module Vanity module Experiment # Experiment alternative. See AbTest#alternatives and AbTest#score. class Alternative def initialize(experiment, id, value, participants, converted, conversions) #:nodoc: @experiment = experiment @id = id @name = "option #{(@id + 65).chr}" @value = value @participants, @converted, @conversions = participants, converted, conversions end # Alternative id, only unique for this experiment. attr_reader :id # Alternative name (option A, option B, etc). attr_reader :name # Alternative value. attr_reader :value # Experiment this alternative belongs to. attr_reader :experiment # Number of participants who viewed this alternative. attr_reader :participants # Number of participants who converted on this alternative. attr_reader :converted # Number of conversions for this alternative (same participant may be counted more than once). attr_reader :conversions # Z-score for this alternative. Populated by AbTest#score. attr_accessor :z_score # Confidence derived from z-score. Populated by AbTest#score. attr_accessor :confidence # Difference from least performing alternative. Populated by AbTest#score. attr_accessor :difference # Conversion rate calculated as converted/participants, rounded to 3 places. def conversion_rate @rate ||= (participants > 0 ? (converted.to_f/participants.to_f).round(3) : 0.0) end def <=>(other) # sort by conversion rate conversion_rate <=> other.conversion_rate end def ==(other) other && id == other.id && experiment == other.experiment end def to_s #:nodoc: name end def inspect #:nodoc: "#{name}: #{value} #{converted}/#{participants}" end end # The meat. class AbTest < Base class << self def confidence(score) #:nodoc: score = score.abs confidence = AbTest::Z_TO_CONFIDENCE.find { |z,p| score >= z } confidence ? confidence.last : 0 end def friendly_name "A/B Test" end end def initialize(*args) #:nodoc: super @alternatives = [false, true] end # -- Alternatives -- # Call this method once to set alternative values for this experiment. # Require at least two values. For example: # experiment "Background color" do # alternatives "red", "blue", "orange" # end # # Call without arguments to obtain current list of alternatives. For example: # alts = experiment(:background_color).alternatives # puts "#{alts.count} alternatives, with the colors: #{alts.map(&:value).join(", ")}" # # If you want to know how well each alternative is faring, use #score. def alternatives(*args) unless args.empty? @alternatives = args.clone end class << self alias :alternatives :_alternatives end alternatives end def _alternatives #:nodoc: alts = [] @alternatives.each_with_index do |value, i| participants = redis.scard(key("alts:#{i}:participants")).to_i converted = redis.scard(key("alts:#{i}:converted")).to_i conversions = redis[key("alts:#{i}:conversions")].to_i alts << Alternative.new(self, i, value, participants, converted, conversions) end alts end # Returns an Alternative with the specified value. def alternative(value) if index = @alternatives.index(value) participants = redis.scard(key("alts:#{index}:participants")).to_i converted = redis.scard(key("alts:#{index}:converted")).to_i conversions = redis[key("alts:#{index}:conversions")].to_i Alternative.new(self, index, value, participants, converted, conversions) end end # Sets this test to two alternatives: false and true. def false_true alternatives false, true end alias true_false false_true # Chooses a value for this experiment. # # This method returns different values for different identity (see # #identify), and consistenly the same value for the same # expriment/identity pair. # # For example: # color = experiment(:which_blue).choose def choose if active? identity = identify index = redis[key("participant:#{identity}:show")] unless index index = alternative_for(identity) redis.sadd key("alts:#{index}:participants"), identity check_completion! end else index = redis[key("outcome")] || alternative_for(identify) end @alternatives[index.to_i] end # Records a conversion. # # For example: # experiment(:which_blue).conversion! def conversion! return unless active? identity = identify return if redis[key("participants:#{identity}:show")] index = alternative_for(identity) if redis.sismember(key("alts:#{index}:participants"), identity) redis.sadd key("alts:#{index}:converted"), identity redis.incr key("alts:#{index}:conversions") end check_completion! end # -- Testing -- # Forces this experiment to use a particular alternative. Useful for # tests, e.g. # # setup do # experiment(:green_button).select(true) # end # # def test_shows_green_button # . . . # end # # Use nil to clear out selection: # teardown do # experiment(:green_button).select(nil) # end def chooses(value) index = @alternatives.index(value) raise ArgumentError, "No alternative #{value.inspect} for #{name}" unless index identity = identify redis[key("participant:#{identity}:show")] = index self end def chosen?(alternative) #:nodoc: identity = identify index = redis[key("participant:#{identity}:show")] index && index.to_i == alternative.id end # Used for testing. def count(identity, value, *what) #:nodoc: index = @alternatives.index(value) raise ArgumentError, "No alternative #{value.inspect} for #{name}" unless index if what.empty? || what.include?(:participant) redis.sadd key("alts:#{index}:participants"), identity end if what.empty? || what.include?(:conversion) redis.sadd key("alts:#{index}:converted"), identity redis.incr key("alts:#{index}:conversions") end self end # -- Reporting -- # Returns an object with the following methods: # [:alts] List of Alternative populated with interesting statistics. # [:best] Best performing alternative. # [:base] Second best performing alternative. # [:least] Least performing alternative (but more than zero conversion). # [:choice] Choice alterntive, either the outcome or best alternative (if confidence >= 90%). # # Alternatives returned by this method are populated with the following attributes: # [:z_score] Z-score (relative to the base alternative). # [:confidence] Confidence (z-score mapped to 0, 90, 95, 99 or 99.9%). # [:difference] Difference from the least performant altenative. def score alts = alternatives # sort by conversion rate to find second best and 2nd best sorted = alts.sort_by(&:conversion_rate) base = sorted[-2] # calculate z-score pc = base.conversion_rate nc = base.participants alts.each do |alt| p = alt.conversion_rate n = alt.participants alt.z_score = (p - pc) / ((p * (1-p)/n) + (pc * (1-pc)/nc)).abs ** 0.5 alt.confidence = AbTest.confidence(alt.z_score) end # difference is measured from least performant if least = sorted.find { |alt| alt.conversion_rate > 0 } alts.each do |alt| if alt.conversion_rate > least.conversion_rate alt.difference = (alt.conversion_rate - least.conversion_rate) / least.conversion_rate * 100 end end end # best alternative is one with highest conversion rate (best shot). # choice alternative can only pick best if we have high confidence (>90%). best = sorted.last if sorted.last.conversion_rate > 0.0 choice = outcome ? alts[outcome.id] : (best && best.confidence >= 90 ? best : nil) Struct.new(:alts, :best, :base, :least, :choice).new(alts, best, base, least, choice) end # Use the score returned by #score to derive a conclusion. Returns an # array of claims. def conclusion(score = score) claims = [] # only interested in sorted alternatives with conversion sorted = score.alts.select { |alt| alt.conversion_rate > 0.0 }.sort_by(&:conversion_rate).reverse if sorted.size > 1 # start with alternatives that have conversion, from best to worst, # then alternatives with no conversion. sorted |= score.alts # we want a result that's clearly better than 2nd best. best, second = sorted[0], sorted[1] if best.conversion_rate > second.conversion_rate diff = ((best.conversion_rate - second.conversion_rate) / second.conversion_rate * 100).round better = " (%d%% better than %s)" % [diff, second.name] if diff > 0 claims << "The best choice is %s: it converted at %.1f%%%s." % [best.name, best.conversion_rate * 100, better] if best.confidence >= 90 claims << "With %d%% probability this result is statistically significant." % score.best.confidence else claims << "This result is not statistically significant, suggest you continue this experiment." end sorted.delete best end sorted.each do |alt| if alt.conversion_rate > 0.0 claims << "%s converted at %.1f%%." % [alt.name.gsub(/^o/, "O"), alt.conversion_rate * 100] else claims << "%s did not convert." % alt.name.gsub(/^o/, "O") end end else claims << "This experiment did not run long enough to find a clear winner." end claims << "#{score.choice.name.gsub(/^o/, "O")} selected as the best alternative." if score.choice claims end # -- Completion -- # Defines how the experiment can choose the optimal outcome on completion. # # The default implementation looks for the best (highest conversion rate) # alternative. If it's certain (95% or more) that this alternative is # better than the first alternative, it switches to that one. If it has # no such certainty, it starts using the first alternative exclusively. # # The default implementation reads like this: # outcome_is do # highest = alternatives.sort.last # highest.confidence >= 95 ? highest ? alternatives.first # end def outcome_is(&block) raise ArgumentError, "Missing block" unless block raise "outcome_is already called on this experiment" if @outcome_is @outcome_is = block end # Alternative chosen when this experiment was completed. def outcome outcome = redis[key("outcome")] outcome && alternatives[outcome.to_i] end def complete! return unless active? super if @outcome_is begin result = @outcome_is.call outcome = result.id if result && result.experiment == self rescue # TODO: logging end else best = score.best outcome = best.id if best end # TODO: logging redis.setnx key("outcome"), outcome || 0 end # -- Store/validate -- def save fail "Experiment #{name} needs at least two alternatives" unless alternatives.count >= 2 super end def reset! @alternatives.count.times do |i| redis.del key("alts:#{i}:participants") redis.del key("alts:#{i}:converted") redis.del key("alts:#{i}:conversions") end redis.del key(:outcome) super end def destroy reset super end private # Chooses an alternative for the identity and returns its index. This # method always returns the same alternative for a given experiment and # identity, and randomly distributed alternatives for each identity (in the # same experiment). def alternative_for(identity) Digest::MD5.hexdigest("#{name}/#{identity}").to_i(17) % @alternatives.count end begin a = 0 # Returns array of [z-score, percentage] norm_dist = (-5.0..3.1).step(0.01).map { |x| [x, a += 1 / Math.sqrt(2 * Math::PI) * Math::E ** (-x ** 2 / 2)] } # We're really only interested in 90%, 95%, 99% and 99.9%. Z_TO_CONFIDENCE = [90, 95, 99, 99.9].map { |pct| [norm_dist.find { |x,a| a >= pct }.first, pct] }.reverse end end end end