/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2003 * * Last modified: * $Date: 2011-06-21 06:39:54 +1000 (Tue, 21 Jun 2011) $ by $Author: schulte $ * $Revision: 12069 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include using namespace Gecode; /** * \brief %Example: partition numbers into two groups * * \ingroup Example */ class Partition : public Script { protected: /// First group of numbers IntVarArray x; /// Second group of numbers IntVarArray y; public: /// Actual model Partition(const SizeOptions& opt) : x(*this,opt.size(),1,2*opt.size()), y(*this,opt.size(),1,2*opt.size()) { const int n = opt.size(); // Break symmetries by ordering numbers in each group rel(*this, x, IRT_LE); rel(*this, y, IRT_LE); rel(*this, x[0], IRT_LE, y[0]); IntVarArgs xy(2*n); for (int i = n; i--; ) { xy[i] = x[i]; xy[n+i] = y[i]; } distinct(*this, xy, opt.icl()); IntArgs c(2*n); for (int i = n; i--; ) { c[i] = 1; c[n+i] = -1; } linear(*this, c, xy, IRT_EQ, 0); // Array of products IntVarArgs sxy(2*n), sx(n), sy(n); for (int i = n; i--; ) { sx[i] = sxy[i] = expr(*this, sqr(x[i])); sy[i] = sxy[n+i] = expr(*this, sqr(y[i])); } linear(*this, c, sxy, IRT_EQ, 0); // Redundant constraints linear(*this, x, IRT_EQ, 2*n*(2*n+1)/4); linear(*this, y, IRT_EQ, 2*n*(2*n+1)/4); linear(*this, sx, IRT_EQ, 2*n*(2*n+1)*(4*n+1)/12); linear(*this, sy, IRT_EQ, 2*n*(2*n+1)*(4*n+1)/12); branch(*this, xy, INT_VAR_SIZE_AFC_MIN, INT_VAL_MIN); } /// Constructor used during cloning \a s Partition(bool share, Partition& s) : Script(share,s) { x.update(*this, share, s.x); y.update(*this, share, s.y); } /// Copying during cloning virtual Space* copy(bool share) { return new Partition(share,*this); } /// Print solution virtual void print(std::ostream& os) const { os << "\t"; int a, b; a = b = 0; for (int i = 0; i < x.size(); i++) { a += x[i].val(); b += x[i].val()*x[i].val(); os << x[i] << ", "; } os << " = " << a << ", " << b << std::endl << "\t"; a = b = 0; for (int i = 0; i < y.size(); i++) { a += y[i].val(); b += y[i].val()*y[i].val(); os << y[i] << ", "; } os << " = " << a << ", " << b << std::endl; } }; /** * \brief Main-functiona * \relates Partition */ int main(int argc, char* argv[]) { SizeOptions opt("Partition"); opt.size(32); opt.icl(ICL_BND); opt.parse(argc,argv); Script::run(opt); return 0; } // STATISTICS: example-any