module DNN module Layers class BatchNormalization < HasParamLayer attr_reader :gamma attr_reader :beta attr_reader :running_mean attr_reader :running_var attr_reader :axis attr_accessor :momentum attr_accessor :eps # @param [Integer] axis The axis to normalization. # @param [Float] momentum Exponential moving average of mean and variance. # @param [Float] eps Value to avoid division by zero. def initialize(axis: 0, momentum: 0.9, eps: 1e-7) super() @axis = axis @momentum = momentum @eps = eps end def build(input_shape) super @gamma = Param.new(Xumo::SFloat.ones(*output_shape), Xumo::SFloat[0]) @beta = Param.new(Xumo::SFloat.zeros(*output_shape), Xumo::SFloat[0]) @running_mean = Param.new(Xumo::SFloat.zeros(*output_shape)) @running_var = Param.new(Xumo::SFloat.zeros(*output_shape)) end def forward(x) if DNN.learning_phase mean = x.mean(axis: @axis, keepdims: true) @xc = x - mean var = (@xc**2).mean(axis: @axis, keepdims: true) @std = Xumo::NMath.sqrt(var + @eps) xn = @xc / @std @xn = xn @running_mean.data = @momentum * @running_mean.data + (1 - @momentum) * mean @running_var.data = @momentum * @running_var.data + (1 - @momentum) * var else xc = x - @running_mean.data xn = xc / Xumo::NMath.sqrt(@running_var.data + @eps) end @gamma.data * xn + @beta.data end def backward(dy) batch_size = dy.shape[@axis] if @trainable @beta.grad = dy.sum(axis: @axis, keepdims: true) @gamma.grad = (@xn * dy).sum(axis: @axis, keepdims: true) end dxn = @gamma.data * dy dxc = dxn / @std dstd = -((dxn * @xc) / (@std**2)).sum(axis: @axis, keepdims: true) dvar = 0.5 * dstd / @std dxc += (2.0 / batch_size) * @xc * dvar dmean = dxc.sum(axis: @axis, keepdims: true) dxc - dmean / batch_size end def to_hash super(axis: @axis, momentum: @momentum, eps: @eps) end def load_hash(hash) initialize(axis: hash[:axis], momentum: hash[:momentum]) end def get_params { gamma: @gamma, beta: @beta, running_mean: @running_mean, running_var: @running_var } end end end end