_motor_efficiency(pump, target_w_per_gpm) # Eplus assumes an impeller efficiency of 0.78 to determine the total efficiency # http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/component-sizing.html#pump-sizing # Rated_Power_Use = Rated_Volume_Flow_Rate * Rated_Pump_Head / Total_Efficiency # Rated_Power_Use / Rated_Volume_Flow_Rate = Rated_Pump_Head / Total_Efficiency # Total_Efficiency = Motor_Efficiency * Impeler_Efficiency impeller_efficiency = 0.78 # Get flow rate (whether autosized or hard-sized) flow_m3_per_s = 0 flow_m3_per_s = if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized if pump.autosizedRatedFlowRate.is_initialized pump.autosizedRatedFlowRate.get else pump.ratedFlowRate.get end elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized if pump.autosizedTotalRatedFlowRate.is_initialized pump.autosizedTotalRatedFlowRate.get / pump.numberofPumpsinBank else pump.totalRatedFlowRate.get / pump.numberofPumpsinBank end end flow_gpm = OpenStudio.convert(flow_m3_per_s, 'm^3/s', 'gal/min').get # Calculate the target total pump motor power consumption target_motor_power_cons_w = target_w_per_gpm * flow_gpm target_motor_power_cons_hp = target_motor_power_cons_w / 745.7 # 745.7 W/HP # Find the motor efficiency using total power consumption # Note that this hp is ~5-10% high because it is being looked # up based on the motor consumption, which is always actually higher # than the brake horsepower. This will bound the possible motor efficiency # values. If a motor is just above a nominal size, and the next size # down has a lower efficiency value, later motor efficiency setting # methods can mess up the W/gpm. All this nonsense avoids that. mot_eff_hi_end, nom_hp_hi_end = pump_standard_minimum_motor_efficiency_and_size(pump, target_motor_power_cons_hp) # Calculate the actual brake horsepower using this efficiency target_motor_bhp = target_motor_power_cons_hp * mot_eff_hi_end # Find the motor efficiency using actual bhp mot_eff_lo_end, nom_hp_lo_end = pump_standard_minimum_motor_efficiency_and_size(pump, target_motor_bhp) # If the efficiency drops you down into a lower band with # a lower efficiency value, use that for the motor efficiency. motor_efficiency = [mot_eff_lo_end, mot_eff_hi_end].min nominal_hp = [nom_hp_lo_end, nom_hp_hi_end].min # Calculate the brake horsepower that was assumed target_brake_power_hp = target_motor_power_cons_hp * motor_efficiency # Change the motor efficiency pump.setMotorEfficiency(motor_efficiency) total_efficiency = impeller_efficiency * motor_efficiency desired_power_per_m3_s = OpenStudio.convert(target_w_per_gpm, 'W*min/gal', 'W*s/m^3').get pressure_rise_pa = desired_power_per_m3_s * total_efficiency pressure_rise_ft_h2o = OpenStudio.convert(pressure_rise_pa, 'Pa', 'ftH_{2}O').get # Change pressure rise pump.setRatedPumpHead(pressure_rise_pa) # Report OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "For #{pump.name}: motor nameplate = #{nominal_hp}HP, motor eff = #{(motor_efficiency * 100).round(2)}%; #{target_w_per_gpm.round} W/gpm translates to a pressure rise of #{pressure_rise_ft_h2o.round(2)} ftH2O.") # Calculate the W/gpm for verification calculated_w = pump_pumppower(pump) calculated_w_per_gpm = calculated_w / flow_gpm OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.Pump', "For #{pump.name}: calculated W/gpm = #{calculated_w_per_gpm.round(1)}.") return true end # Applies the minimum motor efficiency for this pump # based on the motor's brake horsepower. def pump_apply_standard_minimum_motor_efficiency(pump) # Get the horsepower bhp = pump_brake_horsepower(pump) # Find the motor efficiency motor_eff, nominal_hp = pump_standard_minimum_motor_efficiency_and_size(pump, bhp) # Change the motor efficiency pump.setMotorEfficiency(motor_eff) OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "For #{pump.name}: brake hp = #{bhp.round(2)}HP, motor nameplate = #{nominal_hp.round(2)}HP, motor eff = #{(motor_eff * 100).round(2)}%.") return true end # Determines the minimum pump motor efficiency and nominal size # for a given motor bhp. This should be the total brake horsepower with # any desired safety factor already included. This method picks # the next nominal motor catgory larger than the required brake # horsepower, and the efficiency is based on that size. For example, # if the bhp = 6.3, the nominal size will be 7.5HP and the efficiency # for 90.1-2010 will be 91.7% from Table 10.8B. This method assumes # 4-pole, 1800rpm totally-enclosed fan-cooled motors. # # @param motor_bhp [Double] motor brake horsepower (hp) # @return [Array] minimum motor efficiency (0.0 to 1.0), nominal horsepower def pump_standard_minimum_motor_efficiency_and_size(pump, motor_bhp) motor_eff = 0.85 nominal_hp = motor_bhp # Don't attempt to look up motor efficiency # for zero-hp pumps (required for circulation-pump-free # service water heating systems). return [1.0, 0] if motor_bhp == 0.0 # Lookup the minimum motor efficiency motors = standards_data['motors'] # Assuming all pump motors are 4-pole ODP search_criteria = { 'template' => template, 'number_of_poles' => 4.0, 'type' => 'Enclosed' } motor_properties = model_find_object(motors, search_criteria, motor_bhp) if motor_properties.nil? OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find motor properties using search criteria: #{search_criteria}, motor_bhp = #{motor_bhp} hp.") return [motor_eff, nominal_hp] end motor_eff = motor_properties['nominal_full_load_efficiency'] nominal_hp = motor_properties['maximum_capacity'].to_f.round(1) # Round to nearest whole HP for niceness if nominal_hp >= 2 nominal_hp = nominal_hp.round end # Get the efficiency based on the nominal horsepower # Add 0.01 hp to avoid search errors. motor_properties = model_find_object(motors, search_criteria, nominal_hp + 0.01) if motor_properties.nil? OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Fan', "For #{pump.name}, could not find nominal motor properties using search criteria: #{search_criteria}, motor_hp = #{nominal_hp} hp.") return [motor_eff, nominal_hp] end motor_eff = motor_properties['nominal_full_load_efficiency'] return [motor_eff, nominal_hp] end # Determines the pump power (W) based on # flow rate, pressure rise, and total pump efficiency(impeller eff * motor eff). # Uses the E+ default assumption of 0.78 impeller efficiency. # # @return [Double] pump power # @units Watts (W) def pump_pumppower(pump) # Get flow rate (whether autosized or hard-sized) flow_m3_per_s = 0 flow_m3_per_s = if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized if pump.autosizedRatedFlowRate.is_initialized pump.autosizedRatedFlowRate.get else pump.ratedFlowRate.get end elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized if pump.autosizedTotalRatedFlowRate.is_initialized pump.autosizedTotalRatedFlowRate.get else pump.totalRatedFlowRate.get end end # E+ default impeller efficiency # http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/component-sizing.html#pump-sizing impeller_eff = 0.78 # Get the motor efficiency motor_eff = pump.motorEfficiency # Calculate the total efficiency # which includes both motor and # impeller efficiency. pump_total_eff = impeller_eff * motor_eff # Get the pressure rise (Pa) pressure_rise_pa = pump.ratedPumpHead # Calculate the pump power (W) pump_power_w = pressure_rise_pa * flow_m3_per_s / pump_total_eff return pump_power_w end # Determines the brake horsepower of the pump # based on flow rate, pressure rise, and impeller efficiency. # # @return [Double] brake horsepower # @units horsepower (hp) def pump_brake_horsepower(pump) # Get flow rate (whether autosized or hard-sized) # Get flow rate (whether autosized or hard-sized) flow_m3_per_s = 0 flow_m3_per_s = if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized if pump.autosizedRatedFlowRate.is_initialized pump.autosizedRatedFlowRate.get else pump.ratedFlowRate.get end elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized if pump.autosizedTotalRatedFlowRate.is_initialized pump.autosizedTotalRatedFlowRate.get else pump.totalRatedFlowRate.get end end # E+ default impeller efficiency # http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/component-sizing.html#pump-sizing impeller_eff = 0.78 # Get the pressure rise (Pa) pressure_rise_pa = pump.ratedPumpHead # Calculate the pump power (W) pump_power_w = pressure_rise_pa * flow_m3_per_s / impeller_eff # Convert to HP pump_power_hp = pump_power_w / 745.7 # 745.7 W/HP return pump_power_hp end # Determines the horsepower of the pump # motor, including motor efficiency and # pump impeller efficiency. # # @return [Double] horsepower def pump_motor_horsepower(pump) # Get the pump power pump_power_w = pump_pumppower(pump) # Convert to HP pump_hp = pump_power_w / 745.7 # 745.7 W/HP return pump_hp end # Determines the rated watts per GPM of the pump # # @return [Double] rated power consumption per flow # @units Watts per GPM (W*min/gal) def pump_rated_w_per_gpm(pump) # Get design power (whether autosized or hard-sized) rated_power_w = 0 if pump.autosizedRatedPowerConsumption.is_initialized rated_power_w = pump.autosizedRatedPowerConsumption.get elsif pump.ratedPowerConsumption.is_initialized rated_power_w = pump.ratedPowerConsumption.get else OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find rated pump power consumption, cannot determine w per gpm correctly.") return 0.0 end rated_m3_per_s = 0 if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized if pump.ratedFlowRate.is_initialized rated_m3_per_s = pump.ratedFlowRate.get elsif pump.autosizedRatedFlowRate.is_initialized rated_m3_per_s = pump.autosizedRatedFlowRate.get else OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find rated pump Flow Rate, cannot determine w per gpm correctly.") return 0.0 end elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized if pump.totalRatedFlowRate.is_initialized rated_m3_per_s = pump.totalRatedFlowRate.get elsif pump.autosizedTotalRatedFlowRate.is_initialized rated_m3_per_s = pump.autosizedTotalRatedFlowRate.get else OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find rated pump Flow Rate, cannot determine w per gpm correctly.") return 0.0 end end rated_w_per_m3s = rated_power_w / rated_m3_per_s rated_w_per_gpm = OpenStudio.convert(rated_w_per_m3s, 'W*s/m^3', 'W*min/gal').get return rated_w_per_gpm end end