module Dydx module Helper OP_SYM_STR = { addition: :+, subtraction: :-, multiplication: :*, exponentiation: :^ } def is_0? self == 0 || (is_a?(Num) && n == 0) || (subtrahend? && x.is_0?) end def is_1? self == 1 || (is_a?(Num) && n == 1) || (divisor? && x.is_1?) end def is_minus1? self == -1 || (is_a?(Num) && n == -1) end def is_num? if is_a?(Inverse) x.is_num? else is_a?(Num) || is_a?(Fixnum) end end def combinable?(x, operator) case operator when :* self == x || (is_num? && x.is_num?) || inverse?(x, :*) when :+ like_term?(x) end end def like_term?(x) self == x || (is_num? && x.is_num?) || (multiplication? && (f == x || g == x)) || inverse?(x, :+) end def is_multiple_of(x) is_multiple = if is_0? _(0) elsif self == x _(1) elsif is_a?(Formula) && (f == x || g == x) f == x ? g : f else false end end OP_SYM_STR.each do |operator_name, operator| define_method("#{operator_name}?") do (@operator == operator) && is_a?(Formula) # is_a?(Inverse) && self.operator == operator end end def to_str(sym) OP_SYM_STR.key(sym) end def str_to_sym(str) OP_SYM_STR[str] end def super_ope(operator) case operator when :+ :* when :- :/ when :* :^ end end def inverse?(x, operator) if is_a?(Algebra::Inverse) self.operator == operator && self.x == x elsif x.is_a?(Algebra::Inverse) self == x.x else false end end def subtrahend? is_a?(Inverse) && operator == :+ end def divisor? is_a?(Inverse) && operator == :* end end end