/**
 * Cesium - https://github.com/AnalyticalGraphicsInc/cesium
 *
 * Copyright 2011-2013 Cesium Contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Columbus View (Pat. Pend.)
 *
 * Portions licensed separately.
 * See https://github.com/AnalyticalGraphicsInc/cesium/blob/master/LICENSE.md for full licensing details.
 */
(function () {
/*global define*/
define('Core/defined',[],function() {
    "use strict";

    /**
     * Returns true if the object is defined, returns false otherwise.
     *
     * @exports defined
     *
     * @example
     * if (defined(positions)) {
     *      doSomething();
     * } else {
     *      doSomethingElse();
     * }
     */
    var defined = function(value) {
        return value !== undefined;
    };

    return defined;
});

/*global define*/
define('Core/freezeObject',['./defined'], function(defined) {
    "use strict";

    /**
     * Freezes an object, using Object.freeze if available, otherwise returns
     * the object unchanged.  This function should be used in setup code to prevent
     * errors from completely halting JavaScript execution in legacy browsers.
     *
     * @private
     *
     * @exports freezeObject
     */
    var freezeObject = Object.freeze;
    if (!defined(freezeObject)) {
        freezeObject = function(o) {
            return o;
        };
    }

    return freezeObject;
});
/*global define*/
define('Core/defaultValue',[
        './freezeObject'
    ], function(
        freezeObject) {
    "use strict";

    /**
     * Returns the first parameter if not undefined, otherwise the second parameter.
     * Useful for setting a default value for a parameter.
     *
     * @exports defaultValue
     *
     * @example
     * param = defaultValue(param, 'default');
     */
    var defaultValue = function(a, b) {
        if (a !== undefined) {
            return a;
        }
        return b;
    };

    /**
     * A frozen empty object that can be used as the default value for options passed as
     * an object literal.
     */
    defaultValue.EMPTY_OBJECT = freezeObject({});

    return defaultValue;
});
/*global define*/
define('Core/DeveloperError',['./defined'], function(defined) {
    "use strict";

    /**
     * Constructs an exception object that is thrown due to a developer error, e.g., invalid argument,
     * argument out of range, etc.  This exception should only be thrown during development;
     * it usually indicates a bug in the calling code.  This exception should never be
     * caught; instead the calling code should strive not to generate it.
     * <br /><br />
     * On the other hand, a {@link RuntimeError} indicates an exception that may
     * be thrown at runtime, e.g., out of memory, that the calling code should be prepared
     * to catch.
     *
     * @alias DeveloperError
     *
     * @param {String} [message=undefined] The error message for this exception.
     *
     * @see RuntimeError
     * @constructor
     */
    var DeveloperError = function(message) {
        /**
         * 'DeveloperError' indicating that this exception was thrown due to a developer error.
         * @type {String}
         * @constant
         */
        this.name = 'DeveloperError';

        /**
         * The explanation for why this exception was thrown.
         * @type {String}
         * @constant
         */
        this.message = message;

        var e = new Error();

        /**
         * The stack trace of this exception, if available.
         * @type {String}
         * @constant
         */
        this.stack = e.stack;
    };

    DeveloperError.prototype.toString = function() {
        var str = this.name + ': ' + this.message;

        if (defined(this.stack)) {
            str += '\n' + this.stack.toString();
        }

        return str;
    };

    return DeveloperError;
});

/*global define*/
define('Core/Cartesian3',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        freezeObject) {
    "use strict";

    /**
     * A 3D Cartesian point.
     * @alias Cartesian3
     * @constructor
     *
     * @param {Number} [x=0.0] The X component.
     * @param {Number} [y=0.0] The Y component.
     * @param {Number} [z=0.0] The Z component.
     *
     * @see Cartesian2
     * @see Cartesian4
     * @see Packable
     */
    var Cartesian3 = function(x, y, z) {
        /**
         * The X component.
         * @type {Number}
         * @default 0.0
         */
        this.x = defaultValue(x, 0.0);

        /**
         * The Y component.
         * @type {Number}
         * @default 0.0
         */
        this.y = defaultValue(y, 0.0);

        /**
         * The Z component.
         * @type {Number}
         * @default 0.0
         */
        this.z = defaultValue(z, 0.0);
    };

    /**
     * Converts the provided Spherical into Cartesian3 coordinates.
     * @memberof Cartesian3
     *
     * @param {Spherical} spherical The Spherical to be converted to Cartesian3.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} spherical is required.
     */
    Cartesian3.fromSpherical = function(spherical, result) {
                if (!defined(spherical)) {
            throw new DeveloperError('spherical is required');
        }
        
        if (!defined(result)) {
            result = new Cartesian3();
        }
        var clock = spherical.clock;
        var cone = spherical.cone;
        var magnitude = defaultValue(spherical.magnitude, 1.0);
        var radial = magnitude * Math.sin(cone);
        result.x = radial * Math.cos(clock);
        result.y = radial * Math.sin(clock);
        result.z = magnitude * Math.cos(cone);
        return result;
    };

    /**
     * Creates a Cartesian3 instance from x, y and z coordinates.
     * @memberof Cartesian3
     *
     * @param {Number} x The x coordinate.
     * @param {Number} y The y coordinate.
     * @param {Number} z The z coordinate.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     */
    Cartesian3.fromElements = function(x, y, z, result) {
        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }

        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Duplicates a Cartesian3 instance.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian to duplicate.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. (Returns undefined if cartesian is undefined)
     */
    Cartesian3.clone = function(cartesian, result) {
        if (!defined(cartesian)) {
            return undefined;
        }

        if (!defined(result)) {
            return new Cartesian3(cartesian.x, cartesian.y, cartesian.z);
        }

        result.x = cartesian.x;
        result.y = cartesian.y;
        result.z = cartesian.z;
        return result;
    };

    /**
     * Creates a Cartesian3 instance from an existing Cartesian4.  This simply takes the
     * x, y, and z properties of the Cartesian4 and drops w.
     * @function
     *
     * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian3 instance from.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.fromCartesian4 = Cartesian3.clone;

    /**
     * The number of elements used to pack the object into an array.
     * @Type {Number}
     */
    Cartesian3.packedLength = 3;

    /**
     * Stores the provided instance into the provided array.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} value The value to pack.
     * @param {Array} array The array to pack into.
     * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
     *
     * @exception {DeveloperError} value is required.
     * @exception {DeveloperError} array is required.
     */
    Cartesian3.pack = function(value, array, startingIndex) {
                if (!defined(value)) {
            throw new DeveloperError('value is required');
        }

        if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        array[startingIndex++] = value.x;
        array[startingIndex++] = value.y;
        array[startingIndex] = value.z;
    };

    /**
     * Retrieves an instance from a packed array.
     * @memberof Cartesian3
     *
     * @param {Array} array The packed array.
     * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
     * @param {Cartesian3} [result] The object into which to store the result.
     *
     * @exception {DeveloperError} array is required.
     */
    Cartesian3.unpack = function(array, startingIndex, result) {
                if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Cartesian3();
        }
        result.x = array[startingIndex++];
        result.y = array[startingIndex++];
        result.z = array[startingIndex];
        return result;
    };

    /**
     * Creates a Cartesian3 from three consecutive elements in an array.
     * @memberof Cartesian3
     *
     * @param {Array} array The array whose three consecutive elements correspond to the x, y, and z components, respectively.
     * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
     * @param {Cartesian3} [result] The object onto which to store the result.
     *
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} array is required.
     *
     * @example
     * // Create a Cartesian3 with (1.0, 2.0, 3.0)
     * var v = [1.0, 2.0, 3.0];
     * var p = Cartesian3.fromArray(v);
     *
     * // Create a Cartesian3 with (1.0, 2.0, 3.0) using an offset into an array
     * var v2 = [0.0, 0.0, 1.0, 2.0, 3.0];
     * var p2 = Cartesian3.fromArray(v2, 2);
     */
    Cartesian3.fromArray = Cartesian3.unpack;

    /**
     * Computes the value of the maximum component for the supplied Cartesian.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} The cartesian to use.
     * @returns {Number} The value of the maximum component.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.getMaximumComponent = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return Math.max(cartesian.x, cartesian.y, cartesian.z);
    };

    /**
     * Computes the value of the minimum component for the supplied Cartesian.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} The cartesian to use.
     * @returns {Number} The value of the minimum component.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.getMinimumComponent = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return Math.min(cartesian.x, cartesian.y, cartesian.z);
    };

    /**
     * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} first A cartesian to compare.
     * @param {Cartesian3} second A cartesian to compare.
     * @param {Cartesian3} [result] The object into which to store the result.
     * @returns {Cartesian3} A cartesian with the minimum components.
     *
     * @exception {DeveloperError} first is required.
     * @exception {DeveloperError} second is required.
     */
    Cartesian3.getMinimumByComponent = function(first, second, result) {
                if (!defined(first)) {
            throw new DeveloperError('first is required.');
        }
        if (!defined(second)) {
            throw new DeveloperError('second is required.');
        }
        
        if (!defined(result)) {
            result = new Cartesian3();
        }

        result.x = Math.min(first.x, second.x);
        result.y = Math.min(first.y, second.y);
        result.z = Math.min(first.z, second.z);

        return result;
    };

    /**
     * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} first A cartesian to compare.
     * @param {Cartesian3} second A cartesian to compare.
     * @param {Cartesian3} [result] The object into which to store the result.
     * @returns {Cartesian3} A cartesian with the maximum components.
     *
     * @exception {DeveloperError} first is required.
     * @exception {DeveloperError} second is required.
     */
    Cartesian3.getMaximumByComponent = function(first, second, result) {
                if (!defined(first)) {
            throw new DeveloperError('first is required.');
        }
        if (!defined(second)) {
            throw new DeveloperError('second is required.');
        }
        
        if (!defined(result)) {
            result = new Cartesian3();
        }

        result.x = Math.max(first.x, second.x);
        result.y = Math.max(first.y, second.y);
        result.z = Math.max(first.z, second.z);
        return result;
    };

    /**
     * Computes the provided Cartesian's squared magnitude.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian instance whose squared magnitude is to be computed.
     * @returns {Number} The squared magnitude.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.magnitudeSquared = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z;
    };

    /**
     * Computes the Cartesian's magnitude (length).
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian instance whose magnitude is to be computed.
     * @returns {Number} The magnitude.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.magnitude = function(cartesian) {
        return Math.sqrt(Cartesian3.magnitudeSquared(cartesian));
    };

    var distanceScratch = new Cartesian3();

    /**
     * Computes the distance between two points
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first point to compute the distance from.
     * @param {Cartesian3} right The second point to compute the distance to.
     *
     * @returns {Number} The distance between two points.
     *
     * @exception {DeveloperError} left and right are required.
     *
     * @example
     * // Returns 1.0
     * var d = Cartesian3.distance(new Cartesian3(1.0, 0.0, 0.0), new Cartesian3(2.0, 0.0, 0.0));
     */
    Cartesian3.distance = function(left, right) {
                if (!defined(left) || !defined(right)) {
            throw new DeveloperError('left and right are required.');
        }
        
        Cartesian3.subtract(left, right, distanceScratch);
        return Cartesian3.magnitude(distanceScratch);
    };

    /**
     * Computes the normalized form of the supplied Cartesian.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian to be normalized.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.normalize = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var magnitude = Cartesian3.magnitude(cartesian);
        if (!defined(result)) {
            return new Cartesian3(cartesian.x / magnitude, cartesian.y / magnitude, cartesian.z / magnitude);
        }
        result.x = cartesian.x / magnitude;
        result.y = cartesian.y / magnitude;
        result.z = cartesian.z / magnitude;
        return result;
    };

    /**
     * Computes the dot (scalar) product of two Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first Cartesian.
     * @param {Cartesian3} right The second Cartesian.
     * @returns {Number} The dot product.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian3.dot = function(left, right) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        return left.x * right.x + left.y * right.y + left.z * right.z;
    };

    /**
     * Computes the componentwise product of two Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first Cartesian.
     * @param {Cartesian3} right The second Cartesian.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian3.multiplyComponents = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian3(left.x * right.x, left.y * right.y, left.z * right.z);
        }
        result.x = left.x * right.x;
        result.y = left.y * right.y;
        result.z = left.z * right.z;
        return result;
    };

    /**
     * Computes the componentwise sum of two Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first Cartesian.
     * @param {Cartesian3} right The second Cartesian.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian3.add = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian3(left.x + right.x, left.y + right.y, left.z + right.z);
        }
        result.x = left.x + right.x;
        result.y = left.y + right.y;
        result.z = left.z + right.z;
        return result;
    };

    /**
     * Computes the componentwise difference of two Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first Cartesian.
     * @param {Cartesian3} right The second Cartesian.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian3.subtract = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian3(left.x - right.x, left.y - right.y, left.z - right.z);
        }
        result.x = left.x - right.x;
        result.y = left.y - right.y;
        result.z = left.z - right.z;
        return result;
    };

    /**
     * Multiplies the provided Cartesian componentwise by the provided scalar.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian to be scaled.
     * @param {Number} scalar The scalar to multiply with.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Cartesian3.multiplyByScalar = function(cartesian, scalar, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number.');
        }
        
        if (!defined(result)) {
            return new Cartesian3(cartesian.x * scalar, cartesian.y * scalar, cartesian.z * scalar);
        }
        result.x = cartesian.x * scalar;
        result.y = cartesian.y * scalar;
        result.z = cartesian.z * scalar;
        return result;
    };

    /**
     * Divides the provided Cartesian componentwise by the provided scalar.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian to be divided.
     * @param {Number} scalar The scalar to divide by.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Cartesian3.divideByScalar = function(cartesian, scalar, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number.');
        }
        
        if (!defined(result)) {
            return new Cartesian3(cartesian.x / scalar, cartesian.y / scalar, cartesian.z / scalar);
        }
        result.x = cartesian.x / scalar;
        result.y = cartesian.y / scalar;
        result.z = cartesian.z / scalar;
        return result;
    };

    /**
     * Negates the provided Cartesian.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian to be negated.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.negate = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        if (!defined(result)) {
            return new Cartesian3(-cartesian.x, -cartesian.y, -cartesian.z);
        }
        result.x = -cartesian.x;
        result.y = -cartesian.y;
        result.z = -cartesian.z;
        return result;
    };

    /**
     * Computes the absolute value of the provided Cartesian.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian whose absolute value is to be computed.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.abs = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        if (!defined(result)) {
            return new Cartesian3(Math.abs(cartesian.x), Math.abs(cartesian.y), Math.abs(cartesian.z));
        }
        result.x = Math.abs(cartesian.x);
        result.y = Math.abs(cartesian.y);
        result.z = Math.abs(cartesian.z);
        return result;
    };

    var lerpScratch = new Cartesian3();
    /**
     * Computes the linear interpolation or extrapolation at t using the provided cartesians.
     * @memberof Cartesian3
     *
     * @param start The value corresponding to t at 0.0.
     * @param end The value corresponding to t at 1.0.
     * @param t The point along t at which to interpolate.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} start is required.
     * @exception {DeveloperError} end is required.
     * @exception {DeveloperError} t is required and must be a number.
     */
    Cartesian3.lerp = function(start, end, t, result) {
                if (!defined(start)) {
            throw new DeveloperError('start is required.');
        }
        if (!defined(end)) {
            throw new DeveloperError('end is required.');
        }
        if (typeof t !== 'number') {
            throw new DeveloperError('t is required and must be a number.');
        }
        
        Cartesian3.multiplyByScalar(end, t, lerpScratch);
        result = Cartesian3.multiplyByScalar(start, 1.0 - t, result);
        return Cartesian3.add(lerpScratch, result, result);
    };

    var angleBetweenScratch = new Cartesian3();
    var angleBetweenScratch2 = new Cartesian3();
    /**
     * Returns the angle, in radians, between the provided Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first Cartesian.
     * @param {Cartesian3} right The second Cartesian.
     * @returns {Number} The angle between the Cartesians.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian3.angleBetween = function(left, right) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        Cartesian3.normalize(left, angleBetweenScratch);
        Cartesian3.normalize(right, angleBetweenScratch2);
        var cosine = Cartesian3.dot(angleBetweenScratch, angleBetweenScratch2);
        var sine = Cartesian3.magnitude(Cartesian3.cross(angleBetweenScratch, angleBetweenScratch2, angleBetweenScratch));
        return Math.atan2(sine, cosine);
    };

    var mostOrthogonalAxisScratch = new Cartesian3();
    /**
     * Returns the axis that is most orthogonal to the provided Cartesian.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} cartesian The Cartesian on which to find the most orthogonal axis.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The most orthogonal axis.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian3.mostOrthogonalAxis = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required.');
        }
        
        var f = Cartesian3.normalize(cartesian, mostOrthogonalAxisScratch);
        Cartesian3.abs(f, f);

        if (f.x <= f.y) {
            if (f.x <= f.z) {
                result = Cartesian3.clone(Cartesian3.UNIT_X, result);
            } else {
                result = Cartesian3.clone(Cartesian3.UNIT_Z, result);
            }
        } else {
            if (f.y <= f.z) {
                result = Cartesian3.clone(Cartesian3.UNIT_Y, result);
            } else {
                result = Cartesian3.clone(Cartesian3.UNIT_Z, result);
            }
        }

        return result;
    };

    /**
     * Compares the provided Cartesians componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} [left] The first Cartesian.
     * @param {Cartesian3} [right] The second Cartesian.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Cartesian3.equals = function(left, right) {
            return (left === right) ||
              ((defined(left)) &&
               (defined(right)) &&
               (left.x === right.x) &&
               (left.y === right.y) &&
               (left.z === right.z));
    };

    /**
     * Compares the provided Cartesians componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} [left] The first Cartesian.
     * @param {Cartesian3} [right] The second Cartesian.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartesian3.equalsEpsilon = function(left, right, epsilon) {
                if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number.');
        }
        
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (Math.abs(left.x - right.x) <= epsilon) &&
                (Math.abs(left.y - right.y) <= epsilon) &&
                (Math.abs(left.z - right.z) <= epsilon));
    };

    /**
     * Computes the cross (outer) product of two Cartesians.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} left The first Cartesian.
     * @param {Cartesian3} right The second Cartesian.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The cross product.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian3.cross = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        var leftX = left.x;
        var leftY = left.y;
        var leftZ = left.z;
        var rightX = right.x;
        var rightY = right.y;
        var rightZ = right.z;

        var x = leftY * rightZ - leftZ * rightY;
        var y = leftZ * rightX - leftX * rightZ;
        var z = leftX * rightY - leftY * rightX;

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * An immutable Cartesian3 instance initialized to (0.0, 0.0, 0.0).
     * @memberof Cartesian3
     */
    Cartesian3.ZERO = freezeObject(new Cartesian3(0.0, 0.0, 0.0));

    /**
     * An immutable Cartesian3 instance initialized to (1.0, 0.0, 0.0).
     * @memberof Cartesian3
     */
    Cartesian3.UNIT_X = freezeObject(new Cartesian3(1.0, 0.0, 0.0));

    /**
     * An immutable Cartesian3 instance initialized to (0.0, 1.0, 0.0).
     * @memberof Cartesian3
     */
    Cartesian3.UNIT_Y = freezeObject(new Cartesian3(0.0, 1.0, 0.0));

    /**
     * An immutable Cartesian3 instance initialized to (0.0, 0.0, 1.0).
     * @memberof Cartesian3
     */
    Cartesian3.UNIT_Z = freezeObject(new Cartesian3(0.0, 0.0, 1.0));

    /**
     * Duplicates this Cartesian3 instance.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     */
    Cartesian3.prototype.clone = function(result) {
        return Cartesian3.clone(this, result);
    };

    /**
     * Compares this Cartesian against the provided Cartesian componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} [right] The right hand side Cartesian.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Cartesian3.prototype.equals = function(right) {
        return Cartesian3.equals(this, right);
    };

    /**
     * Compares this Cartesian against the provided Cartesian componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartesian3
     *
     * @param {Cartesian3} [right] The right hand side Cartesian.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartesian3.prototype.equalsEpsilon = function(right, epsilon) {
        return Cartesian3.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Creates a string representing this Cartesian in the format '(x, y, z)'.
     * @memberof Cartesian3
     *
     * @returns {String} A string representing this Cartesian in the format '(x, y, z)'.
     */
    Cartesian3.prototype.toString = function() {
        return '(' + this.x + ', ' + this.y + ', ' + this.z + ')';
    };

    return Cartesian3;
});

/*global define*/
define('Core/Cartesian4',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        freezeObject) {
    "use strict";

    /**
     * A 4D Cartesian point.
     * @alias Cartesian4
     * @constructor
     *
     * @param {Number} [x=0.0] The X component.
     * @param {Number} [y=0.0] The Y component.
     * @param {Number} [z=0.0] The Z component.
     * @param {Number} [w=0.0] The W component.
     *
     * @see Cartesian2
     * @see Cartesian3
     * @see Packable
     */
    var Cartesian4 = function(x, y, z, w) {
        /**
         * The X component.
         * @type {Number}
         * @default 0.0
         */
        this.x = defaultValue(x, 0.0);

        /**
         * The Y component.
         * @type {Number}
         * @default 0.0
         */
        this.y = defaultValue(y, 0.0);

        /**
         * The Z component.
         * @type {Number}
         * @default 0.0
         */
        this.z = defaultValue(z, 0.0);

        /**
         * The W component.
         * @type {Number}
         * @default 0.0
         */
        this.w = defaultValue(w, 0.0);
    };

    /**
     * Creates a Cartesian4 instance from x, y, z and w coordinates.
     * @memberof Cartesian4
     *
     * @param {Number} x The x coordinate.
     * @param {Number} y The y coordinate.
     * @param {Number} z The z coordinate.
     * @param {Number} w The w coordinate.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     */
    Cartesian4.fromElements = function(x, y, z, w, result) {
        if (!defined(result)) {
            return new Cartesian4(x, y, z, w);
        }

        result.x = x;
        result.y = y;
        result.z = z;
        result.w = w;
        return result;
    };

    /**
     * Duplicates a Cartesian4 instance.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian to duplicate.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined)
     */
    Cartesian4.clone = function(cartesian, result) {
        if (!defined(cartesian)) {
            return undefined;
        }

        if (!defined(result)) {
            return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
        }

        result.x = cartesian.x;
        result.y = cartesian.y;
        result.z = cartesian.z;
        result.w = cartesian.w;
        return result;
    };


    /**
     * The number of elements used to pack the object into an array.
     * @Type {Number}
     */
    Cartesian4.packedLength = 4;

    /**
     * Stores the provided instance into the provided array.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} value The value to pack.
     * @param {Array} array The array to pack into.
     * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
     *
     * @exception {DeveloperError} value is required.
     * @exception {DeveloperError} array is required.
     */
    Cartesian4.pack = function(value, array, startingIndex) {
                if (!defined(value)) {
            throw new DeveloperError('value is required');
        }

        if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        array[startingIndex++] = value.x;
        array[startingIndex++] = value.y;
        array[startingIndex++] = value.z;
        array[startingIndex] = value.w;
    };

    /**
     * Retrieves an instance from a packed array.
     * @memberof Cartesian4
     *
     * @param {Array} array The packed array.
     * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
     * @param {Cartesian4} [result] The object into which to store the result.
     *
     * @exception {DeveloperError} array is required.
     */
    Cartesian4.unpack = function(array, startingIndex, result) {
                if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Cartesian4();
        }
        result.x = array[startingIndex++];
        result.y = array[startingIndex++];
        result.z = array[startingIndex++];
        result.w = array[startingIndex];
        return result;
    };



    /**
     * Creates a Cartesian4 from four consecutive elements in an array.
     * @memberof Cartesian4
     *
     * @param {Array} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively.
     * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
     * @param {Cartesian4} [result] The object onto which to store the result.
     *
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} array is required.
     *
     * @example
     * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0)
     * var v = [1.0, 2.0, 3.0, 4.0];
     * var p = Cartesian4.fromArray(v);
     *
     * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array
     * var v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0];
     * var p2 = Cartesian4.fromArray(v2, 2);
     */
    Cartesian4.fromArray = Cartesian4.unpack;

    /**
     * Computes the value of the maximum component for the supplied Cartesian.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} The cartesian to use.
     * @returns {Number} The value of the maximum component.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.getMaximumComponent = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
    };

    /**
     * Computes the value of the minimum component for the supplied Cartesian.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} The cartesian to use.
     * @returns {Number} The value of the minimum component.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.getMinimumComponent = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
    };

    /**
     * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} first A cartesian to compare.
     * @param {Cartesian4} second A cartesian to compare.
     * @param {Cartesian4} [result] The object into which to store the result.
     * @returns {Cartesian4} A cartesian with the minimum components.
     *
     * @exception {DeveloperError} first is required.
     * @exception {DeveloperError} second is required.
     */
    Cartesian4.getMinimumByComponent = function(first, second, result) {
                if (!defined(first)) {
            throw new DeveloperError('first is required.');
        }
        if (!defined(second)) {
            throw new DeveloperError('second is required.');
        }
        
        if (!defined(result)) {
            result = new Cartesian4();
        }

        result.x = Math.min(first.x, second.x);
        result.y = Math.min(first.y, second.y);
        result.z = Math.min(first.z, second.z);
        result.w = Math.min(first.w, second.w);

        return result;
    };

    /**
     * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} first A cartesian to compare.
     * @param {Cartesian4} second A cartesian to compare.
     * @param {Cartesian4} [result] The object into which to store the result.
     * @returns {Cartesian4} A cartesian with the maximum components.
     *
     * @exception {DeveloperError} first is required.
     * @exception {DeveloperError} second is required.
     */
    Cartesian4.getMaximumByComponent = function(first, second, result) {
                if (!defined(first)) {
            throw new DeveloperError('first is required.');
        }
        if (!defined(second)) {
            throw new DeveloperError('second is required.');
        }
        
        if (!defined(result)) {
            result = new Cartesian4();
        }

        result.x = Math.max(first.x, second.x);
        result.y = Math.max(first.y, second.y);
        result.z = Math.max(first.z, second.z);
        result.w = Math.max(first.w, second.w);

        return result;
    };

    /**
     * Computes the provided Cartesian's squared magnitude.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed.
     * @returns {Number} The squared magnitude.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.magnitudeSquared = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z + cartesian.w * cartesian.w;
    };

    /**
     * Computes the Cartesian's magnitude (length).
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed.
     * @returns {Number} The magnitude.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.magnitude = function(cartesian) {
        return Math.sqrt(Cartesian4.magnitudeSquared(cartesian));
    };

    var distanceScratch = new Cartesian4();

    /**
     * Computes the 4-space distance between two points
     * @memberof Cartesian4
     *
     * @param {Cartesian4} left The first point to compute the distance from.
     * @param {Cartesian4} right The second point to compute the distance to.
     *
     * @returns {Number} The distance between two points.
     *
     * @exception {DeveloperError} left and right are required.
     *
     * @example
     * // Returns 1.0
     * var d = Cartesian4.distance(new Cartesian4(1.0, 0.0, 0.0, 0.0), new Cartesian4(2.0, 0.0, 0.0, 0.0));
     */
    Cartesian4.distance = function(left, right) {
                if (!defined(left) || !defined(right)) {
            throw new DeveloperError('left and right are required.');
        }
        
        Cartesian4.subtract(left, right, distanceScratch);
        return Cartesian4.magnitude(distanceScratch);
    };

    /**
     * Computes the normalized form of the supplied Cartesian.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian to be normalized.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.normalize = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var magnitude = Cartesian4.magnitude(cartesian);
        if (!defined(result)) {
            return new Cartesian4(cartesian.x / magnitude, cartesian.y / magnitude, cartesian.z / magnitude, cartesian.w / magnitude);
        }
        result.x = cartesian.x / magnitude;
        result.y = cartesian.y / magnitude;
        result.z = cartesian.z / magnitude;
        result.w = cartesian.w / magnitude;
        return result;
    };

    /**
     * Computes the dot (scalar) product of two Cartesians.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} left The first Cartesian.
     * @param {Cartesian4} right The second Cartesian.
     * @returns {Number} The dot product.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian4.dot = function(left, right) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        return left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w;
    };

    /**
     * Computes the componentwise product of two Cartesians.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} left The first Cartesian.
     * @param {Cartesian4} right The second Cartesian.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian4.multiplyComponents = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian4(left.x * right.x, left.y * right.y, left.z * right.z, left.w * right.w);
        }
        result.x = left.x * right.x;
        result.y = left.y * right.y;
        result.z = left.z * right.z;
        result.w = left.w * right.w;
        return result;
    };

    /**
     * Computes the componentwise sum of two Cartesians.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} left The first Cartesian.
     * @param {Cartesian4} right The second Cartesian.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian4.add = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian4(left.x + right.x, left.y + right.y, left.z + right.z, left.w + right.w);
        }
        result.x = left.x + right.x;
        result.y = left.y + right.y;
        result.z = left.z + right.z;
        result.w = left.w + right.w;
        return result;
    };

    /**
     * Computes the componentwise difference of two Cartesians.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} left The first Cartesian.
     * @param {Cartesian4} right The second Cartesian.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian4.subtract = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian4(left.x - right.x, left.y - right.y, left.z - right.z, left.w - right.w);
        }
        result.x = left.x - right.x;
        result.y = left.y - right.y;
        result.z = left.z - right.z;
        result.w = left.w - right.w;
        return result;
    };

    /**
     * Multiplies the provided Cartesian componentwise by the provided scalar.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian to be scaled.
     * @param {Number} scalar The scalar to multiply with.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Cartesian4.multiplyByScalar = function(cartesian, scalar, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number.');
        }
        
        if (!defined(result)) {
            return new Cartesian4(cartesian.x * scalar, cartesian.y * scalar, cartesian.z * scalar, cartesian.w * scalar);
        }
        result.x = cartesian.x * scalar;
        result.y = cartesian.y * scalar;
        result.z = cartesian.z * scalar;
        result.w = cartesian.w * scalar;
        return result;
    };

    /**
     * Divides the provided Cartesian componentwise by the provided scalar.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian to be divided.
     * @param {Number} scalar The scalar to divide by.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Cartesian4.divideByScalar = function(cartesian, scalar, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number.');
        }
        
        if (!defined(result)) {
            return new Cartesian4(cartesian.x / scalar, cartesian.y / scalar, cartesian.z / scalar, cartesian.w / scalar);
        }
        result.x = cartesian.x / scalar;
        result.y = cartesian.y / scalar;
        result.z = cartesian.z / scalar;
        result.w = cartesian.w / scalar;
        return result;
    };

    /**
     * Negates the provided Cartesian.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian to be negated.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.negate = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        if (!defined(result)) {
            return new Cartesian4(-cartesian.x, -cartesian.y, -cartesian.z, -cartesian.w);
        }
        result.x = -cartesian.x;
        result.y = -cartesian.y;
        result.z = -cartesian.z;
        result.w = -cartesian.w;
        return result;
    };

    /**
     * Computes the absolute value of the provided Cartesian.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.abs = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        if (!defined(result)) {
            return new Cartesian4(Math.abs(cartesian.x), Math.abs(cartesian.y), Math.abs(cartesian.z), Math.abs(cartesian.w));
        }
        result.x = Math.abs(cartesian.x);
        result.y = Math.abs(cartesian.y);
        result.z = Math.abs(cartesian.z);
        result.w = Math.abs(cartesian.w);
        return result;
    };

    var lerpScratch = new Cartesian4();
    /**
     * Computes the linear interpolation or extrapolation at t using the provided cartesians.
     * @memberof Cartesian4
     *
     * @param start The value corresponding to t at 0.0.
     * @param end The value corresponding to t at 1.0.
     * @param t The point along t at which to interpolate.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} start is required.
     * @exception {DeveloperError} end is required.
     * @exception {DeveloperError} t is required and must be a number.
     */
    Cartesian4.lerp = function(start, end, t, result) {
                if (!defined(start)) {
            throw new DeveloperError('start is required.');
        }
        if (!defined(end)) {
            throw new DeveloperError('end is required.');
        }
        if (typeof t !== 'number') {
            throw new DeveloperError('t is required and must be a number.');
        }
        
        Cartesian4.multiplyByScalar(end, t, lerpScratch);
        result = Cartesian4.multiplyByScalar(start, 1.0 - t, result);
        return Cartesian4.add(lerpScratch, result, result);
    };

    var mostOrthogonalAxisScratch = new Cartesian4();
    /**
     * Returns the axis that is most orthogonal to the provided Cartesian.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The most orthogonal axis.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian4.mostOrthogonalAxis = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required.');
        }
        
        var f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch);
        Cartesian4.abs(f, f);

        if (f.x <= f.y) {
            if (f.x <= f.z) {
                if (f.x <= f.w) {
                    result = Cartesian4.clone(Cartesian4.UNIT_X, result);
                } else {
                    result = Cartesian4.clone(Cartesian4.UNIT_W, result);
                }
            } else if (f.z <= f.w) {
                result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
            } else {
                result = Cartesian4.clone(Cartesian4.UNIT_W, result);
            }
        } else if (f.y <= f.z) {
            if (f.y <= f.w) {
                result = Cartesian4.clone(Cartesian4.UNIT_Y, result);
            } else {
                result = Cartesian4.clone(Cartesian4.UNIT_W, result);
            }
        } else if (f.z <= f.w) {
            result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
        } else {
            result = Cartesian4.clone(Cartesian4.UNIT_W, result);
        }

        return result;
    };

    /**
     * Compares the provided Cartesians componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} [left] The first Cartesian.
     * @param {Cartesian4} [right] The second Cartesian.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Cartesian4.equals = function(left, right) {
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (left.x === right.x) &&
                (left.y === right.y) &&
                (left.z === right.z) &&
                (left.w === right.w));
    };

    /**
     * Compares the provided Cartesians componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} [left] The first Cartesian.
     * @param {Cartesian4} [right] The second Cartesian.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartesian4.equalsEpsilon = function(left, right, epsilon) {
                if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number.');
        }
        
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (Math.abs(left.x - right.x) <= epsilon) &&
                (Math.abs(left.y - right.y) <= epsilon) &&
                (Math.abs(left.z - right.z) <= epsilon) &&
                (Math.abs(left.w - right.w) <= epsilon));
    };

    /**
     * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0).
     * @memberof Cartesian4
     */
    Cartesian4.ZERO = freezeObject(new Cartesian4(0.0, 0.0, 0.0, 0.0));

    /**
     * An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0).
     * @memberof Cartesian4
     */
    Cartesian4.UNIT_X = freezeObject(new Cartesian4(1.0, 0.0, 0.0, 0.0));

    /**
     * An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0).
     * @memberof Cartesian4
     */
    Cartesian4.UNIT_Y = freezeObject(new Cartesian4(0.0, 1.0, 0.0, 0.0));

    /**
     * An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0).
     * @memberof Cartesian4
     */
    Cartesian4.UNIT_Z = freezeObject(new Cartesian4(0.0, 0.0, 1.0, 0.0));

    /**
     * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0).
     * @memberof Cartesian4
     */
    Cartesian4.UNIT_W = freezeObject(new Cartesian4(0.0, 0.0, 0.0, 1.0));

    /**
     * Duplicates this Cartesian4 instance.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     */
    Cartesian4.prototype.clone = function(result) {
        return Cartesian4.clone(this, result);
    };

    /**
     * Compares this Cartesian against the provided Cartesian componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} [right] The right hand side Cartesian.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Cartesian4.prototype.equals = function(right) {
        return Cartesian4.equals(this, right);
    };

    /**
     * Compares this Cartesian against the provided Cartesian componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartesian4
     *
     * @param {Cartesian4} [right] The right hand side Cartesian.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartesian4.prototype.equalsEpsilon = function(right, epsilon) {
        return Cartesian4.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Creates a string representing this Cartesian in the format '(x, y)'.
     * @memberof Cartesian4
     *
     * @returns {String} A string representing the provided Cartesian in the format '(x, y)'.
     */
    Cartesian4.prototype.toString = function() {
        return '(' + this.x + ', ' + this.y + ', ' + this.z + ', ' + this.w + ')';
    };

    return Cartesian4;
});

/*
  I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace
  so it's better encapsulated. Now you can have multiple random number generators
  and they won't stomp all over eachother's state.

  If you want to use this as a substitute for Math.random(), use the random()
  method like so:

  var m = new MersenneTwister();
  var randomNumber = m.random();

  You can also call the other genrand_{foo}() methods on the instance.

  If you want to use a specific seed in order to get a repeatable random
  sequence, pass an integer into the constructor:

  var m = new MersenneTwister(123);

  and that will always produce the same random sequence.

  Sean McCullough (banksean@gmail.com)
*/

/*
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)
   or init_by_array(init_key, key_length).
*/
/**
@license
mersenne-twister.js - https://gist.github.com/banksean/300494

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote
        products derived from this software without specific prior written
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
define('ThirdParty/mersenne-twister',[],function() {
var MersenneTwister = function(seed) {
  if (seed == undefined) {
    seed = new Date().getTime();
  }
  /* Period parameters */
  this.N = 624;
  this.M = 397;
  this.MATRIX_A = 0x9908b0df;   /* constant vector a */
  this.UPPER_MASK = 0x80000000; /* most significant w-r bits */
  this.LOWER_MASK = 0x7fffffff; /* least significant r bits */

  this.mt = new Array(this.N); /* the array for the state vector */
  this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */

  this.init_genrand(seed);
}

/* initializes mt[N] with a seed */
MersenneTwister.prototype.init_genrand = function(s) {
  this.mt[0] = s >>> 0;
  for (this.mti=1; this.mti<this.N; this.mti++) {
      var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30);
   this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253)
  + this.mti;
      /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
      /* In the previous versions, MSBs of the seed affect   */
      /* only MSBs of the array mt[].                        */
      /* 2002/01/09 modified by Makoto Matsumoto             */
      this.mt[this.mti] >>>= 0;
      /* for >32 bit machines */
  }
}

/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
//MersenneTwister.prototype.init_by_array = function(init_key, key_length) {
//  var i, j, k;
//  this.init_genrand(19650218);
//  i=1; j=0;
//  k = (this.N>key_length ? this.N : key_length);
//  for (; k; k--) {
//    var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30)
//    this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525)))
//      + init_key[j] + j; /* non linear */
//    this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
//    i++; j++;
//    if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
//    if (j>=key_length) j=0;
//  }
//  for (k=this.N-1; k; k--) {
//    var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30);
//    this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941))
//      - i; /* non linear */
//    this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
//    i++;
//    if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
//  }
//
//  this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */
//}

/* generates a random number on [0,0xffffffff]-interval */
MersenneTwister.prototype.genrand_int32 = function() {
  var y;
  var mag01 = new Array(0x0, this.MATRIX_A);
  /* mag01[x] = x * MATRIX_A  for x=0,1 */

  if (this.mti >= this.N) { /* generate N words at one time */
    var kk;

    if (this.mti == this.N+1)   /* if init_genrand() has not been called, */
      this.init_genrand(5489); /* a default initial seed is used */

    for (kk=0;kk<this.N-this.M;kk++) {
      y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
      this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1];
    }
    for (;kk<this.N-1;kk++) {
      y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
      this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1];
    }
    y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK);
    this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1];

    this.mti = 0;
  }

  y = this.mt[this.mti++];

  /* Tempering */
  y ^= (y >>> 11);
  y ^= (y << 7) & 0x9d2c5680;
  y ^= (y << 15) & 0xefc60000;
  y ^= (y >>> 18);

  return y >>> 0;
}

/* generates a random number on [0,0x7fffffff]-interval */
//MersenneTwister.prototype.genrand_int31 = function() {
//  return (this.genrand_int32()>>>1);
//}

/* generates a random number on [0,1]-real-interval */
//MersenneTwister.prototype.genrand_real1 = function() {
//  return this.genrand_int32()*(1.0/4294967295.0);
//  /* divided by 2^32-1 */
//}

/* generates a random number on [0,1)-real-interval */
MersenneTwister.prototype.random = function() {
  return this.genrand_int32()*(1.0/4294967296.0);
  /* divided by 2^32 */
}

/* generates a random number on (0,1)-real-interval */
//MersenneTwister.prototype.genrand_real3 = function() {
//  return (this.genrand_int32() + 0.5)*(1.0/4294967296.0);
//  /* divided by 2^32 */
//}

/* generates a random number on [0,1) with 53-bit resolution*/
//MersenneTwister.prototype.genrand_res53 = function() {
//  var a=this.genrand_int32()>>>5, b=this.genrand_int32()>>>6;
//  return(a*67108864.0+b)*(1.0/9007199254740992.0);
//}

/* These real versions are due to Isaku Wada, 2002/01/09 added */

return MersenneTwister;
});
/*global define*/
define('Core/Math',[
        './defaultValue',
        './defined',
        './DeveloperError',
        '../ThirdParty/mersenne-twister'
       ], function(
         defaultValue,
         defined,
         DeveloperError,
         MersenneTwister) {
    "use strict";

    /**
     * Math functions.
     * @exports CesiumMath
     */
    var CesiumMath = {};

    /**
     * 0.1
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON1 = 0.1;

    /**
     * 0.01
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON2 = 0.01;

    /**
     * 0.001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON3 = 0.001;

    /**
     * 0.0001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON4 = 0.0001;

    /**
     * 0.00001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON5 = 0.00001;

    /**
     * 0.000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON6 = 0.000001;

    /**
     * 0.0000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON7 = 0.0000001;

    /**
     * 0.00000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON8 = 0.00000001;

    /**
     * 0.000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON9 = 0.000000001;

    /**
     * 0.0000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON10 = 0.0000000001;

    /**
     * 0.00000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON11 = 0.00000000001;

    /**
     * 0.000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON12 = 0.000000000001;

    /**
     * 0.0000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON13 = 0.0000000000001;

    /**
     * 0.00000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON14 = 0.00000000000001;

    /**
     * 0.000000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON15 = 0.000000000000001;

    /**
     * 0.0000000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON16 = 0.0000000000000001;

    /**
     * 0.00000000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON17 = 0.00000000000000001;

    /**
     * 0.000000000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON18 = 0.000000000000000001;

    /**
     * 0.0000000000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON19 = 0.0000000000000000001;

    /**
     * 0.00000000000000000001
     * @type {Number}
     * @constant
     */
    CesiumMath.EPSILON20 = 0.00000000000000000001;

    /**
     * 3.986004418e14
     * @type {Number}
     * @constant
     */
    CesiumMath.GRAVITATIONALPARAMETER = 3.986004418e14;

    /**
     * Radius of the sun in meters: 6.955e8
     * @type {Number}
     * @constant
     */
    CesiumMath.SOLAR_RADIUS = 6.955e8;

    /**
     * The mean radius of the moon, according to the "Report of the IAU/IAG Working Group on
     * Cartographic Coordinates and Rotational Elements of the Planets and satellites: 2000",
     * Celestial Mechanics 82: 83-110, 2002.
     * @type {Number}
     * @constant
     */
    CesiumMath.LUNAR_RADIUS = 1737400.0;

    /**
     * 64 * 1024
     * @type {Number}
     * @constant
     */
    CesiumMath.SIXTY_FOUR_KILOBYTES = 64 * 1024;

    /**
     * Returns the sign of the value; 1 if the value is positive, -1 if the value is
     * negative, or 0 if the value is 0.
     *
     * @param {Number} value The value to return the sign of.
     *
     * @returns {Number} The sign of value.
     */
    CesiumMath.sign = function(value) {
        if (value > 0) {
            return 1;
        }
        if (value < 0) {
            return -1;
        }

        return 0;
    };

    /**
     * Returns the hyperbolic sine of a {@code Number}.
     * The hyperbolic sine of <em>value</em> is defined to be
     * (<em>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></em>)/2.0
     * where <i>e</i> is Euler's number, approximately 2.71828183.
     *
     * <p>Special cases:
     *   <ul>
     *     <li>If the argument is NaN, then the result is NaN.</li>
     *
     *     <li>If the argument is infinite, then the result is an infinity
     *     with the same sign as the argument.</li>
     *
     *     <li>If the argument is zero, then the result is a zero with the
     *     same sign as the argument.</li>
     *   </ul>
     *</p>
     *
     * @param value The number whose hyperbolic sine is to be returned.
     *
     * @returns The hyperbolic sine of {@code value}.
     *
     */
    CesiumMath.sinh = function(value) {
        var part1 = Math.pow(Math.E, value);
        var part2 = Math.pow(Math.E, -1.0 * value);

        return (part1 - part2) * 0.5;
    };

    /**
     * Returns the hyperbolic cosine of a {@code Number}.
     * The hyperbolic cosine of <strong>value</strong> is defined to be
     * (<em>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></em>)/2.0
     * where <i>e</i> is Euler's number, approximately 2.71828183.
     *
     * <p>Special cases:
     *   <ul>
     *     <li>If the argument is NaN, then the result is NaN.</li>
     *
     *     <li>If the argument is infinite, then the result is positive infinity.</li>
     *
     *     <li>If the argument is zero, then the result is {@code 1.0}.</li>
     *   </ul>
     *</p>
     *
     * @param value The number whose hyperbolic cosine is to be returned.
     *
     * @returns The hyperbolic cosine of {@code value}.
     */
    CesiumMath.cosh = function(value) {
        var part1 = Math.pow(Math.E, value);
        var part2 = Math.pow(Math.E, -1.0 * value);

        return (part1 + part2) * 0.5;
    };

    /**
     * DOC_TBA
     */
    CesiumMath.lerp = function(p, q, time) {
        return ((1.0 - time) * p) + (time * q);
    };

    /**
     * pi
     *
     * @type {Number}
     * @constant
     * @see czm_pi
     */
    CesiumMath.PI = Math.PI;

    /**
     * 1/pi
     *
     * @type {Number}
     * @constant
     * @see czm_oneOverPi
     */
    CesiumMath.ONE_OVER_PI = 1.0 / Math.PI;

    /**
     * pi/2
     *
     * @type {Number}
     * @constant
     * @see czm_piOverTwo
     */
    CesiumMath.PI_OVER_TWO = Math.PI * 0.5;

    /**
     * pi/3
     *
     * @type {Number}
     * @constant
     * @see czm_piOverThree
     */
    CesiumMath.PI_OVER_THREE = Math.PI / 3.0;

    /**
     * pi/4
     *
     * @type {Number}
     * @constant
     * @see czm_piOverFour
     */
    CesiumMath.PI_OVER_FOUR = Math.PI / 4.0;

    /**
     * pi/6
     *
     * @type {Number}
     * @constant
     * @see czm_piOverSix
     */
    CesiumMath.PI_OVER_SIX = Math.PI / 6.0;

    /**
     * 3pi/2
     *
     * @type {Number}
     * @constant
     * @see czm_threePiOver2
     */
    CesiumMath.THREE_PI_OVER_TWO = (3.0 * Math.PI) * 0.5;

    /**
     * 2pi
     *
     * @type {Number}
     * @constant
     * @see czm_twoPi
     */
    CesiumMath.TWO_PI = 2.0 * Math.PI;

    /**
     * 1/2pi
     *
     * @type {Number}
     * @constant
     * @see czm_oneOverTwoPi
     */
    CesiumMath.ONE_OVER_TWO_PI = 1.0 / (2.0 * Math.PI);

    /**
     * The number of radians in a degree.
     *
     * @type {Number}
     * @constant
     * @default Math.PI / 180.0
     * @see czm_radiansPerDegree
     */
    CesiumMath.RADIANS_PER_DEGREE = Math.PI / 180.0;

    /**
     * The number of degrees in a radian.
     *
     * @type {Number}
     * @constant
     * @default 180.0 / Math.PI
     * @see czm_degreesPerRadian
     */
    CesiumMath.DEGREES_PER_RADIAN = 180.0 / Math.PI;

    /**
     * The number of radians in an arc second.
     *
     * @type {Number}
     * @constant
     * @default {@link CesiumMath.RADIANS_PER_DEGREE} / 3600.0
     * @see czm_radiansPerArcSecond
     */
    CesiumMath.RADIANS_PER_ARCSECOND = CesiumMath.RADIANS_PER_DEGREE / 3600.0;

    /**
     * Converts degrees to radians.
     * @param {Number} degrees The angle to convert in degrees.
     * @returns {Number} The corresponding angle in radians.
     */
    CesiumMath.toRadians = function(degrees) {
        return degrees * CesiumMath.RADIANS_PER_DEGREE;
    };

    /**
     * Converts radians to degrees.
     * @param {Number} radians The angle to convert in radians.
     * @returns {Number} The corresponding angle in degrees.
     */
    CesiumMath.toDegrees = function(radians) {
        return radians * CesiumMath.DEGREES_PER_RADIAN;
    };

    /**
     * Converts a longitude value, in radians, to the range [<code>-Math.PI</code>, <code>Math.PI</code>).
     *
     * @param {Number} angle The longitude value, in radians, to convert to the range [<code>-Math.PI</code>, <code>Math.PI</code>).
     *
     * @returns {Number} The equivalent longitude value in the range [<code>-Math.PI</code>, <code>Math.PI</code>).
     *
     * @example
     * // Convert 270 degrees to -90 degrees longitude
     * var longitude = CesiumMath.convertLongitudeRange(CesiumMath.toRadians(270.0));
     */
    CesiumMath.convertLongitudeRange = function(angle) {
        var twoPi = CesiumMath.TWO_PI;

        var simplified = angle - Math.floor(angle / twoPi) * twoPi;

        if (simplified < -Math.PI) {
            return simplified + twoPi;
        }
        if (simplified >= Math.PI) {
            return simplified - twoPi;
        }

        return simplified;
    };

    /**
     * Produces an angle in the range 0 <= angle <= 2Pi which is equivalent to the provided angle.
     * @param {Number} angle in radians
     * @returns {Number} The angle in the range ()<code>-CesiumMath.PI</code>, <code>CesiumMath.PI</code>).
     */
    CesiumMath.negativePiToPi = function(x) {
        var epsilon10 = CesiumMath.EPSILON10;
        var pi = CesiumMath.PI;
        var two_pi = CesiumMath.TWO_PI;
        while (x < -(pi + epsilon10)) {
            x += two_pi;
        }
        if (x < -pi) {
            return -pi;
        }
        while (x > pi + epsilon10) {
            x -= two_pi;
        }
        return x > pi ? pi : x;
    };

    /**
     * Produces an angle in the range -Pi <= angle <= Pi which is equivalent to the provided angle.
     * @param {Number} angle in radians
     * @returns {Number} The angle in the range (0 , <code>CesiumMath.TWO_PI</code>).
     */
    CesiumMath.zeroToTwoPi = function(x) {
        var value = x % CesiumMath.TWO_PI;
        // We do a second modules here if we add 2Pi to ensure that we don't have any numerical issues with very
        // small negative values.
        return (value < 0.0) ? (value + CesiumMath.TWO_PI) % CesiumMath.TWO_PI : value;
    };

    /**
     * DOC_TBA
     */
    CesiumMath.equalsEpsilon = function(left, right, epsilon) {
        epsilon = defaultValue(epsilon, 0.0);
        return Math.abs(left - right) <= epsilon;
    };

    var factorials = [1];

    /**
     * Computes the factorial of the provided number.
     *
     * @memberof CesiumMath
     *
     * @param {Number} n The number whose factorial is to be computed.
     *
     * @returns {Number} The factorial of the provided number or undefined if the number is less than 0.
     *
     * @see <a href='http://en.wikipedia.org/wiki/Factorial'>Factorial on Wikipedia</a>.
     *
     * @example
     * //Compute 7!, which is equal to 5040
     * var computedFactorial = CesiumMath.factorial(7);
     *
     * @exception {DeveloperError} A number greater than or equal to 0 is required.
     */
    CesiumMath.factorial = function(n) {
                if (typeof n !== 'number' || n < 0) {
            throw new DeveloperError('A number greater than or equal to 0 is required.');
        }
        
        var length = factorials.length;
        if (n >= length) {
            var sum = factorials[length - 1];
            for ( var i = length; i <= n; i++) {
                factorials.push(sum * i);
            }
        }
        return factorials[n];
    };

    /**
     * Increments a number with a wrapping to a minimum value if the number exceeds the maximum value.
     *
     * @memberof CesiumMath
     *
     * @param {Number} [n] The number to be incremented.
     * @param {Number} [maximumValue] The maximum incremented value before rolling over to the minimum value.
     * @param {Number} [minimumValue=0.0] The number reset to after the maximum value has been exceeded.
     *
     * @returns {Number} The incremented number.
     *
     * @example
     * var n = CesiumMath.incrementWrap(5, 10, 0); // returns 6
     * var n = CesiumMath.incrementWrap(10, 10, 0); // returns 0
     *
     * @exception {DeveloperError} Maximum value must be greater than minimum value.
     */
    CesiumMath.incrementWrap = function(n, maximumValue, minimumValue) {
        minimumValue = defaultValue(minimumValue, 0.0);

                if (maximumValue <= minimumValue) {
            throw new DeveloperError('Maximum value must be greater than minimum value.');
        }
        
        ++n;
        if (n > maximumValue) {
            n = minimumValue;
        }
        return n;
    };

    /**
     * Determines if a positive integer is a power of two.
     *
     * @memberof CesiumMath
     *
     * @param {Number} n The positive integer to test.
     *
     * @returns {Boolean} <code>true</code> if the number if a power of two; otherwise, <code>false</code>.
     *
     * @exception {DeveloperError} A number greater than or equal to 0 is required.
     *
     * @example
     * var t = CesiumMath.isPowerOfTwo(16); // true
     * var f = CesiumMath.isPowerOfTwo(20); // false
     */
    CesiumMath.isPowerOfTwo = function(n) {
                if (typeof n !== 'number' || n < 0) {
            throw new DeveloperError('A number greater than or equal to 0 is required.');
        }
        
        return (n !== 0) && ((n & (n - 1)) === 0);
    };

    /**
     * Computes the next power-of-two integer greater than or equal to the provided positive integer.
     *
     * @memberof CesiumMath
     *
     * @param {Number} n The positive integer to test.
     *
     * @returns {Number} The next power-of-two integer.
     *
     * @exception {DeveloperError} A number greater than or equal to 0 is required.
     *
     * @example
     * var n = CesiumMath.nextPowerOfTwo(29); // 32
     * var m = CesiumMath.nextPowerOfTwo(32); // 32
     */
    CesiumMath.nextPowerOfTwo = function(n) {
                if (typeof n !== 'number' || n < 0) {
            throw new DeveloperError('A number greater than or equal to 0 is required.');
        }
        
        // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
        --n;
        n |= n >> 1;
        n |= n >> 2;
        n |= n >> 4;
        n |= n >> 8;
        n |= n >> 16;
        ++n;

        return n;
    };

    /**
     * Constraint a value to lie between two values.
     *
     * @memberof CesiumMath
     *
     * @param {Number} value The value to constrain.
     * @param {Number} min The minimum value.
     * @param {Number} max The maximum value.
     * @returns The value clamped so that min <= value <= max.
     */
    CesiumMath.clamp = function(value, min, max) {
        return value < min ? min : value > max ? max : value;
    };

    var randomNumberGenerator = new MersenneTwister();

    /**
     * Sets the seed used by the random number generator
     * in {@link CesiumMath#nextRandomNumber}.
     *
     * @memberof CesiumMath
     *
     * @param {Number} seed An integer used as the seed.
     *
     * @exception {DeveloperError} seed is required.
     */
    CesiumMath.setRandomNumberSeed = function(seed) {
                if (!defined(seed)) {
            throw new DeveloperError('seed is required.');
        }
        
        randomNumberGenerator = new MersenneTwister(seed);
    };

    /**
     * Generates a random number in the range of [0.0, 1.0)
     * using a Mersenne twister.
     *
     * @memberof CesiumMath
     *
     * @returns A random number in the range of [0.0, 1.0).
     *
     * @see CesiumMath#setRandomNumberSeed
     * @see http://en.wikipedia.org/wiki/Mersenne_twister
     */
    CesiumMath.nextRandomNumber = function() {
        return randomNumberGenerator.random();
    };

    return CesiumMath;
});

/*global define*/
define('Core/Cartographic',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject',
        './Math'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        freezeObject,
        CesiumMath) {
    "use strict";

    /**
     * A position defined by longitude, latitude, and height.
     * @alias Cartographic
     * @constructor
     *
     * @param {Number} [longitude=0.0] The longitude, in radians.
     * @param {Number} [latitude=0.0] The latitude, in radians.
     * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
     *
     * @see Ellipsoid
     */
    var Cartographic = function(longitude, latitude, height) {
        /**
         * The longitude, in radians.
         * @type {Number}
         * @default 0.0
         */
        this.longitude = defaultValue(longitude, 0.0);

        /**
         * The latitude, in radians.
         * @type {Number}
         * @default 0.0
         */
        this.latitude = defaultValue(latitude, 0.0);

        /**
         * The height, in meters, above the ellipsoid.
         * @type {Number}
         * @default 0.0
         */
        this.height = defaultValue(height, 0.0);
    };

    /**
     * Creates a new Cartographic instance from longitude and latitude
     * specified in degrees.  The values in the resulting object will
     * be in radians.
     * @memberof Cartographic
     *
     * @param {Number} [longitude=0.0] The longitude, in degrees.
     * @param {Number} [latitude=0.0] The latitude, in degrees.
     * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided.
     */
    Cartographic.fromDegrees = function(longitude, latitude, height, result) {
        longitude = CesiumMath.toRadians(defaultValue(longitude, 0.0));
        latitude = CesiumMath.toRadians(defaultValue(latitude, 0.0));
        height = defaultValue(height, 0.0);

        if (!defined(result)) {
            return new Cartographic(longitude, latitude, height);
        }

        result.longitude = longitude;
        result.latitude = latitude;
        result.height = height;
        return result;
    };

    /**
     * Duplicates a Cartographic instance.
     * @memberof Cartographic
     *
     * @param {Cartographic} cartographic The cartographic to duplicate.
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. (Returns undefined if cartographic is undefined)
     */
    Cartographic.clone = function(cartographic, result) {
        if (!defined(cartographic)) {
            return undefined;
        }
        if (!defined(result)) {
            return new Cartographic(cartographic.longitude, cartographic.latitude, cartographic.height);
        }
        result.longitude = cartographic.longitude;
        result.latitude = cartographic.latitude;
        result.height = cartographic.height;
        return result;
    };

    /**
     * Compares the provided cartographics componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartographic
     *
     * @param {Cartographic} [left] The first cartographic.
     * @param {Cartographic} [right] The second cartographic.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Cartographic.equals = function(left, right) {
        return (left === right) ||
                ((defined(left)) &&
                 (defined(right)) &&
                 (left.longitude === right.longitude) &&
                 (left.latitude === right.latitude) &&
                 (left.height === right.height));
    };

    /**
     * Compares the provided cartographics componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartographic
     *
     * @param {Cartographic} [left] The first cartographic.
     * @param {Cartographic} [right] The second cartographic.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartographic.equalsEpsilon = function(left, right, epsilon) {
        if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number.');
        }
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (Math.abs(left.longitude - right.longitude) <= epsilon) &&
                (Math.abs(left.latitude - right.latitude) <= epsilon) &&
                (Math.abs(left.height - right.height) <= epsilon));
    };

    /**
     * Creates a string representing the provided cartographic in the format '(longitude, latitude, height)'.
     * @memberof Cartographic
     *
     * @param {Cartographic} cartographic The cartographic to stringify.
     * @returns {String} A string representing the provided cartographic in the format '(longitude, latitude, height)'.
     *
     * @exception {DeveloperError} cartographic is required.
     */
    Cartographic.toString = function(cartographic) {
        if (!defined(cartographic)) {
            throw new DeveloperError('cartographic is required');
        }
        return '(' + cartographic.longitude + ', ' + cartographic.latitude + ', ' + cartographic.height + ')';
    };

    /**
     * An immutable Cartographic instance initialized to (0.0, 0.0, 0.0).
     *
     * @memberof Cartographic
     */
    Cartographic.ZERO = freezeObject(new Cartographic(0.0, 0.0, 0.0));

    /**
     * Duplicates this instance.
     * @memberof Cartographic
     *
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided.
     */
    Cartographic.prototype.clone = function(result) {
        return Cartographic.clone(this, result);
    };

    /**
     * Compares the provided against this cartographic componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartographic
     *
     * @param {Cartographic} [right] The second cartographic.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Cartographic.prototype.equals = function(right) {
        return Cartographic.equals(this, right);
    };

    /**
     * Compares the provided against this cartographic componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartographic
     *
     * @param {Cartographic} [right] The second cartographic.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartographic.prototype.equalsEpsilon = function(right, epsilon) {
        return Cartographic.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Creates a string representing this cartographic in the format '(longitude, latitude, height)'.
     * @memberof Cartographic
     *
     * @returns {String} A string representing the provided cartographic in the format '(longitude, latitude, height)'.
     */
    Cartographic.prototype.toString = function() {
        return Cartographic.toString(this);
    };

    return Cartographic;
});

/*global define*/
define('Core/Ellipsoid',[
        './freezeObject',
        './defaultValue',
        './defined',
        './DeveloperError',
        './Math',
        './Cartesian3',
        './Cartographic'
       ], function(
         freezeObject,
         defaultValue,
         defined,
         DeveloperError,
         CesiumMath,
         Cartesian3,
         Cartographic) {
    "use strict";

    /**
     * A quadratic surface defined in Cartesian coordinates by the equation
     * <code>(x / a)^2 + (y / b)^2 + (z / c)^2 = 1</code>.  Primarily used
     * by Cesium to represent the shape of planetary bodies.
     *
     * Rather than constructing this object directly, one of the provided
     * constants is normally used.
     * @alias Ellipsoid
     * @constructor
     * @immutable
     *
     * @param {Number} [x=0] The radius in the x direction.
     * @param {Number} [y=0] The radius in the y direction.
     * @param {Number} [z=0] The radius in the z direction.
     *
     * @exception {DeveloperError} All radii components must be greater than or equal to zero.
     *
     * @see Ellipsoid.fromCartesian3
     * @see Ellipsoid.WGS84
     * @see Ellipsoid.UNIT_SPHERE
     */
    var Ellipsoid = function(x, y, z) {
        x = defaultValue(x, 0.0);
        y = defaultValue(y, 0.0);
        z = defaultValue(z, 0.0);

        if (x < 0.0 || y < 0.0 || z < 0.0) {
            throw new DeveloperError('All radii components must be greater than or equal to zero.');
        }

        this._radii = new Cartesian3(x, y, z);

        this._radiiSquared = new Cartesian3(x * x,
                                            y * y,
                                            z * z);

        this._radiiToTheFourth = new Cartesian3(x * x * x * x,
                                                y * y * y * y,
                                                z * z * z * z);

        this._oneOverRadii = new Cartesian3(x === 0.0 ? 0.0 : 1.0 / x,
                                            y === 0.0 ? 0.0 : 1.0 / y,
                                            z === 0.0 ? 0.0 : 1.0 / z);

        this._oneOverRadiiSquared = new Cartesian3(x === 0.0 ? 0.0 : 1.0 / (x * x),
                                                   y === 0.0 ? 0.0 : 1.0 / (y * y),
                                                   z === 0.0 ? 0.0 : 1.0 / (z * z));

        this._minimumRadius = Math.min(x, y, z);

        this._maximumRadius = Math.max(x, y, z);

        this._centerToleranceSquared = CesiumMath.EPSILON1;
    };

    /**
     * Duplicates an Ellipsoid instance.
     *
     * @memberof Ellipsoid
     *
     * @param {Ellipsoid} ellipsoid The ellipsoid to duplicate.
     * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
     *                    instance should be created.
     * @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined)
     */
    Ellipsoid.clone = function(ellipsoid, result) {
        if (!defined(ellipsoid)) {
            return undefined;
        }
        var radii = ellipsoid._radii;

        if (!defined(result)) {
            return new Ellipsoid(radii.x, radii.y, radii.z);
        }

        Cartesian3.clone(radii, result._radii);
        Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared);
        Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth);
        Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii);
        Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared);
        result._minimumRadius = ellipsoid._minimumRadius;
        result._maximumRadius = ellipsoid._maximumRadius;
        result._centerToleranceSquared = ellipsoid._centerToleranceSquared;

        return result;
    };

    /**
     * Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions.
     *
     * @param {Cartesian3} [radii=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions.
     * @returns {Ellipsoid} A new Ellipsoid instance.
     *
     * @exception {DeveloperError} All radii components must be greater than or equal to zero.
     *
     * @see Ellipsoid.WGS84
     * @see Ellipsoid.UNIT_SPHERE
     */
    Ellipsoid.fromCartesian3 = function(cartesian) {
        if (!defined(cartesian)) {
            return new Ellipsoid();
        }
        return new Ellipsoid(cartesian.x, cartesian.y, cartesian.z);
    };

    /**
     * An Ellipsoid instance initialized to the WGS84 standard.
     * @memberof Ellipsoid
     *
     * @see czm_getWgs84EllipsoidEC
     */
    Ellipsoid.WGS84 = freezeObject(new Ellipsoid(6378137.0, 6378137.0, 6356752.3142451793));

    /**
     * An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0).
     * @memberof Ellipsoid
     */
    Ellipsoid.UNIT_SPHERE = freezeObject(new Ellipsoid(1.0, 1.0, 1.0));

    /**
     * An Ellipsoid instance initialized to a sphere with the lunar radius.
     * @memberof Ellipsoid
     */
    Ellipsoid.MOON = freezeObject(new Ellipsoid(CesiumMath.LUNAR_RADIUS, CesiumMath.LUNAR_RADIUS, CesiumMath.LUNAR_RADIUS));

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} The radii of the ellipsoid.
     */
    Ellipsoid.prototype.getRadii = function() {
        return this._radii;
    };

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} The squared radii of the ellipsoid.
     */
    Ellipsoid.prototype.getRadiiSquared = function() {
        return this._radiiSquared;
    };

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} The radii of the ellipsoid raised to the fourth power.
     */
    Ellipsoid.prototype.getRadiiToTheFourth = function() {
        return this._radiiToTheFourth;
    };

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} One over the radii of the ellipsoid.
     */
    Ellipsoid.prototype.getOneOverRadii = function() {
        return this._oneOverRadii;
    };

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} One over the squared radii of the ellipsoid.
     */
    Ellipsoid.prototype.getOneOverRadiiSquared = function() {
        return this._oneOverRadiiSquared;
    };

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} The minimum radius of the ellipsoid.
     */
    Ellipsoid.prototype.getMinimumRadius = function() {
        return this._minimumRadius;
    };

    /**
     * @memberof Ellipsoid
     * @returns {Cartesian3} The maximum radius of the ellipsoid.
     */
    Ellipsoid.prototype.getMaximumRadius = function() {
        return this._maximumRadius;
    };

    /**
     * Duplicates an Ellipsoid instance.
     *
     * @memberof Ellipsoid
     *
     * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
     *                    instance should be created.
     * @returns {Ellipsoid} The cloned Ellipsoid.
     */
    Ellipsoid.prototype.clone = function(result) {
        return Ellipsoid.clone(this, result);
    };

    /**
     * Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position.
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Ellipsoid.prototype.geocentricSurfaceNormal = Cartesian3.normalize;

    /**
     * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position.
     * @memberof Ellipsoid
     *
     * @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
     *
     * @exception {DeveloperError} cartographic is required.
     */
    Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function(cartographic, result) {
        if (!defined(cartographic)) {
            throw new DeveloperError('cartographic is required.');
        }

        var longitude = cartographic.longitude;
        var latitude = cartographic.latitude;
        var cosLatitude = Math.cos(latitude);

        var x = cosLatitude * Math.cos(longitude);
        var y = cosLatitude * Math.sin(longitude);
        var z = Math.sin(latitude);

        if (!defined(result)) {
            result = new Cartesian3();
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return Cartesian3.normalize(result, result);
    };

    /**
     * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position.
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Ellipsoid.prototype.geodeticSurfaceNormal = function(cartesian, result) {
        result = Cartesian3.multiplyComponents(cartesian, this._oneOverRadiiSquared, result);
        return Cartesian3.normalize(result, result);
    };

    var cartographicToCartesianNormal = new Cartesian3();
    var cartographicToCartesianK = new Cartesian3();

    /**
     * Converts the provided cartographic to Cartesian representation.
     * @memberof Ellipsoid
     *
     * @param {Cartographic} cartographic The cartographic position.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
     *
     * @exception {DeveloperError} cartographic is required.
     *
     * @example
     * //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid.
     * var position = new Cartographic(Math.toRadians(21), Math.toRadians(78), 5000);
     * var cartesianPosition = Ellipsoid.WGS84.cartographicToCartesian(position);
     */
    Ellipsoid.prototype.cartographicToCartesian = function(cartographic, result) {
        //`cartographic is required` is thrown from geodeticSurfaceNormalCartographic.
        var n = cartographicToCartesianNormal;
        var k = cartographicToCartesianK;
        this.geodeticSurfaceNormalCartographic(cartographic, n);
        Cartesian3.multiplyComponents(this._radiiSquared, n, k);
        var gamma = Math.sqrt(Cartesian3.dot(n, k));
        Cartesian3.divideByScalar(k, gamma, k);
        Cartesian3.multiplyByScalar(n, cartographic.height, n);
        return Cartesian3.add(k, n, result);
    };

    /**
     * Converts the provided array of cartographics to an array of Cartesians.
     * @memberof Ellipsoid
     *
     * @param {Array} cartographics An array of cartographic positions.
     * @param {Array} [result] The object onto which to store the result.
     * @returns {Array} The modified result parameter or a new Array instance if none was provided.
     *
     * @exception {DeveloperError} cartographics is required.
     *
     * @example
     * //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid.
     * var positions = [new Cartographic(Math.toRadians(21), Math.toRadians(78), 0),
     *                  new Cartographic(Math.toRadians(21.321), Math.toRadians(78.123), 100),
     *                  new Cartographic(Math.toRadians(21.645), Math.toRadians(78.456), 250)
     * var cartesianPositions = Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions);
     */
    Ellipsoid.prototype.cartographicArrayToCartesianArray = function(cartographics, result) {
        if (!defined(cartographics)) {
            throw new DeveloperError('cartographics is required.');
        }

        var length = cartographics.length;
        if (!defined(result)) {
            result = new Array(length);
        } else {
            result.length = length;
        }
        for ( var i = 0; i < length; i++) {
            result[i] = this.cartographicToCartesian(cartographics[i], result[i]);
        }
        return result;
    };

    var cartesianToCartographicN = new Cartesian3();
    var cartesianToCartographicP = new Cartesian3();
    var cartesianToCartographicH = new Cartesian3();

    /**
     * Converts the provided cartesian to cartographic representation.
     * The cartesian is undefined at the center of the ellipsoid.
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation.
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid.
     *
     * @exception {DeveloperError} cartesian is required.
     *
     * @example
     * //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid.
     * var position = new Cartesian(17832.12, 83234.52, 952313.73);
     * var cartographicPosition = Ellipsoid.WGS84.cartesianToCartographic(position);
     */
    Ellipsoid.prototype.cartesianToCartographic = function(cartesian, result) {
        //`cartesian is required.` is thrown from scaleToGeodeticSurface
        var p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP);

        if (!defined(p)) {
            return undefined;
        }

        var n = this.geodeticSurfaceNormal(p, cartesianToCartographicN);
        var h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH);

        var longitude = Math.atan2(n.y, n.x);
        var latitude = Math.asin(n.z);
        var height = CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h);

        if (!defined(result)) {
            return new Cartographic(longitude, latitude, height);
        }
        result.longitude = longitude;
        result.latitude = latitude;
        result.height = height;
        return result;
    };

    /**
     * Converts the provided array of cartesians to an array of cartographics.
     * @memberof Ellipsoid
     *
     * @param {Array} cartesians An array of Cartesian positions.
     * @param {Array} [result] The object onto which to store the result.
     * @returns {Array} The modified result parameter or a new Array instance if none was provided.
     *
     * @exception {DeveloperError} cartesians is required.
     *
     * @example
     * //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid.
     * var positions = [new Cartesian(17832.12, 83234.52, 952313.73),
     *                  new Cartesian(17832.13, 83234.53, 952313.73),
     *                  new Cartesian(17832.14, 83234.54, 952313.73)]
     * var cartographicPositions = Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions);
     */
    Ellipsoid.prototype.cartesianArrayToCartographicArray = function(cartesians, result) {
        if (!defined(cartesians)) {
            throw new DeveloperError('cartesians is required.');
        }

        var length = cartesians.length;
        if (!defined(result)) {
            result = new Array(length);
        } else {
            result.length = length;
        }
        for ( var i = 0; i < length; ++i) {
            result[i] = this.cartesianToCartographic(cartesians[i], result[i]);
        }
        return result;
    };

    var scaleToGeodeticSurfaceIntersection = new Cartesian3();
    var scaleToGeodeticSurfaceGradient = new Cartesian3();

    /**
     * Scales the provided Cartesian position along the geodetic surface normal
     * so that it is on the surface of this ellipsoid.  If the position is
     * at the center of the ellipsoid, this function returns undefined.
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} cartesian The Cartesian position to scale.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Ellipsoid.prototype.scaleToGeodeticSurface = function(cartesian, result) {
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required.');
        }

        var positionX = cartesian.x;
        var positionY = cartesian.y;
        var positionZ = cartesian.z;

        var oneOverRadii = this._oneOverRadii;
        var oneOverRadiiX = oneOverRadii.x;
        var oneOverRadiiY = oneOverRadii.y;
        var oneOverRadiiZ = oneOverRadii.z;

        var x2 = positionX * positionX * oneOverRadiiX * oneOverRadiiX;
        var y2 = positionY * positionY * oneOverRadiiY * oneOverRadiiY;
        var z2 = positionZ * positionZ * oneOverRadiiZ * oneOverRadiiZ;

        // Compute the squared ellipsoid norm.
        var squaredNorm = x2 + y2 + z2;
        var ratio = Math.sqrt(1.0 / squaredNorm);

        // As an initial approximation, assume that the radial intersection is the projection point.
        var intersection = Cartesian3.multiplyByScalar(cartesian, ratio, scaleToGeodeticSurfaceIntersection);

        //* If the position is near the center, the iteration will not converge.
        if (squaredNorm < this._centerToleranceSquared) {
            return !isFinite(ratio) ? undefined : Cartesian3.clone(intersection, result);
        }

        var oneOverRadiiSquared = this._oneOverRadiiSquared;
        var oneOverRadiiSquaredX = oneOverRadiiSquared.x;
        var oneOverRadiiSquaredY = oneOverRadiiSquared.y;
        var oneOverRadiiSquaredZ = oneOverRadiiSquared.z;

        // Use the gradient at the intersection point in place of the true unit normal.
        // The difference in magnitude will be absorbed in the multiplier.
        var gradient = scaleToGeodeticSurfaceGradient;
        gradient.x = intersection.x * oneOverRadiiSquaredX * 2.0;
        gradient.y = intersection.y * oneOverRadiiSquaredY * 2.0;
        gradient.z = intersection.z * oneOverRadiiSquaredZ * 2.0;

        // Compute the initial guess at the normal vector multiplier, lambda.
        var lambda = (1.0 - ratio) * Cartesian3.magnitude(cartesian) / (0.5 * Cartesian3.magnitude(gradient));
        var correction = 0.0;

        var func;
        var denominator;
        var xMultiplier;
        var yMultiplier;
        var zMultiplier;
        var xMultiplier2;
        var yMultiplier2;
        var zMultiplier2;
        var xMultiplier3;
        var yMultiplier3;
        var zMultiplier3;

        do {
            lambda -= correction;

            xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredX);
            yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredY);
            zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredZ);

            xMultiplier2 = xMultiplier * xMultiplier;
            yMultiplier2 = yMultiplier * yMultiplier;
            zMultiplier2 = zMultiplier * zMultiplier;

            xMultiplier3 = xMultiplier2 * xMultiplier;
            yMultiplier3 = yMultiplier2 * yMultiplier;
            zMultiplier3 = zMultiplier2 * zMultiplier;

            func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0;

            // "denominator" here refers to the use of this expression in the velocity and acceleration
            // computations in the sections to follow.
            denominator = x2 * xMultiplier3 * oneOverRadiiSquaredX + y2 * yMultiplier3 * oneOverRadiiSquaredY + z2 * zMultiplier3 * oneOverRadiiSquaredZ;

            var derivative = -2.0 * denominator;

            correction = func / derivative;
        } while (Math.abs(func) > CesiumMath.EPSILON12);

        if (!defined(result)) {
            return new Cartesian3(positionX * xMultiplier, positionY * yMultiplier, positionZ * zMultiplier);
        }
        result.x = positionX * xMultiplier;
        result.y = positionY * yMultiplier;
        result.z = positionZ * zMultiplier;
        return result;
    };

    /**
     * Scales the provided Cartesian position along the geocentric surface normal
     * so that it is on the surface of this ellipsoid.
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} cartesian The Cartesian position to scale.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Ellipsoid.prototype.scaleToGeocentricSurface = function(cartesian, result) {
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required.');
        }

        var positionX = cartesian.x;
        var positionY = cartesian.y;
        var positionZ = cartesian.z;
        var oneOverRadiiSquared = this._oneOverRadiiSquared;

        var beta = 1.0 / Math.sqrt((positionX * positionX) * oneOverRadiiSquared.x +
                                   (positionY * positionY) * oneOverRadiiSquared.y +
                                   (positionZ * positionZ) * oneOverRadiiSquared.z);

        return Cartesian3.multiplyByScalar(cartesian, beta, result);
    };

    /**
     * Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying
     * its components by the result of {@link Ellipsoid#getOneOverRadii}.
     *
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} position The position to transform.
     * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and
     *        return a new instance.
     * @returns {Cartesian3} The position expressed in the scaled space.  The returned instance is the
     *          one passed as the result parameter if it is not undefined, or a new instance of it is.
     */
    Ellipsoid.prototype.transformPositionToScaledSpace = function(position, result) {
        return Cartesian3.multiplyComponents(position, this._oneOverRadii, result);
    };

    /**
     * Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying
     * its components by the result of {@link Ellipsoid#getRadii}.
     *
     * @memberof Ellipsoid
     *
     * @param {Cartesian3} position The position to transform.
     * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and
     *        return a new instance.
     * @returns {Cartesian3} The position expressed in the unscaled space.  The returned instance is the
     *          one passed as the result parameter if it is not undefined, or a new instance of it is.
     */
    Ellipsoid.prototype.transformPositionFromScaledSpace = function(position, result) {
        return Cartesian3.multiplyComponents(position, this._radii, result);
    };

    /**
     * Compares this Ellipsoid against the provided Ellipsoid componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Ellipsoid
     *
     * @param {Ellipsoid} [right] The other Ellipsoid.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Ellipsoid.prototype.equals = function(right) {
        return (this === right) ||
               (defined(right) &&
                Cartesian3.equals(this._radii, right._radii));
    };

    /**
     * Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'.
     * @memberof Ellipsoid
     *
     * @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'.
     */
    Ellipsoid.prototype.toString = function() {
        return this._radii.toString();
    };

    return Ellipsoid;
});

/*global define*/
define('Core/GeographicProjection',[
        './defaultValue',
        './defined',
        './Cartesian3',
        './Cartographic',
        './Ellipsoid'
    ], function(
        defaultValue,
        defined,
        Cartesian3,
        Cartographic,
        Ellipsoid) {
    "use strict";

    /**
     * A simple map projection where longitude and latitude are linearly mapped to X and Y by multiplying
     * them by the {@link Ellipsoid#getMaximumRadius}.  This projection
     * is commonly known as geographic, equirectangular, equidistant cylindrical, or plate carrée.  It
     * is also known as EPSG:4326.
     *
     * @alias GeographicProjection
     * @constructor
     * @immutable
     *
     * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid.
     *
     * @see WebMercatorProjection
     */
    var GeographicProjection = function(ellipsoid) {
        this._ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
        this._semimajorAxis = this._ellipsoid.getMaximumRadius();
        this._oneOverSemimajorAxis = 1.0 / this._semimajorAxis;
    };

    /**
     * Gets the {@link Ellipsoid}.
     *
     * @memberof GeographicProjection
     *
     * @returns {Ellipsoid} The ellipsoid.
     */
    GeographicProjection.prototype.getEllipsoid = function() {
        return this._ellipsoid;
    };

    /**
     * Projects a set of {@link Cartographic} coordinates, in radians, to map coordinates, in meters.
     * X and Y are the longitude and latitude, respectively, multiplied by the maximum radius of the
     * ellipsoid.  Z is the unmodified height.
     *
     * @memberof GeographicProjection
     *
     * @param {Cartographic} cartographic The coordinates to project.
     * @param {Cartesian3} [result] An instance into which to copy the result.  If this parameter is
     *        undefined, a new instance is created and returned.
     * @returns {Cartesian3} The projected coordinates.  If the result parameter is not undefined, the
     *          coordinates are copied there and that instance is returned.  Otherwise, a new instance is
     *          created and returned.
     */
    GeographicProjection.prototype.project = function(cartographic, result) {
        // Actually this is the special case of equidistant cylindrical called the plate carree
        var semimajorAxis = this._semimajorAxis;
        var x = cartographic.longitude * semimajorAxis;
        var y = cartographic.latitude * semimajorAxis;
        var z = cartographic.height;

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }

        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Unprojects a set of projected {@link Cartesian3} coordinates, in meters, to {@link Cartographic}
     * coordinates, in radians.  Longitude and Latitude are the X and Y coordinates, respectively,
     * divided by the maximum radius of the ellipsoid.  Height is the unmodified Z coordinate.
     *
     * @memberof GeographicProjection
     *
     * @param {Cartesian3} cartesian The coordinate to unproject.
     * @param {Cartographic} [result] An instance into which to copy the result.  If this parameter is
     *        undefined, a new instance is created and returned.
     * @returns {Cartographic} The unprojected coordinates.  If the result parameter is not undefined, the
     *          coordinates are copied there and that instance is returned.  Otherwise, a new instance is
     *          created and returned.
     */
    GeographicProjection.prototype.unproject = function(cartesian, result) {
        var oneOverEarthSemimajorAxis = this._oneOverSemimajorAxis;
        var longitude = cartesian.x * oneOverEarthSemimajorAxis;
        var latitude = cartesian.y * oneOverEarthSemimajorAxis;
        var height = cartesian.z;

        if (!defined(result)) {
            return new Cartographic(longitude, latitude, height);
        }

        result.longitude = longitude;
        result.latitude = latitude;
        result.height = height;
        return result;
    };

    return GeographicProjection;
});

/*global define*/
define('Core/Enumeration',['./defined'], function(defined) {
    "use strict";

    /**
     * Constructs an enumeration that contains both a numeric value and a name.
     * This is used so the name of the enumeration is available in the debugger.
     *
     * @param {Number} [value=undefined] The numeric value of the enumeration.
     * @param {String} [name=undefined] The name of the enumeration for debugging purposes.
     * @param {Object} [properties=undefined] An object containing extra properties to be added to the enumeration.
     *
     * @alias Enumeration
     * @constructor
     * @example
     * // Create an object with two enumerations.
     * var filter = {
     *     NEAREST : new Enumeration(0x2600, 'NEAREST'),
     *     LINEAR : new Enumeration(0x2601, 'LINEAR')
     * };
     */
    var Enumeration = function(value, name, properties) {
        /**
         * The numeric value of the enumeration.
         * @type {Number}
         * @default undefined
         */
        this.value = value;

        /**
         * The name of the enumeration for debugging purposes.
         * @type {String}
         * @default undefined
         */
        this.name = name;

        if (defined(properties)) {
            for ( var propertyName in properties) {
                if (properties.hasOwnProperty(propertyName)) {
                    this[propertyName] = properties[propertyName];
                }
            }
        }
    };

    /**
     * Returns the numeric value of the enumeration.
     *
     * @memberof Enumeration
     *
     * @returns {Number} The numeric value of the enumeration.
     */
    Enumeration.prototype.valueOf = function() {
        return this.value;
    };

    /**
     * Returns the name of the enumeration for debugging purposes.
     *
     * @memberof Enumeration
     *
     * @returns {String} The name of the enumeration for debugging purposes.
     */
    Enumeration.prototype.toString = function() {
        return this.name;
    };

    return Enumeration;
});

/*global define*/
define('Core/Intersect',['./Enumeration'], function(Enumeration) {
    "use strict";

    /**
     * This enumerated type is used in determining where, relative to the frustum, an
     * object is located. The object can either be fully contained within the frustum (INSIDE),
     * partially inside the frustum and partially outside (INTERSECTING), or somwhere entirely
     * outside of the frustum's 6 planes (OUTSIDE).
     *
     * @exports Intersect
     */
    var Intersect = {
        /**
         * Represents that an object is not contained within the frustum.
         *
         * @type {Enumeration}
         * @constant
         * @default -1
         */
        OUTSIDE : new Enumeration(-1, 'OUTSIDE'),

        /**
         * Represents that an object intersects one of the frustum's planes.
         *
         * @type {Enumeration}
         * @constant
         * @default 0
         */
        INTERSECTING : new Enumeration(0, 'INTERSECTING'),

        /**
         * Represents that an object is fully within the frustum.
         *
         * @type {Enumeration}
         * @constant
         * @default 1
         */
        INSIDE : new Enumeration(1, 'INSIDE')
    };

    return Intersect;
});

/*global define*/
define('Core/Interval',['./defaultValue'], function(defaultValue) {
    "use strict";

    /**
     * Represents the closed interval [start, stop].
     * @alias Interval
     * @constructor
     *
     * @param {Number} [start=0.0] The beginning of the interval.
     * @param {Number} [stop=0.0] The end of the interval.
     */
    var Interval = function(start, stop) {
        /**
         * The beginning of the interval.
         * @type {Number}
         * @default 0.0
         */
        this.start = defaultValue(start, 0.0);
        /**
         * The end of the interval.
         * @type {Number}
         * @default 0.0
         */
        this.stop = defaultValue(stop, 0.0);
    };

    return Interval;
});

/*global define*/
define('Core/Matrix3',[
        './Cartesian3',
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject',
        './Math'
    ], function(
        Cartesian3,
        defaultValue,
        defined,
        DeveloperError,
        freezeObject,
        CesiumMath) {
    "use strict";

    /**
     * A 3x3 matrix, indexable as a column-major order array.
     * Constructor parameters are in row-major order for code readability.
     * @alias Matrix3
     * @constructor
     *
     * @param {Number} [column0Row0=0.0] The value for column 0, row 0.
     * @param {Number} [column1Row0=0.0] The value for column 1, row 0.
     * @param {Number} [column2Row0=0.0] The value for column 2, row 0.
     * @param {Number} [column0Row1=0.0] The value for column 0, row 1.
     * @param {Number} [column1Row1=0.0] The value for column 1, row 1.
     * @param {Number} [column2Row1=0.0] The value for column 2, row 1.
     * @param {Number} [column0Row2=0.0] The value for column 0, row 2.
     * @param {Number} [column1Row2=0.0] The value for column 1, row 2.
     * @param {Number} [column2Row2=0.0] The value for column 2, row 2.
     *
     * @see Matrix3.fromColumnMajor
     * @see Matrix3.fromRowMajorArray
     * @see Matrix3.fromQuaternion
     * @see Matrix3.fromScale
     * @see Matrix3.fromUniformScale
     * @see Matrix2
     * @see Matrix4
     */
    var Matrix3 = function(column0Row0, column1Row0, column2Row0,
                           column0Row1, column1Row1, column2Row1,
                           column0Row2, column1Row2, column2Row2) {
        this[0] = defaultValue(column0Row0, 0.0);
        this[1] = defaultValue(column0Row1, 0.0);
        this[2] = defaultValue(column0Row2, 0.0);
        this[3] = defaultValue(column1Row0, 0.0);
        this[4] = defaultValue(column1Row1, 0.0);
        this[5] = defaultValue(column1Row2, 0.0);
        this[6] = defaultValue(column2Row0, 0.0);
        this[7] = defaultValue(column2Row1, 0.0);
        this[8] = defaultValue(column2Row2, 0.0);
    };

    /**
     * Duplicates a Matrix3 instance.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to duplicate.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined)
     */
    Matrix3.clone = function(values, result) {
        if (!defined(values)) {
            return undefined;
        }
        if (!defined(result)) {
            return new Matrix3(values[0], values[3], values[6],
                               values[1], values[4], values[7],
                               values[2], values[5], values[8]);
        }
        result[0] = values[0];
        result[1] = values[1];
        result[2] = values[2];
        result[3] = values[3];
        result[4] = values[4];
        result[5] = values[5];
        result[6] = values[6];
        result[7] = values[7];
        result[8] = values[8];
        return result;
    };

    /**
     * Creates a Matrix3 from 9 consecutive elements in an array.
     * @memberof Matrix3
     *
     * @param {Array} array The array whose 9 consecutive elements correspond to the positions of the matrix.  Assumes column-major order.
     * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
     * @param {Matrix3} [result] The object onto which to store the result.
     *
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} array is required.
     *
     * @example
     * // Create the Matrix3:
     * // [1.0, 2.0, 3.0]
     * // [1.0, 2.0, 3.0]
     * // [1.0, 2.0, 3.0]
     *
     * var v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0];
     * var m = Matrix3.fromArray(v);
     *
     * // Create same Matrix3 with using an offset into an array
     * var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0];
     * var m2 = Matrix3.fromArray(v2, 2);
     */
    Matrix3.fromArray = function(array, startingIndex, result) {
                if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Matrix3();
        }

        result[0] = array[startingIndex];
        result[1] = array[startingIndex + 1];
        result[2] = array[startingIndex + 2];
        result[3] = array[startingIndex + 3];
        result[4] = array[startingIndex + 4];
        result[5] = array[startingIndex + 5];
        result[6] = array[startingIndex + 6];
        result[7] = array[startingIndex + 7];
        result[8] = array[startingIndex + 8];
        result[9] = array[startingIndex + 9];
        return result;
    };

    /**
     * Creates a Matrix3 instance from a column-major order array.
     * @memberof Matrix3
     * @function
     *
     * @param {Array} values The column-major order array.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} values is required.
     */
    Matrix3.fromColumnMajorArray = function(values, result) {
                if (!defined(values)) {
            throw new DeveloperError('values parameter is required');
        }
        
        return Matrix3.clone(values, result);
    };

    /**
     * Creates a Matrix3 instance from a row-major order array.
     * The resulting matrix will be in column-major order.
     * @memberof Matrix3
     *
     * @param {Array} values The row-major order array.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} values is required.
     */
    Matrix3.fromRowMajorArray = function(values, result) {
                if (!defined(values)) {
            throw new DeveloperError('values is required.');
        }
        
        if (!defined(result)) {
            return new Matrix3(values[0], values[1], values[2],
                               values[3], values[4], values[5],
                               values[6], values[7], values[8]);
        }
        result[0] = values[0];
        result[1] = values[3];
        result[2] = values[6];
        result[3] = values[1];
        result[4] = values[4];
        result[5] = values[7];
        result[6] = values[2];
        result[7] = values[5];
        result[8] = values[8];
        return result;
    };

    /**
     * Computes a 3x3 rotation matrix from the provided quaternion.
     * @memberof Matrix3
     *
     * @param {Quaternion} quaternion the quaternion to use.
     *
     * @returns {Matrix3} The 3x3 rotation matrix from this quaternion.
     */
    Matrix3.fromQuaternion = function(quaternion, result) {
                if (!defined(quaternion)) {
            throw new DeveloperError('quaternion is required');
        }
        
        var x2 = quaternion.x * quaternion.x;
        var xy = quaternion.x * quaternion.y;
        var xz = quaternion.x * quaternion.z;
        var xw = quaternion.x * quaternion.w;
        var y2 = quaternion.y * quaternion.y;
        var yz = quaternion.y * quaternion.z;
        var yw = quaternion.y * quaternion.w;
        var z2 = quaternion.z * quaternion.z;
        var zw = quaternion.z * quaternion.w;
        var w2 = quaternion.w * quaternion.w;

        var m00 = x2 - y2 - z2 + w2;
        var m01 = 2.0 * (xy - zw);
        var m02 = 2.0 * (xz + yw);

        var m10 = 2.0 * (xy + zw);
        var m11 = -x2 + y2 - z2 + w2;
        var m12 = 2.0 * (yz - xw);

        var m20 = 2.0 * (xz - yw);
        var m21 = 2.0 * (yz + xw);
        var m22 = -x2 - y2 + z2 + w2;

        if (!defined(result)) {
            return new Matrix3(m00, m01, m02,
                               m10, m11, m12,
                               m20, m21, m22);
        }
        result[0] = m00;
        result[1] = m10;
        result[2] = m20;
        result[3] = m01;
        result[4] = m11;
        result[5] = m21;
        result[6] = m02;
        result[7] = m12;
        result[8] = m22;
        return result;
    };

    /**
     * Computes a Matrix3 instance representing a non-uniform scale.
     * @memberof Matrix3
     *
     * @param {Cartesian3} scale The x, y, and z scale factors.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * // Creates
     * //   [7.0, 0.0, 0.0]
     * //   [0.0, 8.0, 0.0]
     * //   [0.0, 0.0, 9.0]
     * var m = Matrix3.fromScale(new Cartesian3(7.0, 8.0, 9.0));
     */
    Matrix3.fromScale = function(scale, result) {
                if (!defined(scale)) {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            return new Matrix3(
                scale.x, 0.0,     0.0,
                0.0,     scale.y, 0.0,
                0.0,     0.0,     scale.z);
        }

        result[0] = scale.x;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = scale.y;
        result[5] = 0.0;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = scale.z;
        return result;
    };

    /**
     * Computes a Matrix3 instance representing a uniform scale.
     * @memberof Matrix3
     *
     * @param {Number} scale The uniform scale factor.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * // Creates
     * //   [2.0, 0.0, 0.0]
     * //   [0.0, 2.0, 0.0]
     * //   [0.0, 0.0, 2.0]
     * var m = Matrix3.fromUniformScale(2.0);
     */
    Matrix3.fromUniformScale = function(scale, result) {
                if (typeof scale !== 'number') {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            return new Matrix3(
                scale, 0.0,   0.0,
                0.0,   scale, 0.0,
                0.0,   0.0,   scale);
        }

        result[0] = scale;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = scale;
        result[5] = 0.0;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = scale;
        return result;
    };

    /**
     * Creates a rotation matrix around the x-axis.
     *
     * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     *
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} angle is required.
     *
     * @example
     * // Rotate a point 45 degrees counterclockwise around the x-axis.
     * var p = new Cartesian3(5, 6, 7);
     * var m = Matrix3.fromRotationX(CesiumMath.toRadians(45.0));
     * var rotated = Matrix3.multiplyByVector(m, p);
     */
    Matrix3.fromRotationX = function(angle, result) {
                if (!defined(angle)) {
            throw new DeveloperError('angle is required.');
        }
        
        var cosAngle = Math.cos(angle);
        var sinAngle = Math.sin(angle);

        if (!defined(result)) {
            return new Matrix3(
                1.0, 0.0, 0.0,
                0.0, cosAngle, -sinAngle,
                0.0, sinAngle, cosAngle);
        }

        result[0] = 1.0;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = cosAngle;
        result[5] = sinAngle;
        result[6] = 0.0;
        result[7] = -sinAngle;
        result[8] = cosAngle;

        return result;
    };

    /**
     * Creates a rotation matrix around the y-axis.
     *
     * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     *
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} angle is required.
     *
     * @example
     * // Rotate a point 45 degrees counterclockwise around the y-axis.
     * var p = new Cartesian3(5, 6, 7);
     * var m = Matrix3.fromRotationY(CesiumMath.toRadians(45.0));
     * var rotated = Matrix3.multiplyByVector(m, p);
     */
    Matrix3.fromRotationY = function(angle, result) {
                if (!defined(angle)) {
            throw new DeveloperError('angle is required.');
        }
        
        var cosAngle = Math.cos(angle);
        var sinAngle = Math.sin(angle);

        if (!defined(result)) {
            return new Matrix3(
                cosAngle, 0.0, sinAngle,
                0.0, 1.0, 0.0,
                -sinAngle, 0.0, cosAngle);
        }

        result[0] = cosAngle;
        result[1] = 0.0;
        result[2] = -sinAngle;
        result[3] = 0.0;
        result[4] = 1.0;
        result[5] = 0.0;
        result[6] = sinAngle;
        result[7] = 0.0;
        result[8] = cosAngle;

        return result;
    };

    /**
     * Creates a rotation matrix around the z-axis.
     *
     * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise.
     * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
     *
     * @returns The modified result parameter, or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} angle is required.
     *
     * @example
     * // Rotate a point 45 degrees counterclockwise around the z-axis.
     * var p = new Cartesian3(5, 6, 7);
     * var m = Matrix3.fromRotationZ(CesiumMath.toRadians(45.0));
     * var rotated = Matrix3.multiplyByVector(m, p);
     */
    Matrix3.fromRotationZ = function(angle, result) {
                if (!defined(angle)) {
            throw new DeveloperError('angle is required.');
        }
        
        var cosAngle = Math.cos(angle);
        var sinAngle = Math.sin(angle);

        if (!defined(result)) {
            return new Matrix3(
                cosAngle, -sinAngle, 0.0,
                sinAngle, cosAngle, 0.0,
                0.0, 0.0, 1.0);
        }

        result[0] = cosAngle;
        result[1] = sinAngle;
        result[2] = 0.0;
        result[3] = -sinAngle;
        result[4] = cosAngle;
        result[5] = 0.0;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 1.0;

        return result;
    };

    /**
     * Creates an Array from the provided Matrix3 instance.
     * The array will be in column-major order.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to use..
     * @param {Array} [result] The Array onto which to store the result.
     * @returns {Array} The modified Array parameter or a new Array instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix3.toArray = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return [matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8]];
        }
        result[0] = matrix[0];
        result[1] = matrix[1];
        result[2] = matrix[2];
        result[3] = matrix[3];
        result[4] = matrix[4];
        result[5] = matrix[5];
        result[6] = matrix[6];
        result[7] = matrix[7];
        result[8] = matrix[8];
        return result;
    };

    /**
     * Computes the array index of the element at the provided row and column.
     * @memberof Matrix3
     *
     * @param {Number} row The zero-based index of the row.
     * @param {Number} column The zero-based index of the column.
     * @returns {Number} The index of the element at the provided row and column.
     *
     * @exception {DeveloperError} row is required and must be 0, 1, or 2.
     * @exception {DeveloperError} column is required and must be 0, 1, or 2.
     *
     * @example
     * var myMatrix = new Matrix3();
     * var column1Row0Index = Matrix3.getElementIndex(1, 0);
     * var column1Row0 = myMatrix[column1Row0Index]
     * myMatrix[column1Row0Index] = 10.0;
     */
    Matrix3.getElementIndex = function(column, row) {
                if (typeof row !== 'number' || row < 0 || row > 2) {
            throw new DeveloperError('row is required and must be 0, 1, or 2.');
        }
        if (typeof column !== 'number' || column < 0 || column > 2) {
            throw new DeveloperError('column is required and must be 0, 1, or 2.');
        }
        
        return column * 3 + row;
    };

    /**
     * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to use.
     * @param {Number} index The zero-based index of the column to retrieve.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} index is required and must be 0, 1, or 2.
     *
     * @see Cartesian3
     */
    Matrix3.getColumn = function(matrix, index, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }

        if (typeof index !== 'number' || index < 0 || index > 2) {
            throw new DeveloperError('index is required and must be 0, 1, or 2.');
        }
        
        var startIndex = index * 3;
        var x = matrix[startIndex];
        var y = matrix[startIndex + 1];
        var z = matrix[startIndex + 2];

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to use.
     * @param {Number} index The zero-based index of the column to set.
     * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} index is required and must be 0, 1, or 2.
     *
     * @see Cartesian3
     */
    Matrix3.setColumn = function(matrix, index, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof index !== 'number' || index < 0 || index > 2) {
            throw new DeveloperError('index is required and must be 0, 1, or 2.');
        }
        
        result = Matrix3.clone(matrix, result);
        var startIndex = index * 3;
        result[startIndex] = cartesian.x;
        result[startIndex + 1] = cartesian.y;
        result[startIndex + 2] = cartesian.z;
        return result;
    };

    /**
     * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to use.
     * @param {Number} index The zero-based index of the row to retrieve.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} index is required and must be 0, 1, or 2.
     *
     * @see Cartesian3
     */
    Matrix3.getRow = function(matrix, index, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }

        if (typeof index !== 'number' || index < 0 || index > 2) {
            throw new DeveloperError('index is required and must be 0, 1, or 2.');
        }
        
        var x = matrix[index];
        var y = matrix[index + 3];
        var z = matrix[index + 6];

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to use.
     * @param {Number} index The zero-based index of the row to set.
     * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} index is required and must be 0, 1, or 2.
     *
     * @see Cartesian3
     */
    Matrix3.setRow = function(matrix, index, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof index !== 'number' || index < 0 || index > 2) {
            throw new DeveloperError('index is required and must be 0, 1, or 2.');
        }
        
        result = Matrix3.clone(matrix, result);
        result[index] = cartesian.x;
        result[index + 3] = cartesian.y;
        result[index + 6] = cartesian.z;
        return result;
    };

    /**
     * Computes the product of two matrices.
     * @memberof Matrix3
     *
     * @param {Matrix3} left The first matrix.
     * @param {Matrix3} right The second matrix.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Matrix3.multiply = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        var column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2];
        var column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2];
        var column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2];

        var column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5];
        var column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5];
        var column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5];

        var column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8];
        var column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8];
        var column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8];

        if (!defined(result)) {
            return new Matrix3(column0Row0, column1Row0, column2Row0,
                               column0Row1, column1Row1, column2Row1,
                               column0Row2, column1Row2, column2Row2);
        }
        result[0] = column0Row0;
        result[1] = column0Row1;
        result[2] = column0Row2;
        result[3] = column1Row0;
        result[4] = column1Row1;
        result[5] = column1Row2;
        result[6] = column2Row0;
        result[7] = column2Row1;
        result[8] = column2Row2;
        return result;
    };

    /**
     * Computes the product of a matrix and a column vector.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix.
     * @param {Cartesian3} cartesian The column.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     */
    Matrix3.multiplyByVector = function(matrix, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var vX = cartesian.x;
        var vY = cartesian.y;
        var vZ = cartesian.z;

        var x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ;
        var y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ;
        var z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ;

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Computes the product of a matrix and a scalar.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix.
     * @param {Number} scalar The number to multiply by.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Matrix3.multiplyByScalar = function(matrix, scalar, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number');
        }
        
        if (!defined(result)) {
            return new Matrix3(matrix[0] * scalar, matrix[3] * scalar, matrix[6] * scalar,
                               matrix[1] * scalar, matrix[4] * scalar, matrix[7] * scalar,
                               matrix[2] * scalar, matrix[5] * scalar, matrix[8] * scalar);
        }
        result[0] = matrix[0] * scalar;
        result[1] = matrix[1] * scalar;
        result[2] = matrix[2] * scalar;
        result[3] = matrix[3] * scalar;
        result[4] = matrix[4] * scalar;
        result[5] = matrix[5] * scalar;
        result[6] = matrix[6] * scalar;
        result[7] = matrix[7] * scalar;
        result[8] = matrix[8] * scalar;
        return result;
    };

    /**
     * Creates a negated copy of the provided matrix.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to negate.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix3.negate = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix3(-matrix[0], -matrix[3], -matrix[6],
                               -matrix[1], -matrix[4], -matrix[7],
                               -matrix[2], -matrix[5], -matrix[8]);
        }
        result[0] = -matrix[0];
        result[1] = -matrix[1];
        result[2] = -matrix[2];
        result[3] = -matrix[3];
        result[4] = -matrix[4];
        result[5] = -matrix[5];
        result[6] = -matrix[6];
        result[7] = -matrix[7];
        result[8] = -matrix[8];
        return result;
    };

    /**
     * Computes the transpose of the provided matrix.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to transpose.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix3.transpose = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        var column0Row0 = matrix[0];
        var column0Row1 = matrix[3];
        var column0Row2 = matrix[6];
        var column1Row0 = matrix[1];
        var column1Row1 = matrix[4];
        var column1Row2 = matrix[7];
        var column2Row0 = matrix[2];
        var column2Row1 = matrix[5];
        var column2Row2 = matrix[8];

        if (!defined(result)) {
            return new Matrix3(column0Row0, column1Row0, column2Row0,
                               column0Row1, column1Row1, column2Row1,
                               column0Row2, column1Row2, column2Row2);
        }
        result[0] = column0Row0;
        result[1] = column0Row1;
        result[2] = column0Row2;
        result[3] = column1Row0;
        result[4] = column1Row1;
        result[5] = column1Row2;
        result[6] = column2Row0;
        result[7] = column2Row1;
        result[8] = column2Row2;
        return result;
    };

    function computeFrobeniusNorm(matrix) {
        var norm = 0.0;
        for (var i = 0; i < 9; ++i) {
            var temp = matrix[i];
            norm += temp * temp;
        }

        return Math.sqrt(norm);
    }

    var rowVal = [1, 0, 0];
    var colVal = [2, 2, 1];

    function offDiagonalFrobeniusNorm(matrix) {
        // Computes the "off-diagonal" Frobenius norm.
        // Assumes matrix is symmetric.

        var norm = 0.0;
        for (var i = 0; i < 3; ++i) {
            var temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])];
            norm += 2.0 * temp * temp;
        }

        return Math.sqrt(norm);
    }

    function shurDecomposition(matrix, result) {
        // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan,
        // section 8.4.2 The 2by2 Symmetric Schur Decomposition.
        //
        // The routine takes a matrix, which is assumed to be symmetric, and
        // finds the largest off-diagonal term, and then creates
        // a matrix (result) which can be used to help reduce it

        var tolerance = CesiumMath.EPSILON15;

        var maxDiagonal = 0.0;
        var rotAxis = 1;

        // find pivot (rotAxis) based on max diagonal of matrix
        for (var i = 0; i < 3; ++i) {
            var temp = Math.abs(matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]);
            if (temp > maxDiagonal) {
                rotAxis = i;
                maxDiagonal = temp;
            }
        }

        var c = 1.0;
        var s = 0.0;

        var p = rowVal[rotAxis];
        var q = colVal[rotAxis];

        if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) {
            var qq = matrix[Matrix3.getElementIndex(q, q)];
            var pp = matrix[Matrix3.getElementIndex(p, p)];
            var qp = matrix[Matrix3.getElementIndex(q, p)];

            var tau = (qq - pp) / 2.0 / qp;
            var t;

            if (tau < 0.0) {
                t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau));
            } else {
                t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau));
            }

            c = 1.0 / Math.sqrt(1.0 + t * t);
            s = t * c;
        }

        result = Matrix3.clone(Matrix3.IDENTITY, result);

        result[Matrix3.getElementIndex(p, p)] = result[Matrix3.getElementIndex(q, q)] = c;
        result[Matrix3.getElementIndex(q, p)] = s;
        result[Matrix3.getElementIndex(p, q)] = -s;

        return result;
    }

    var jMatrix = new Matrix3();
    var jMatrixTranspose = new Matrix3();

    /**
     * Computes the eigenvectors and eigenvalues of a symmetric matrix.
     * <p>
     * Returns a diagonal matrix and unitary matrix such that:
     * <code>matrix = unitary matrix * diagonal matrix * transpose(unitary matrix)</code>
     * </p>
     * <p>
     * The values along the diagonal of the diagonal matrix are the eigenvalues. The columns
     * of the unitary matrix are the corresponding eigenvectors.
     * </p>
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric.
     * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result.
     * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively.
     *
     * @example
     * var a = //... symetric matrix
     * var result = {
     *     unitary : new Matrix3(),
     *     diagonal : new Matrix3()
     * };
     * Matrix3.getEigenDecomposition(a, result);
     *
     * var unitaryTranspose = Matrix3.transpose(result.unitary);
     * var b = Matrix.multiply(result.unitary, result.diagonal);
     * Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a
     *
     * var lambda = Matrix3.getColumn(result.diagonal, 0).x;  // first eigenvalue
     * var v = Matrix3.getColumn(result.unitary, 0);          // first eigenvector
     * var c = Cartesian3.multiplyByScalar(v, lambda);        // equal to Matrix3.multiplyByVector(a, v)
     */
    Matrix3.getEigenDecomposition = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }
        
        // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan,
        // section 8.4.3 The Classical Jacobi Algorithm

        var tolerance = CesiumMath.EPSILON20;
        var maxSweeps = 10;

        var count = 0;
        var sweep = 0;

        if (!defined(result)) {
            result = {};
        }

        var unitaryMatrix = result.unitary = Matrix3.clone(Matrix3.IDENTITY, result.unitary);
        var diagMatrix = result.diagonal = Matrix3.clone(matrix, result.diagonal);

        var epsilon = tolerance * computeFrobeniusNorm(diagMatrix);

        while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) {
            shurDecomposition(diagMatrix, jMatrix);
            Matrix3.transpose(jMatrix, jMatrixTranspose);
            Matrix3.multiply(diagMatrix, jMatrix, diagMatrix);
            Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix);
            Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix);

            if (++count > 2) {
                ++sweep;
                count = 0;
            }
        }

        return result;
    };

    /**
     * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix with signed elements.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix3.abs = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix3(Math.abs(matrix[0]), Math.abs(matrix[3]), Math.abs(matrix[6]),
                               Math.abs(matrix[1]), Math.abs(matrix[4]), Math.abs(matrix[7]),
                               Math.abs(matrix[2]), Math.abs(matrix[5]), Math.abs(matrix[8]));
        }
        result[0] = Math.abs(matrix[0]);
        result[1] = Math.abs(matrix[1]);
        result[2] = Math.abs(matrix[2]);
        result[3] = Math.abs(matrix[3]);
        result[4] = Math.abs(matrix[4]);
        result[5] = Math.abs(matrix[5]);
        result[6] = Math.abs(matrix[6]);
        result[7] = Math.abs(matrix[7]);
        result[8] = Math.abs(matrix[8]);

        return result;
    };

    /**
     * Computes the determinant of the provided matrix.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to use.
     * @returns {Number} The value of the determinant of the matrix.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix3.determinant = function(matrix) {
        if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }

        var m11 = matrix[0];
        var m21 = matrix[3];
        var m31 = matrix[6];
        var m12 = matrix[1];
        var m22 = matrix[4];
        var m32 = matrix[7];
        var m13 = matrix[2];
        var m23 = matrix[5];
        var m33 = matrix[8];

        return m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31);
    };

    /**
     * Computes the inverse of the provided matrix.
     * @memberof Matrix3
     *
     * @param {Matrix3} matrix The matrix to invert.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} matrix is not invertible.
     */
    Matrix3.inverse = function(matrix, result) {
        if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }

        var m11 = matrix[0];
        var m21 = matrix[1];
        var m31 = matrix[2];
        var m12 = matrix[3];
        var m22 = matrix[4];
        var m32 = matrix[5];
        var m13 = matrix[6];
        var m23 = matrix[7];
        var m33 = matrix[8];

        var determinant = Matrix3.determinant(matrix);

        if (Math.abs(determinant) <= CesiumMath.EPSILON15) {
            throw new DeveloperError('matrix is not invertible');
        }

        var m = new Matrix3(m22 * m33 - m23 * m32, m13 * m32 - m12 * m33, m12 * m23 - m13 * m22,
                            m23 * m31 - m21 * m33, m11 * m33 - m13 * m31, m13 * m21 - m11 * m23,
                            m21 * m32 - m22 * m31, m12 * m31 - m11 * m32, m11 * m22 - m12 * m21);
       var scale = 1.0 / determinant;
       return Matrix3.multiplyByScalar(m, scale, result);
    };

    /**
     * Compares the provided matrices componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Matrix3
     *
     * @param {Matrix3} [left] The first matrix.
     * @param {Matrix3} [right] The second matrix.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Matrix3.equals = function(left, right) {
        return (left === right) ||
               (defined(left) &&
                defined(right) &&
                left[0] === right[0] &&
                left[1] === right[1] &&
                left[2] === right[2] &&
                left[3] === right[3] &&
                left[4] === right[4] &&
                left[5] === right[5] &&
                left[6] === right[6] &&
                left[7] === right[7] &&
                left[8] === right[8]);
    };

    /**
     * Compares the provided matrices componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Matrix3
     *
     * @param {Matrix3} [left] The first matrix.
     * @param {Matrix3} [right] The second matrix.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Matrix3.equalsEpsilon = function(left, right, epsilon) {
                if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number');
        }
        
        return (left === right) ||
                (defined(left) &&
                defined(right) &&
                Math.abs(left[0] - right[0]) <= epsilon &&
                Math.abs(left[1] - right[1]) <= epsilon &&
                Math.abs(left[2] - right[2]) <= epsilon &&
                Math.abs(left[3] - right[3]) <= epsilon &&
                Math.abs(left[4] - right[4]) <= epsilon &&
                Math.abs(left[5] - right[5]) <= epsilon &&
                Math.abs(left[6] - right[6]) <= epsilon &&
                Math.abs(left[7] - right[7]) <= epsilon &&
                Math.abs(left[8] - right[8]) <= epsilon);
    };

    /**
     * An immutable Matrix3 instance initialized to the identity matrix.
     * @memberof Matrix3
     */
    Matrix3.IDENTITY = freezeObject(new Matrix3(1.0, 0.0, 0.0,
                                                0.0, 1.0, 0.0,
                                                0.0, 0.0, 1.0));

    /**
     * The index into Matrix3 for column 0, row 0.
     * @memberof Matrix3
     */
    Matrix3.COLUMN0ROW0 = 0;

    /**
     * The index into Matrix3 for column 0, row 1.
     * @memberof Matrix3
     */
    Matrix3.COLUMN0ROW1 = 1;

    /**
     * The index into Matrix3 for column 0, row 2.
     * @memberof Matrix3
     */
    Matrix3.COLUMN0ROW2 = 2;

    /**
     * The index into Matrix3 for column 1, row 0.
     * @memberof Matrix3
     */
    Matrix3.COLUMN1ROW0 = 3;

    /**
     * The index into Matrix3 for column 1, row 1.
     * @memberof Matrix3
     */
    Matrix3.COLUMN1ROW1 = 4;

    /**
     * The index into Matrix3 for column 1, row 2.
     * @memberof Matrix3
     */
    Matrix3.COLUMN1ROW2 = 5;

    /**
     * The index into Matrix3 for column 2, row 0.
     * @memberof Matrix3
     */
    Matrix3.COLUMN2ROW0 = 6;

    /**
     * The index into Matrix3 for column 2, row 1.
     * @memberof Matrix3
     */
    Matrix3.COLUMN2ROW1 = 7;

    /**
     * The index into Matrix3 for column 2, row 2.
     * @memberof Matrix3
     */
    Matrix3.COLUMN2ROW2 = 8;

    /**
     * Duplicates the provided Matrix3 instance.
     * @memberof Matrix3
     *
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
     */
    Matrix3.prototype.clone = function(result) {
        return Matrix3.clone(this, result);
    };

    /**
     * Compares this matrix to the provided matrix componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Matrix3
     *
     * @param {Matrix3} [right] The right hand side matrix.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Matrix3.prototype.equals = function(right) {
        return Matrix3.equals(this, right);
    };

    /**
     * Compares this matrix to the provided matrix componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Matrix3
     *
     * @param {Matrix3} [right] The right hand side matrix.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Matrix3.prototype.equalsEpsilon = function(right, epsilon) {
        return Matrix3.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Creates a string representing this Matrix with each row being
     * on a separate line and in the format '(column0, column1, column2)'.
     * @memberof Matrix3
     *
     * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'.
     */
    Matrix3.prototype.toString = function() {
        return '(' + this[0] + ', ' + this[3] + ', ' + this[6] + ')\n' +
               '(' + this[1] + ', ' + this[4] + ', ' + this[7] + ')\n' +
               '(' + this[2] + ', ' + this[5] + ', ' + this[8] + ')';
    };

    return Matrix3;
});

/*global define*/
define('Core/RuntimeError',['./defined'], function(defined) {
    "use strict";

    /**
     * Constructs an exception object that is thrown due to an error that can occur at runtime, e.g.,
     * out of memory, could not compile shader, etc.  If a function may throw this
     * exception, the calling code should be prepared to catch it.
     * <br /><br />
     * On the other hand, a {@link DeveloperError} indicates an exception due
     * to a developer error, e.g., invalid argument, that usually indicates a bug in the
     * calling code.
     *
     * @alias RuntimeError
     *
     * @param {String} [message=undefined] The error message for this exception.
     *
     * @see DeveloperError
     * @constructor
     */
    var RuntimeError = function(message) {
        /**
         * 'RuntimeError' indicating that this exception was thrown due to a runtime error.
         * @type {String}
         * @constant
         * @default
         */
        this.name = 'RuntimeError';

        /**
         * The explanation for why this exception was thrown.
         * @type {String}
         * @constant
         */
        this.message = message;

        var e = new Error();

        /**
         * The stack trace of this exception, if available.
         * @type {String}
         * @constant
         */
        this.stack = e.stack;
    };

    RuntimeError.prototype.toString = function() {
        var str = this.name + ': ' + this.message;

        if (defined(this.stack)) {
            str += '\n' + this.stack.toString();
        }

        return str;
    };

    return RuntimeError;
});

/*global define*/
define('Core/Matrix4',[
        './Cartesian3',
        './Cartesian4',
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject',
        './Math',
        './Matrix3',
        './RuntimeError'
    ], function(
        Cartesian3,
        Cartesian4,
        defaultValue,
        defined,
        DeveloperError,
        freezeObject,
        CesiumMath,
        Matrix3,
        RuntimeError) {
    "use strict";

    /**
     * A 4x4 matrix, indexable as a column-major order array.
     * Constructor parameters are in row-major order for code readability.
     * @alias Matrix4
     * @constructor
     *
     * @param {Number} [column0Row0=0.0] The value for column 0, row 0.
     * @param {Number} [column1Row0=0.0] The value for column 1, row 0.
     * @param {Number} [column2Row0=0.0] The value for column 2, row 0.
     * @param {Number} [column3Row0=0.0] The value for column 3, row 0.
     * @param {Number} [column0Row1=0.0] The value for column 0, row 1.
     * @param {Number} [column1Row1=0.0] The value for column 1, row 1.
     * @param {Number} [column2Row1=0.0] The value for column 2, row 1.
     * @param {Number} [column3Row1=0.0] The value for column 3, row 1.
     * @param {Number} [column0Row2=0.0] The value for column 0, row 2.
     * @param {Number} [column1Row2=0.0] The value for column 1, row 2.
     * @param {Number} [column2Row2=0.0] The value for column 2, row 2.
     * @param {Number} [column3Row2=0.0] The value for column 3, row 2.
     * @param {Number} [column0Row3=0.0] The value for column 0, row 3.
     * @param {Number} [column1Row3=0.0] The value for column 1, row 3.
     * @param {Number} [column2Row3=0.0] The value for column 2, row 3.
     * @param {Number} [column3Row3=0.0] The value for column 3, row 3.
     *
     * @see Matrix4.fromColumnMajorArray
     * @see Matrix4.fromRowMajorArray
     * @see Matrix4.fromRotationTranslation
     * @see Matrix4.fromTranslationQuaternionRotationScale
     * @see Matrix4.fromTranslation
     * @see Matrix4.fromScale
     * @see Matrix4.fromUniformScale
     * @see Matrix4.fromCamera
     * @see Matrix4.computePerspectiveFieldOfView
     * @see Matrix4.computeOrthographicOffCenter
     * @see Matrix4.computePerspectiveOffCenter
     * @see Matrix4.computeInfinitePerspectiveOffCenter
     * @see Matrix4.computeViewportTransformation
     * @see Matrix2
     * @see Matrix3
     */
    var Matrix4 = function(column0Row0, column1Row0, column2Row0, column3Row0,
                           column0Row1, column1Row1, column2Row1, column3Row1,
                           column0Row2, column1Row2, column2Row2, column3Row2,
                           column0Row3, column1Row3, column2Row3, column3Row3) {
        this[0] = defaultValue(column0Row0, 0.0);
        this[1] = defaultValue(column0Row1, 0.0);
        this[2] = defaultValue(column0Row2, 0.0);
        this[3] = defaultValue(column0Row3, 0.0);
        this[4] = defaultValue(column1Row0, 0.0);
        this[5] = defaultValue(column1Row1, 0.0);
        this[6] = defaultValue(column1Row2, 0.0);
        this[7] = defaultValue(column1Row3, 0.0);
        this[8] = defaultValue(column2Row0, 0.0);
        this[9] = defaultValue(column2Row1, 0.0);
        this[10] = defaultValue(column2Row2, 0.0);
        this[11] = defaultValue(column2Row3, 0.0);
        this[12] = defaultValue(column3Row0, 0.0);
        this[13] = defaultValue(column3Row1, 0.0);
        this[14] = defaultValue(column3Row2, 0.0);
        this[15] = defaultValue(column3Row3, 0.0);
    };

    /**
     * Duplicates a Matrix4 instance.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to duplicate.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. (Returns undefined if matrix is undefined)
     */
    Matrix4.clone = function(matrix, result) {
        if (!defined(matrix)) {
            return undefined;
        }
        if (!defined(result)) {
            return new Matrix4(matrix[0], matrix[4], matrix[8], matrix[12],
                               matrix[1], matrix[5], matrix[9], matrix[13],
                               matrix[2], matrix[6], matrix[10], matrix[14],
                               matrix[3], matrix[7], matrix[11], matrix[15]);
        }
        result[0] = matrix[0];
        result[1] = matrix[1];
        result[2] = matrix[2];
        result[3] = matrix[3];
        result[4] = matrix[4];
        result[5] = matrix[5];
        result[6] = matrix[6];
        result[7] = matrix[7];
        result[8] = matrix[8];
        result[9] = matrix[9];
        result[10] = matrix[10];
        result[11] = matrix[11];
        result[12] = matrix[12];
        result[13] = matrix[13];
        result[14] = matrix[14];
        result[15] = matrix[15];
        return result;
    };

    /**
     * Creates a Matrix4 from 16 consecutive elements in an array.
     * @memberof Matrix4
     *
     * @param {Array} array The array whose 16 consecutive elements correspond to the positions of the matrix.  Assumes column-major order.
     * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
     * @param {Matrix4} [result] The object onto which to store the result.
     *
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} array is required.
     *
     * @example
     * // Create the Matrix4:
     * // [1.0, 2.0, 3.0, 4.0]
     * // [1.0, 2.0, 3.0, 4.0]
     * // [1.0, 2.0, 3.0, 4.0]
     * // [1.0, 2.0, 3.0, 4.0]
     *
     * var v = [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0];
     * var m = Matrix4.fromArray(v);
     *
     * // Create same Matrix4 with using an offset into an array
     * var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0];
     * var m2 = Matrix4.fromArray(v2, 2);
     */
    Matrix4.fromArray = function(array, startingIndex, result) {
                if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Matrix4();
        }

        result[0] = array[startingIndex];
        result[1] = array[startingIndex + 1];
        result[2] = array[startingIndex + 2];
        result[3] = array[startingIndex + 3];
        result[4] = array[startingIndex + 4];
        result[5] = array[startingIndex + 5];
        result[6] = array[startingIndex + 6];
        result[7] = array[startingIndex + 7];
        result[8] = array[startingIndex + 8];
        result[9] = array[startingIndex + 9];
        result[10] = array[startingIndex + 10];
        result[11] = array[startingIndex + 11];
        result[12] = array[startingIndex + 12];
        result[13] = array[startingIndex + 13];
        result[14] = array[startingIndex + 14];
        result[15] = array[startingIndex + 15];
        return result;
    };

    /**
     * Computes a Matrix4 instance from a column-major order array.
     * @memberof Matrix4
     * @function
     *
     * @param {Array} values The column-major order array.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} values is required.
     */
    Matrix4.fromColumnMajorArray = function(values, result) {
                if (!defined(values)) {
            throw new DeveloperError('values parameter is required');
        }
        
        return Matrix4.clone(values, result);
    };

    /**
     * Computes a Matrix4 instance from a row-major order array.
     * The resulting matrix will be in column-major order.
     * @memberof Matrix4
     *
     * @param {Array} values The row-major order array.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} values is required.
     */
    Matrix4.fromRowMajorArray = function(values, result) {
                if (!defined(values)) {
            throw new DeveloperError('values is required.');
        }
        
        if (!defined(result)) {
            return new Matrix4(values[0], values[1], values[2], values[3],
                               values[4], values[5], values[6], values[7],
                               values[8], values[9], values[10], values[11],
                               values[12], values[13], values[14], values[15]);
        }
        result[0] = values[0];
        result[1] = values[4];
        result[2] = values[8];
        result[3] = values[12];
        result[4] = values[1];
        result[5] = values[5];
        result[6] = values[9];
        result[7] = values[13];
        result[8] = values[2];
        result[9] = values[6];
        result[10] = values[10];
        result[11] = values[14];
        result[12] = values[3];
        result[13] = values[7];
        result[14] = values[11];
        result[15] = values[15];
        return result;
    };

    /**
     * Computes a Matrix4 instance from a Matrix3 representing the rotation
     * and a Cartesian3 representing the translation.
     * @memberof Matrix4
     *
     * @param {Matrix3} rotation The upper left portion of the matrix representing the rotation.
     * @param {Cartesian3} translation The upper right portion of the matrix representing the translation.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} rotation is required.
     * @exception {DeveloperError} translation is required.
     */
    Matrix4.fromRotationTranslation = function(rotation, translation, result) {
                if (!defined(rotation)) {
            throw new DeveloperError('rotation is required.');
        }
        if (!defined(translation)) {
            throw new DeveloperError('translation is required.');
        }
        
        if (!defined(result)) {
            return new Matrix4(rotation[0], rotation[3], rotation[6], translation.x,
                               rotation[1], rotation[4], rotation[7], translation.y,
                               rotation[2], rotation[5], rotation[8], translation.z,
                                       0.0,         0.0,         0.0,           1.0);
        }

        result[0] = rotation[0];
        result[1] = rotation[1];
        result[2] = rotation[2];
        result[3] = 0.0;
        result[4] = rotation[3];
        result[5] = rotation[4];
        result[6] = rotation[5];
        result[7] = 0.0;
        result[8] = rotation[6];
        result[9] = rotation[7];
        result[10] = rotation[8];
        result[11] = 0.0;
        result[12] = translation.x;
        result[13] = translation.y;
        result[14] = translation.z;
        result[15] = 1.0;
        return result;
    };

    var scratchTrsRotation = new Matrix3();

    /**
     * Computes a Matrix4 instance from a translation, rotation, and scale (TRS)
     * representation with the rotation represented as a quaternion.
     *
     * @memberof Matrix4
     *
     * @param {Cartesian3} translation The translation transformation.
     * @param {Quaternion} rotation The rotation transformation.
     * @param {Cartesian3} scale The non-uniform scale transformation.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} translation is required.
     * @exception {DeveloperError} rotation is required.
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * result = Matrix4.fromTranslationQuaternionRotationScale(
     *   new Cartesian3(1.0, 2.0, 3.0), // translation
     *   Quaternion.IDENTITY,           // rotation
     *   new Cartesian3(7.0, 8.0, 9.0), // scale
     *   result);
     */
    Matrix4.fromTranslationQuaternionRotationScale = function(translation, rotation, scale, result) {
                if (!defined(translation)) {
            throw new DeveloperError('translation is required.');
        }
        if (!defined(rotation)) {
            throw new DeveloperError('rotation is required.');
        }
        if (!defined(scale)) {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            result = new Matrix4();
        }

        var scaleX = scale.x;
        var scaleY = scale.y;
        var scaleZ = scale.z;

        var x2 = rotation.x * rotation.x;
        var xy = rotation.x * rotation.y;
        var xz = rotation.x * rotation.z;
        var xw = rotation.x * rotation.w;
        var y2 = rotation.y * rotation.y;
        var yz = rotation.y * rotation.z;
        var yw = rotation.y * rotation.w;
        var z2 = rotation.z * rotation.z;
        var zw = rotation.z * rotation.w;
        var w2 = rotation.w * rotation.w;

        var m00 = x2 - y2 - z2 + w2;
        var m01 = 2.0 * (xy - zw);
        var m02 = 2.0 * (xz + yw);

        var m10 = 2.0 * (xy + zw);
        var m11 = -x2 + y2 - z2 + w2;
        var m12 = 2.0 * (yz - xw);

        var m20 = 2.0 * (xz - yw);
        var m21 = 2.0 * (yz + xw);
        var m22 = -x2 - y2 + z2 + w2;

        result[0]  = m00 * scaleX;
        result[1]  = m10 * scaleX;
        result[2]  = m20 * scaleX;
        result[3]  = 0.0;
        result[4]  = m01 * scaleY;
        result[5]  = m11 * scaleY;
        result[6]  = m21 * scaleY;
        result[7]  = 0.0;
        result[8]  = m02 * scaleZ;
        result[9]  = m12 * scaleZ;
        result[10] = m22 * scaleZ;
        result[11] = 0.0;
        result[12] = translation.x;
        result[13] = translation.y;
        result[14] = translation.z;
        result[15] = 1.0;

        return result;
    };

    /**
     * Creates a Matrix4 instance from a Cartesian3 representing the translation.
     * @memberof Matrix4
     *
     * @param {Cartesian3} translation The upper right portion of the matrix representing the translation.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @see Matrix4.multiplyByTranslation
     *
     * @exception {DeveloperError} translation is required.
     */
    Matrix4.fromTranslation = function(translation, result) {
        return Matrix4.fromRotationTranslation(Matrix3.IDENTITY, translation, result);
    };

    /**
     * Computes a Matrix4 instance representing a non-uniform scale.
     * @memberof Matrix4
     *
     * @param {Cartesian3} scale The x, y, and z scale factors.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * // Creates
     * //   [7.0, 0.0, 0.0, 0.0]
     * //   [0.0, 8.0, 0.0, 0.0]
     * //   [0.0, 0.0, 9.0, 0.0]
     * //   [0.0, 0.0, 0.0, 1.0]
     * var m = Matrix4.fromScale(new Cartesian3(7.0, 8.0, 9.0));
     */
    Matrix4.fromScale = function(scale, result) {
                if (!defined(scale)) {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            return new Matrix4(
                scale.x, 0.0,     0.0,     0.0,
                0.0,     scale.y, 0.0,     0.0,
                0.0,     0.0,     scale.z, 0.0,
                0.0,     0.0,     0.0,     1.0);
        }

        result[0] = scale.x;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = scale.y;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 0.0;
        result[9] = 0.0;
        result[10] = scale.z;
        result[11] = 0.0;
        result[12] = 0.0;
        result[13] = 0.0;
        result[14] = 0.0;
        result[15] = 1.0;
        return result;
    };

    /**
     * Computes a Matrix4 instance representing a uniform scale.
     * @memberof Matrix4
     *
     * @param {Number} scale The uniform scale factor.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * // Creates
     * //   [2.0, 0.0, 0.0, 0.0]
     * //   [0.0, 2.0, 0.0, 0.0]
     * //   [0.0, 0.0, 2.0, 0.0]
     * //   [0.0, 0.0, 0.0, 1.0]
     * var m = Matrix4.fromScale(2.0);
     */
    Matrix4.fromUniformScale = function(scale, result) {
                if (typeof scale !== 'number') {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            return new Matrix4(scale, 0.0,   0.0,   0.0,
                               0.0,   scale, 0.0,   0.0,
                               0.0,   0.0,   scale, 0.0,
                               0.0,   0.0,   0.0,   1.0);
        }

        result[0] = scale;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = scale;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 0.0;
        result[9] = 0.0;
        result[10] = scale;
        result[11] = 0.0;
        result[12] = 0.0;
        result[13] = 0.0;
        result[14] = 0.0;
        result[15] = 1.0;
        return result;
    };

    var fromCameraF = new Cartesian3();
    var fromCameraS = new Cartesian3();
    var fromCameraU = new Cartesian3();

    /**
     * Computes a Matrix4 instance from a Camera.
     * @memberof Matrix4
     *
     * @param {Camera} camera The camera to use.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} camera is required.
     * @exception {DeveloperError} camera.eye is required.
     * @exception {DeveloperError} camera.target is required.
     * @exception {DeveloperError} camera.up is required.
     */
    Matrix4.fromCamera = function(camera, result) {
                if (!defined(camera)) {
            throw new DeveloperError('camera is required.');
        }
        
        var eye = camera.eye;
        var target = camera.target;
        var up = camera.up;

                if (!defined(eye)) {
            throw new DeveloperError('camera.eye is required.');
        }
        if (!defined(target)) {
            throw new DeveloperError('camera.target is required.');
        }
        if (!defined(up)) {
            throw new DeveloperError('camera.up is required.');
        }
        
        Cartesian3.normalize(Cartesian3.subtract(target, eye, fromCameraF), fromCameraF);
        Cartesian3.normalize(Cartesian3.cross(fromCameraF, up, fromCameraS), fromCameraS);
        Cartesian3.normalize(Cartesian3.cross(fromCameraS, fromCameraF, fromCameraU), fromCameraU);

        var sX = fromCameraS.x;
        var sY = fromCameraS.y;
        var sZ = fromCameraS.z;
        var fX = fromCameraF.x;
        var fY = fromCameraF.y;
        var fZ = fromCameraF.z;
        var uX = fromCameraU.x;
        var uY = fromCameraU.y;
        var uZ = fromCameraU.z;
        var eyeX = eye.x;
        var eyeY = eye.y;
        var eyeZ = eye.z;
        var t0 = sX * -eyeX + sY * -eyeY+ sZ * -eyeZ;
        var t1 = uX * -eyeX + uY * -eyeY+ uZ * -eyeZ;
        var t2 = fX * eyeX + fY * eyeY + fZ * eyeZ;

        //The code below this comment is an optimized
        //version of the commented lines.
        //Rather that create two matrices and then multiply,
        //we just bake in the multiplcation as part of creation.
        //var rotation = new Matrix4(
        //                sX,  sY,  sZ, 0.0,
        //                uX,  uY,  uZ, 0.0,
        //               -fX, -fY, -fZ, 0.0,
        //                0.0,  0.0,  0.0, 1.0);
        //var translation = new Matrix4(
        //                1.0, 0.0, 0.0, -eye.x,
        //                0.0, 1.0, 0.0, -eye.y,
        //                0.0, 0.0, 1.0, -eye.z,
        //                0.0, 0.0, 0.0, 1.0);
        //return rotation.multiply(translation);
        if (!defined(result)) {
            return new Matrix4(
                    sX,   sY,  sZ, t0,
                    uX,   uY,  uZ, t1,
                   -fX,  -fY, -fZ, t2,
                    0.0, 0.0, 0.0, 1.0);
        }
        result[0] = sX;
        result[1] = uX;
        result[2] = -fX;
        result[3] = 0.0;
        result[4] = sY;
        result[5] = uY;
        result[6] = -fY;
        result[7] = 0.0;
        result[8] = sZ;
        result[9] = uZ;
        result[10] = -fZ;
        result[11] = 0.0;
        result[12] = t0;
        result[13] = t1;
        result[14] = t2;
        result[15] = 1.0;
        return result;

    };

     /**
      * Computes a Matrix4 instance representing a perspective transformation matrix.
      * @memberof Matrix4
      *
      * @param {Number} fovY The field of view along the Y axis in radians.
      * @param {Number} aspectRatio The aspect ratio.
      * @param {Number} near The distance to the near plane in meters.
      * @param {Number} far The distance to the far plane in meters.
      * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
      * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
      *
      * @exception {DeveloperError} fovY must be in [0, PI).
      * @exception {DeveloperError} aspectRatio must be greater than zero.
      * @exception {DeveloperError} near must be greater than zero.
      * @exception {DeveloperError} far must be greater than zero.
      */
    Matrix4.computePerspectiveFieldOfView = function(fovY, aspectRatio, near, far, result) {
                if (fovY <= 0.0 || fovY > Math.PI) {
            throw new DeveloperError('fovY must be in [0, PI).');
        }

        if (aspectRatio <= 0.0) {
            throw new DeveloperError('aspectRatio must be greater than zero.');
        }

        if (near <= 0.0) {
            throw new DeveloperError('near must be greater than zero.');
        }

        if (far <= 0.0) {
            throw new DeveloperError('far must be greater than zero.');
        }
        
        var bottom = Math.tan(fovY * 0.5);

        var column1Row1 = 1.0 / bottom;
        var column0Row0 = column1Row1 / aspectRatio;
        var column2Row2 = (far + near) / (near - far);
        var column3Row2 = (2.0 * far * near) / (near - far);

        if (!defined(result)) {
            return new Matrix4(column0Row0,         0.0,         0.0,         0.0,
                                       0.0, column1Row1,         0.0,         0.0,
                                       0.0,         0.0, column2Row2, column3Row2,
                                       0.0,         0.0,        -1.0,         0.0);
         }

        result[0] = column0Row0;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = column1Row1;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 0.0;
        result[9] = 0.0;
        result[10] = column2Row2;
        result[11] = -1.0;
        result[12] = 0.0;
        result[13] = 0.0;
        result[14] = column3Row2;
        result[15] = 0.0;
        return result;
    };

    /**
    * Computes a Matrix4 instance representing an orthographic transformation matrix.
    * @memberof Matrix4
    *
    * @param {Number} left The number of meters to the left of the camera that will be in view.
    * @param {Number} right The number of meters to the right of the camera that will be in view.
    * @param {Number} bottom The number of meters below of the camera that will be in view.
    * @param {Number} top The number of meters above of the camera that will be in view.
    * @param {Number} near The distance to the near plane in meters.
    * @param {Number} far The distance to the far plane in meters.
    * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
    * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
    *
    * @exception {DeveloperError} left is required.
    * @exception {DeveloperError} right is required.
    * @exception {DeveloperError} bottom is required.
    * @exception {DeveloperError} top is required.
    * @exception {DeveloperError} near is required.
    * @exception {DeveloperError} far is required.
    */
    Matrix4.computeOrthographicOffCenter = function(left, right, bottom, top, near, far, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required.');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required.');
        }
        if (!defined(bottom)) {
            throw new DeveloperError('bottom is required.');
        }
        if (!defined(top)) {
            throw new DeveloperError('top is required.');
        }
        if (!defined(near)) {
            throw new DeveloperError('near is required.');
        }
        if (!defined(far)) {
            throw new DeveloperError('far is required.');
        }
        
        var a = 1.0 / (right - left);
        var b = 1.0 / (top - bottom);
        var c = 1.0 / (far - near);

        var tx = -(right + left) * a;
        var ty = -(top + bottom) * b;
        var tz = -(far + near) * c;
        a *= 2.0;
        b *= 2.0;
        c *= -2.0;

        if (!defined(result)) {
            return new Matrix4(  a, 0.0, 0.0, tx,
                               0.0,   b, 0.0, ty,
                               0.0, 0.0,   c, tz,
                               0.0, 0.0, 0.0, 1.0);
        }

        result[0] = a;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = b;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 0.0;
        result[9] = 0.0;
        result[10] = c;
        result[11] = 0.0;
        result[12] = tx;
        result[13] = ty;
        result[14] = tz;
        result[15] = 1.0;
        return result;
    };

    /**
     * Computes a Matrix4 instance representing an off center perspective transformation.
     * @memberof Matrix4
     *
     * @param {Number} left The number of meters to the left of the camera that will be in view.
     * @param {Number} right The number of meters to the right of the camera that will be in view.
     * @param {Number} bottom The number of meters below of the camera that will be in view.
     * @param {Number} top The number of meters above of the camera that will be in view.
     * @param {Number} near The distance to the near plane in meters.
     * @param {Number} far The distance to the far plane in meters.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     * @exception {DeveloperError} bottom is required.
     * @exception {DeveloperError} top is required.
     * @exception {DeveloperError} near is required.
     * @exception {DeveloperError} far is required.
     */
    Matrix4.computePerspectiveOffCenter = function(left, right, bottom, top, near, far, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required.');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required.');
        }
        if (!defined(bottom)) {
            throw new DeveloperError('bottom is required.');
        }
        if (!defined(top)) {
            throw new DeveloperError('top is required.');
        }
        if (!defined(near)) {
            throw new DeveloperError('near is required.');
        }
        if (!defined(far)) {
            throw new DeveloperError('far is required.');
        }
        
        var column0Row0 = 2.0 * near / (right - left);
        var column1Row1 = 2.0 * near / (top - bottom);
        var column2Row0 = (right + left) / (right - left);
        var column2Row1 = (top + bottom) / (top - bottom);
        var column2Row2 = -(far + near) / (far - near);
        var column2Row3 = -1.0;
        var column3Row2 = -2.0 * far * near / (far - near);

        if (!defined(result)) {
            return new Matrix4(column0Row0, 0.0,         column2Row0, 0.0,
                                       0.0, column1Row1, column2Row1, 0.0,
                                       0.0, 0.0,         column2Row2, column3Row2,
                                       0.0, 0.0,         column2Row3, 0.0);
        }

        result[0] = column0Row0;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = column1Row1;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = column2Row0;
        result[9] = column2Row1;
        result[10] = column2Row2;
        result[11] = column2Row3;
        result[12] = 0.0;
        result[13] = 0.0;
        result[14] = column3Row2;
        result[15] = 0.0;
        return result;
    };

    /**
     * Computes a Matrix4 instance representing an infinite off center perspective transformation.
     * @memberof Matrix4
     *
     * @param {Number} left The number of meters to the left of the camera that will be in view.
     * @param {Number} right The number of meters to the right of the camera that will be in view.
     * @param {Number} bottom The number of meters below of the camera that will be in view.
     * @param {Number} top The number of meters above of the camera that will be in view.
     * @param {Number} near The distance to the near plane in meters.
     * @param {Number} far The distance to the far plane in meters.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     * @exception {DeveloperError} bottom is required.
     * @exception {DeveloperError} top is required.
     * @exception {DeveloperError} near is required.
     */
    Matrix4.computeInfinitePerspectiveOffCenter = function(left, right, bottom, top, near, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required.');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required.');
        }
        if (!defined(bottom)) {
            throw new DeveloperError('bottom is required.');
        }
        if (!defined(top)) {
            throw new DeveloperError('top is required.');
        }
        if (!defined(near)) {
            throw new DeveloperError('near is required.');
        }
        
        var column0Row0 = 2.0 * near / (right - left);
        var column1Row1 = 2.0 * near / (top - bottom);
        var column2Row0 = (right + left) / (right - left);
        var column2Row1 = (top + bottom) / (top - bottom);
        var column2Row2 = -1.0;
        var column2Row3 = -1.0;
        var column3Row2 = -2.0 * near;

        if (!defined(result)) {
            return new Matrix4(column0Row0, 0.0,         column2Row0, 0.0,
                                       0.0, column1Row1, column2Row1, 0.0,
                                       0.0, 0.0,         column2Row2, column3Row2,
                                       0.0, 0.0,         column2Row3, 0.0);
        }

        result[0] = column0Row0;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = column1Row1;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = column2Row0;
        result[9] = column2Row1;
        result[10] = column2Row2;
        result[11] = column2Row3;
        result[12] = 0.0;
        result[13] = 0.0;
        result[14] = column3Row2;
        result[15] = 0.0;
        return result;
    };

    /**
     * Computes a Matrix4 instance that transforms from normalized device coordinates to window coordinates.
     * @memberof Matrix4
     *
     * @param {Object}[viewport = { x : 0.0, y : 0.0, width : 0.0, height : 0.0 }] The viewport's corners as shown in Example 1.
     * @param {Number}[nearDepthRange = 0.0] The near plane distance in window coordinates.
     * @param {Number}[farDepthRange = 1.0] The far plane distance in window coordinates.
     * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix4 instance if one was not provided.
     *
     * @see czm_viewportTransformation
     * @see Context#getViewport
     *
     * @example
     * // Example 1.  Create viewport transformation using an explicit viewport and depth range.
     * var m = Matrix4.computeViewportTransformation({
     *     x : 0.0,
     *     y : 0.0,
     *     width : 1024.0,
     *     height : 768.0
     * }, 0.0, 1.0);
     *
     * // Example 2.  Create viewport transformation using the context's viewport.
     * var m = Matrix4.computeViewportTransformation(context.getViewport());
     */
    Matrix4.computeViewportTransformation = function(viewport, nearDepthRange, farDepthRange, result) {
        viewport = defaultValue(viewport, defaultValue.EMPTY_OBJECT);
        var x = defaultValue(viewport.x, 0.0);
        var y = defaultValue(viewport.y, 0.0);
        var width = defaultValue(viewport.width, 0.0);
        var height = defaultValue(viewport.height, 0.0);
        nearDepthRange = defaultValue(nearDepthRange, 0.0);
        farDepthRange = defaultValue(farDepthRange, 1.0);

        var halfWidth = width * 0.5;
        var halfHeight = height * 0.5;
        var halfDepth = (farDepthRange - nearDepthRange) * 0.5;

        var column0Row0 = halfWidth;
        var column1Row1 = halfHeight;
        var column2Row2 = halfDepth;
        var column3Row0 = x + halfWidth;
        var column3Row1 = y + halfHeight;
        var column3Row2 = nearDepthRange + halfDepth;
        var column3Row3 = 1.0;

        if (!defined(result)) {
            return new Matrix4(column0Row0, 0.0,         0.0,         column3Row0,
                               0.0,         column1Row1, 0.0,         column3Row1,
                               0.0,         0.0,         column2Row2, column3Row2,
                               0.0,         0.0,         0.0,         column3Row3);
        }
        result[0] = column0Row0;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = column1Row1;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 0.0;
        result[9] = 0.0;
        result[10] = column2Row2;
        result[11] = 0.0;
        result[12] = column3Row0;
        result[13] = column3Row1;
        result[14] = column3Row2;
        result[15] = column3Row3;
        return result;
    };

    /**
     * Computes an Array from the provided Matrix4 instance.
     * The array will be in column-major order.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use..
     * @param {Array} [result] The Array onto which to store the result.
     * @returns {Array} The modified Array parameter or a new Array instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     *
     * @example
     * //create an array from an instance of Matrix4
     * // m = [10.0, 14.0, 18.0, 22.0]
     * //     [11.0, 15.0, 19.0, 23.0]
     * //     [12.0, 16.0, 20.0, 24.0]
     * //     [13.0, 17.0, 21.0, 25.0]
     * var a = Matrix4.toArray(m);
     *
     * // m remains the same
     * //creates a = [10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0]
     *
     */
    Matrix4.toArray = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return [matrix[0], matrix[1], matrix[2], matrix[3],
                    matrix[4], matrix[5], matrix[6], matrix[7],
                    matrix[8], matrix[9], matrix[10], matrix[11],
                    matrix[12], matrix[13], matrix[14], matrix[15]];
        }
        result[0] = matrix[0];
        result[1] = matrix[1];
        result[2] = matrix[2];
        result[3] = matrix[3];
        result[4] = matrix[4];
        result[5] = matrix[5];
        result[6] = matrix[6];
        result[7] = matrix[7];
        result[8] = matrix[8];
        result[9] = matrix[9];
        result[10] = matrix[10];
        result[11] = matrix[11];
        result[12] = matrix[12];
        result[13] = matrix[13];
        result[14] = matrix[14];
        result[15] = matrix[15];
        return result;
    };

    /**
     * Computes the array index of the element at the provided row and column.
     * @memberof Matrix4
     *
     * @param {Number} row The zero-based index of the row.
     * @param {Number} column The zero-based index of the column.
     * @returns {Number} The index of the element at the provided row and column.
     *
     * @exception {DeveloperError} row is required and must be 0, 1, 2, or 3.
     * @exception {DeveloperError} column is required and must be 0, 1, 2, or 3.
     *
     * @example
     * var myMatrix = new Matrix4();
     * var column1Row0Index = Matrix4.getElementIndex(1, 0);
     * var column1Row0 = myMatrix[column1Row0Index]
     * myMatrix[column1Row0Index] = 10.0;
     */
    Matrix4.getElementIndex = function(column, row) {
                if (typeof row !== 'number' || row < 0 || row > 3) {
            throw new DeveloperError('row is required and must be 0, 1, 2, or 3.');
        }
        if (typeof column !== 'number' || column < 0 || column > 3) {
            throw new DeveloperError('column is required and must be 0, 1, 2, or 3.');
        }
        
        return column * 4 + row;
    };

    /**
     * Retrieves a copy of the matrix column at the provided index as a Cartesian4 instance.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use.
     * @param {Number} index The zero-based index of the column to retrieve.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} index is required and must be 0, 1, 2, or 3.
     *
     * @see Cartesian4
     *
     * @example
     * //returns a Cartesian4 instance with values from the specified column
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * //Example 1: Creates an instance of Cartesian
     * var a = Matrix4.getColumn(m, 2);
     *
     * //Example 2: Sets values for Cartesian instance
     * var a = new Cartesian4();
     * Matrix4.getColumn(m, 2, a);
     *
     * // a.x = 12.0; a.y = 16.0; a.z = 20.0; a.w = 24.0;
     *
     */
    Matrix4.getColumn = function(matrix, index, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }

        if (typeof index !== 'number' || index < 0 || index > 3) {
            throw new DeveloperError('index is required and must be 0, 1, 2, or 3.');
        }
        
        var startIndex = index * 4;
        var x = matrix[startIndex];
        var y = matrix[startIndex + 1];
        var z = matrix[startIndex + 2];
        var w = matrix[startIndex + 3];

        if (!defined(result)) {
            return new Cartesian4(x, y, z, w);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        result.w = w;
        return result;
    };

    /**
     * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian4 instance.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use.
     * @param {Number} index The zero-based index of the column to set.
     * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified column.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} index is required and must be 0, 1, 2, or 3.
     *
     * @see Cartesian4
     *
     * @example
     * //creates a new Matrix4 instance with new column values from the Cartesian4 instance
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * var a = Matrix4.setColumn(m, 2, new Cartesian4(99.0, 98.0, 97.0, 96.0));
     *
     * // m remains the same
     * // a = [10.0, 11.0, 99.0, 13.0]
     * //     [14.0, 15.0, 98.0, 17.0]
     * //     [18.0, 19.0, 97.0, 21.0]
     * //     [22.0, 23.0, 96.0, 25.0]
     *
     */
    Matrix4.setColumn = function(matrix, index, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof index !== 'number' || index < 0 || index > 3) {
            throw new DeveloperError('index is required and must be 0, 1, 2, or 3.');
        }
        
        result = Matrix4.clone(matrix, result);
        var startIndex = index * 4;
        result[startIndex] = cartesian.x;
        result[startIndex + 1] = cartesian.y;
        result[startIndex + 2] = cartesian.z;
        result[startIndex + 3] = cartesian.w;
        return result;
    };

    /**
     * Retrieves a copy of the matrix row at the provided index as a Cartesian4 instance.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use.
     * @param {Number} index The zero-based index of the row to retrieve.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} index is required and must be 0, 1, 2, or 3.
     *
     * @see Cartesian4
     *
     * @example
     * //returns a Cartesian4 instance with values from the specified column
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * //Example 1: Returns an instance of Cartesian
     * var a = Matrix4.getRow(m, 2);
     *
     * //Example 1: Sets values for a Cartesian instance
     * var a = new Cartesian4();
     * Matrix4.getRow(m, 2, a);
     *
     * // a.x = 18.0; a.y = 19.0; a.z = 20.0; a.w = 21.0;
     */
    Matrix4.getRow = function(matrix, index, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }

        if (typeof index !== 'number' || index < 0 || index > 3) {
            throw new DeveloperError('index is required and must be 0, 1, 2, or 3.');
        }
        
        var x = matrix[index];
        var y = matrix[index + 4];
        var z = matrix[index + 8];
        var w = matrix[index + 12];

        if (!defined(result)) {
            return new Cartesian4(x, y, z, w);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        result.w = w;
        return result;
    };

    /**
     * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian4 instance.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use.
     * @param {Number} index The zero-based index of the row to set.
     * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified row.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} index is required and must be 0, 1, 2, or 3.
     *
     * @see Cartesian4
     *
     * @example
     * //create a new Matrix4 instance with new row values from the Cartesian4 instance
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * var a = Matrix4.setRow(m, 2, new Cartesian4(99.0, 98.0, 97.0, 96.0));
     *
     * // m remains the same
     * // a = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [99.0, 98.0, 97.0, 96.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     */
    Matrix4.setRow = function(matrix, index, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof index !== 'number' || index < 0 || index > 3) {
            throw new DeveloperError('index is required and must be 0, 1, 2, or 3.');
        }
        
        result = Matrix4.clone(matrix, result);
        result[index] = cartesian.x;
        result[index + 4] = cartesian.y;
        result[index + 8] = cartesian.z;
        result[index + 12] = cartesian.w;
        return result;
    };

    /**
     * Computes the product of two matrices.
     * @memberof Matrix4
     *
     * @param {Matrix4} left The first matrix.
     * @param {Matrix4} right The second matrix.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Matrix4.multiply = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        var left0 = left[0];
        var left1 = left[1];
        var left2 = left[2];
        var left3 = left[3];
        var left4 = left[4];
        var left5 = left[5];
        var left6 = left[6];
        var left7 = left[7];
        var left8 = left[8];
        var left9 = left[9];
        var left10 = left[10];
        var left11 = left[11];
        var left12 = left[12];
        var left13 = left[13];
        var left14 = left[14];
        var left15 = left[15];

        var right0 = right[0];
        var right1 = right[1];
        var right2 = right[2];
        var right3 = right[3];
        var right4 = right[4];
        var right5 = right[5];
        var right6 = right[6];
        var right7 = right[7];
        var right8 = right[8];
        var right9 = right[9];
        var right10 = right[10];
        var right11 = right[11];
        var right12 = right[12];
        var right13 = right[13];
        var right14 = right[14];
        var right15 = right[15];

        var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2 + left12 * right3;
        var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2 + left13 * right3;
        var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2 + left14 * right3;
        var column0Row3 = left3 * right0 + left7 * right1 + left11 * right2 + left15 * right3;

        var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6 + left12 * right7;
        var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6 + left13 * right7;
        var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6 + left14 * right7;
        var column1Row3 = left3 * right4 + left7 * right5 + left11 * right6 + left15 * right7;

        var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10 + left12 * right11;
        var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10 + left13 * right11;
        var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10 + left14 * right11;
        var column2Row3 = left3 * right8 + left7 * right9 + left11 * right10 + left15 * right11;

        var column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12 * right15;
        var column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13 * right15;
        var column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14 * right15;
        var column3Row3 = left3 * right12 + left7 * right13 + left11 * right14 + left15 * right15;

        if (!defined(result)) {
            return new Matrix4(column0Row0, column1Row0, column2Row0, column3Row0,
                               column0Row1, column1Row1, column2Row1, column3Row1,
                               column0Row2, column1Row2, column2Row2, column3Row2,
                               column0Row3, column1Row3, column2Row3, column3Row3);
        }
        result[0] = column0Row0;
        result[1] = column0Row1;
        result[2] = column0Row2;
        result[3] = column0Row3;
        result[4] = column1Row0;
        result[5] = column1Row1;
        result[6] = column1Row2;
        result[7] = column1Row3;
        result[8] = column2Row0;
        result[9] = column2Row1;
        result[10] = column2Row2;
        result[11] = column2Row3;
        result[12] = column3Row0;
        result[13] = column3Row1;
        result[14] = column3Row2;
        result[15] = column3Row3;
        return result;
    };

    /**
     * Computes the product of two matrices assuming the matrices are
     * affine transformation matrices, where the upper left 3x3 elements
     * are a rotation matrix, and the upper three elements in the fourth
     * column are the translation.  The bottom row is assumed to be [0, 0, 0, 1].
     * The matrix is not verified to be in the proper form.
     * This method is faster than computing the product for general 4x4
     * matrices using {@link #multiply}.
     * @memberof Matrix4
     *
     * @param {Matrix4} left The first matrix.
     * @param {Matrix4} right The second matrix.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     *
     * @example
     * var m1 = new Matrix4(1.0, 6.0, 7.0, 0.0, 2.0, 5.0, 8.0, 0.0, 3.0, 4.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0];
     * var m2 = Transforms.eastNorthUpToFixedFrame(new Cartesian3(1.0, 1.0, 1.0));
     * var m3 = Matrix4.multiplyTransformation(m1, m2);
     */
    Matrix4.multiplyTransformation = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        var left0 = left[0];
        var left1 = left[1];
        var left2 = left[2];
        var left4 = left[4];
        var left5 = left[5];
        var left6 = left[6];
        var left8 = left[8];
        var left9 = left[9];
        var left10 = left[10];
        var left12 = left[12];
        var left13 = left[13];
        var left14 = left[14];

        var right0 = right[0];
        var right1 = right[1];
        var right2 = right[2];
        var right4 = right[4];
        var right5 = right[5];
        var right6 = right[6];
        var right8 = right[8];
        var right9 = right[9];
        var right10 = right[10];
        var right12 = right[12];
        var right13 = right[13];
        var right14 = right[14];

        var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2;
        var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2;
        var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2;

        var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6;
        var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6;
        var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6;

        var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10;
        var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10;
        var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10;

        var column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12;
        var column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13;
        var column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14;

        if (!defined(result)) {
            return new Matrix4(column0Row0, column1Row0, column2Row0, column3Row0,
                               column0Row1, column1Row1, column2Row1, column3Row1,
                               column0Row2, column1Row2, column2Row2, column3Row2,
                               0.0, 0.0, 0.0, 1.0);
        }
        result[0] = column0Row0;
        result[1] = column0Row1;
        result[2] = column0Row2;
        result[3] = 0.0;
        result[4] = column1Row0;
        result[5] = column1Row1;
        result[6] = column1Row2;
        result[7] = 0.0;
        result[8] = column2Row0;
        result[9] = column2Row1;
        result[10] = column2Row2;
        result[11] = 0.0;
        result[12] = column3Row0;
        result[13] = column3Row1;
        result[14] = column3Row2;
        result[15] = 1.0;
        return result;
    };

    /**
     * Multiplies a transformation matrix (with a bottom row of <code>[0.0, 0.0, 0.0, 1.0]</code>)
     * by an implicit translation matrix defined by a {@link Cartesian3}.  This is an optimization
     * for <code>Matrix4.multiply(m, Matrix4.fromTranslation(position), m);</code> with less allocations and arithmetic operations.
     *
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix on the left-hand side.
     * @param {Cartesian3} translation The translation on the right-hand side.
     * @param {Matrix4} [result] The object onto which to store the result.
     *
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} translation is required.
     *
     * @see Matrix4#fromTranslation
     *
     * @example
     * // Instead of Matrix4.multiply(m, Matrix4.fromTranslation(position), m);
     * Matrix4.multiplyByTranslation(m, position, m);
     */
    Matrix4.multiplyByTranslation = function(matrix, translation, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(translation)) {
            throw new DeveloperError('translation is required');
        }
        
        var x = translation.x;
        var y = translation.y;
        var z = translation.z;

        var tx = (x * matrix[0]) + (y * matrix[4]) + (z * matrix[8]) + matrix[12];
        var ty = (x * matrix[1]) + (y * matrix[5]) + (z * matrix[9]) + matrix[13];
        var tz = (x * matrix[2]) + (y * matrix[6]) + (z * matrix[10]) + matrix[14];

        if (!defined(result)) {
            return new Matrix4(matrix[0], matrix[4], matrix[8], tx,
                               matrix[1], matrix[5], matrix[9], ty,
                               matrix[2], matrix[6], matrix[10], tz,
                               matrix[3], matrix[7], matrix[11], matrix[15]);
        }

        result[0] = matrix[0];
        result[1] = matrix[1];
        result[2] = matrix[2];
        result[3] = matrix[3];
        result[4] = matrix[4];
        result[5] = matrix[5];
        result[6] = matrix[6];
        result[7] = matrix[7];
        result[8] = matrix[8];
        result[9] = matrix[9];
        result[10] = matrix[10];
        result[11] = matrix[11];
        result[12] = tx;
        result[13] = ty;
        result[14] = tz;
        result[15] = matrix[15];
        return result;
    };

    var uniformScaleScratch = new Cartesian3();

    /**
     * Multiplies a transformation matrix (with a bottom row of <code>[0.0, 0.0, 0.0, 1.0]</code>)
     * by an implicit uniform scale matrix.  This is an optimization
     * for <code>Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);</code> with less allocations and arithmetic operations.
     *
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix on the left-hand side.
     * @param {Number} scale The uniform scale on the right-hand side.
     * @param {Matrix4} [result] The object onto which to store the result.
     *
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} scale is required.
     *
     * @see Matrix4#fromUniformScale
     * @see Matrix4#multiplyByScale
     *
     * @example
     * // Instead of Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);
     * Matrix4.multiplyByUniformScale(m, scale, m);
     */
    Matrix4.multiplyByUniformScale = function(matrix, scale, result) {
                if (typeof scale !== 'number') {
            throw new DeveloperError('scale is required');
        }
        
        uniformScaleScratch.x = scale;
        uniformScaleScratch.y = scale;
        uniformScaleScratch.z = scale;
        return Matrix4.multiplyByScale(matrix, uniformScaleScratch, result);
    };

    /**
     * Multiplies a transformation matrix (with a bottom row of <code>[0.0, 0.0, 0.0, 1.0]</code>)
     * by an implicit non-uniform scale matrix.  This is an optimization
     * for <code>Matrix4.multiply(m, Matrix4.fromScale(scale), m);</code> with less allocations and arithmetic operations.
     *
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix on the left-hand side.
     * @param {Cartesian3} scale The non-uniform scale on the right-hand side.
     * @param {Matrix4} [result] The object onto which to store the result.
     *
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} scale is required.
     *
     * @see Matrix4#fromScale
     * @see Matrix4#multiplyByUniformScale
     *
     * @example
     * // Instead of Matrix4.multiply(m, Matrix4.fromScale(scale), m);
     * Matrix4.multiplyByUniformScale(m, scale, m);
     */
    Matrix4.multiplyByScale = function(matrix, scale, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(scale)) {
            throw new DeveloperError('scale is required');
        }
        
        var scaleX = scale.x;
        var scaleY = scale.y;
        var scaleZ = scale.z;

        // Faster than Cartesian3.equals
        if ((scaleX === 1.0) && (scaleY === 1.0) && (scaleZ === 1.0)) {
            return Matrix4.clone(matrix, result);
        }

        if (!defined(result)) {
            return new Matrix4(
                scaleX * matrix[0], scaleY * matrix[4], scaleZ * matrix[8],  matrix[12],
                scaleX * matrix[1], scaleY * matrix[5], scaleZ * matrix[9],  matrix[13],
                scaleX * matrix[2], scaleY * matrix[6], scaleZ * matrix[10], matrix[14],
                0.0,               0.0,               0.0,                1.0);
        }

        result[0] = scaleX * matrix[0];
        result[1] = scaleX * matrix[1];
        result[2] = scaleX * matrix[2];
        result[3] = 0.0;
        result[4] = scaleY * matrix[4];
        result[5] = scaleY * matrix[5];
        result[6] = scaleY * matrix[6];
        result[7] = 0.0;
        result[8] = scaleZ * matrix[8];
        result[9] = scaleZ * matrix[9];
        result[10] = scaleZ * matrix[10];
        result[11] = 0.0;
        result[12] = matrix[12];
        result[13] = matrix[13];
        result[14] = matrix[14];
        result[15] = 1.0;
        return result;
    };

    /**
     * Computes the product of a matrix and a column vector.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix.
     * @param {Cartesian4} cartesian The vector.
     * @param {Cartesian4} [result] The object onto which to store the result.
     * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     */
    Matrix4.multiplyByVector = function(matrix, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var vX = cartesian.x;
        var vY = cartesian.y;
        var vZ = cartesian.z;
        var vW = cartesian.w;

        var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12] * vW;
        var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13] * vW;
        var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14] * vW;
        var w = matrix[3] * vX + matrix[7] * vY + matrix[11] * vZ + matrix[15] * vW;

        if (!defined(result)) {
            return new Cartesian4(x, y, z, w);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        result.w = w;
        return result;
    };

    /**
     * Computes the product of a matrix and a {@link Cartesian3}.  This is equivalent to calling {@link Matrix4.multiplyByVector}
     * with a {@link Cartesian4} with a <code>w</code> component of zero.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix.
     * @param {Cartesian3} cartesian The point.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} matrix is required.
     *
     * @example
     * Cartesian3 p = new Cartesian3(1.0, 2.0, 3.0);
     * Matrix4.multiplyByPointAsVector(matrix, p, result);
     * // A shortcut for
     * //   Cartesian3 p = ...
     * //   Matrix4.multiplyByVector(matrix, new Cartesian4(p.x, p.y, p.z, 0.0), result);
     */
    Matrix4.multiplyByPointAsVector = function(matrix, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var vX = cartesian.x;
        var vY = cartesian.y;
        var vZ = cartesian.z;

        var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ;
        var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ;
        var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ;

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector}
     * with a {@link Cartesian4} with a <code>w</code> component of 1, but returns a {@link Cartesian3} instead of a {@link Cartesian4}.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix.
     * @param {Cartesian3} cartesian The point.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} matrix is required.
     *
     * @example
     * Cartesian3 p = new Cartesian3(1.0, 2.0, 3.0);
     * Matrix4.multiplyByPoint(matrix, p, result);
     */
    Matrix4.multiplyByPoint = function(matrix, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }

        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var vX = cartesian.x;
        var vY = cartesian.y;
        var vZ = cartesian.z;

        var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12];
        var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13];
        var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14];

        if (!defined(result)) {
            return new Cartesian3(x, y, z);
        }
        result.x = x;
        result.y = y;
        result.z = z;
        return result;
    };

    /**
     * Computes the product of a matrix and a scalar.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix.
     * @param {Number} scalar The number to multiply by.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Cartesian4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     *
     * @example
     * //create a Matrix4 instance which is a scaled version of the supplied Matrix4
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * var a = Matrix4.multiplyByScalar(m, -2);
     *
     * // m remains the same
     * // a = [-20.0, -22.0, -24.0, -26.0]
     * //     [-28.0, -30.0, -32.0, -34.0]
     * //     [-36.0, -38.0, -40.0, -42.0]
     * //     [-44.0, -46.0, -48.0, -50.0]
     *
     */
    Matrix4.multiplyByScalar = function(matrix, scalar, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number');
        }
        
        if (!defined(result)) {
            return new Matrix4(matrix[0] * scalar, matrix[4] * scalar, matrix[8] * scalar, matrix[12] * scalar,
                               matrix[1] * scalar, matrix[5] * scalar, matrix[9] * scalar, matrix[13] * scalar,
                               matrix[2] * scalar, matrix[6] * scalar, matrix[10] * scalar, matrix[14] * scalar,
                               matrix[3] * scalar, matrix[7] * scalar, matrix[11] * scalar, matrix[15] * scalar);
        }
        result[0] = matrix[0] * scalar;
        result[1] = matrix[1] * scalar;
        result[2] = matrix[2] * scalar;
        result[3] = matrix[3] * scalar;
        result[4] = matrix[4] * scalar;
        result[5] = matrix[5] * scalar;
        result[6] = matrix[6] * scalar;
        result[7] = matrix[7] * scalar;
        result[8] = matrix[8] * scalar;
        result[9] = matrix[9] * scalar;
        result[10] = matrix[10] * scalar;
        result[11] = matrix[11] * scalar;
        result[12] = matrix[12] * scalar;
        result[13] = matrix[13] * scalar;
        result[14] = matrix[14] * scalar;
        result[15] = matrix[15] * scalar;
        return result;
    };

    /**
     * Computes a negated copy of the provided matrix.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to negate.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     *
     * @example
     * //create a new Matrix4 instance which is a negation of a Matrix4
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * var a = Matrix4.negate(m);
     *
     * // m remains the same
     * // a = [-10.0, -11.0, -12.0, -13.0]
     * //     [-14.0, -15.0, -16.0, -17.0]
     * //     [-18.0, -19.0, -20.0, -21.0]
     * //     [-22.0, -23.0, -24.0, -25.0]
     *
     */
    Matrix4.negate = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix4(-matrix[0], -matrix[4], -matrix[8], -matrix[12],
                               -matrix[1], -matrix[5], -matrix[9], -matrix[13],
                               -matrix[2], -matrix[6], -matrix[10], -matrix[14],
                               -matrix[3], -matrix[7], -matrix[11], -matrix[15]);
        }
        result[0] = -matrix[0];
        result[1] = -matrix[1];
        result[2] = -matrix[2];
        result[3] = -matrix[3];
        result[4] = -matrix[4];
        result[5] = -matrix[5];
        result[6] = -matrix[6];
        result[7] = -matrix[7];
        result[8] = -matrix[8];
        result[9] = -matrix[9];
        result[10] = -matrix[10];
        result[11] = -matrix[11];
        result[12] = -matrix[12];
        result[13] = -matrix[13];
        result[14] = -matrix[14];
        result[15] = -matrix[15];
        return result;
    };

    /**
     * Computes the transpose of the provided matrix.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to transpose.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     *
     * @example
     * //returns transpose of a Matrix4
     * // m = [10.0, 11.0, 12.0, 13.0]
     * //     [14.0, 15.0, 16.0, 17.0]
     * //     [18.0, 19.0, 20.0, 21.0]
     * //     [22.0, 23.0, 24.0, 25.0]
     *
     * var a = Matrix4.negate(m);
     *
     * // m remains the same
     * // a = [10.0, 14.0, 18.0, 22.0]
     * //     [11.0, 15.0, 19.0, 23.0]
     * //     [12.0, 16.0, 20.0, 24.0]
     * //     [13.0, 17.0, 21.0, 25.0]
     *
     */
    Matrix4.transpose = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix4(matrix[0], matrix[1], matrix[2], matrix[3],
                               matrix[4], matrix[5], matrix[6], matrix[7],
                               matrix[8], matrix[9], matrix[10], matrix[11],
                               matrix[12], matrix[13], matrix[14], matrix[15]);
        }

        var matrix1 = matrix[1];
        var matrix2 = matrix[2];
        var matrix3 = matrix[3];
        var matrix6 = matrix[6];
        var matrix7 = matrix[7];
        var matrix11 = matrix[11];

        result[0] = matrix[0];
        result[1] = matrix[4];
        result[2] = matrix[8];
        result[3] = matrix[12];
        result[4] = matrix1;
        result[5] = matrix[5];
        result[6] = matrix[9];
        result[7] = matrix[13];
        result[8] = matrix2;
        result[9] = matrix6;
        result[10] = matrix[10];
        result[11] = matrix[14];
        result[12] = matrix3;
        result[13] = matrix7;
        result[14] = matrix11;
        result[15] = matrix[15];
        return result;
    };

    /**
     * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix with signed elements.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix4.abs = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix4(Math.abs(matrix[0]), Math.abs(matrix[4]), Math.abs(matrix[8]), Math.abs(matrix[12]),
                               Math.abs(matrix[1]), Math.abs(matrix[5]), Math.abs(matrix[9]), Math.abs(matrix[13]),
                               Math.abs(matrix[2]), Math.abs(matrix[6]), Math.abs(matrix[10]), Math.abs(matrix[14]),
                               Math.abs(matrix[3]), Math.abs(matrix[7]), Math.abs(matrix[11]), Math.abs(matrix[15]));

        }

        result[0] = Math.abs(matrix[0]);
        result[1] = Math.abs(matrix[1]);
        result[2] = Math.abs(matrix[2]);
        result[3] = Math.abs(matrix[3]);
        result[4] = Math.abs(matrix[4]);
        result[5] = Math.abs(matrix[5]);
        result[6] = Math.abs(matrix[6]);
        result[7] = Math.abs(matrix[7]);
        result[8] = Math.abs(matrix[8]);
        result[9] = Math.abs(matrix[9]);
        result[10] = Math.abs(matrix[10]);
        result[11] = Math.abs(matrix[11]);
        result[12] = Math.abs(matrix[12]);
        result[13] = Math.abs(matrix[13]);
        result[14] = Math.abs(matrix[14]);
        result[15] = Math.abs(matrix[15]);

        return result;
    };

    /**
     * Compares the provided matrices componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Matrix4
     *
     * @param {Matrix4} [left] The first matrix.
     * @param {Matrix4} [right] The second matrix.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     *
     * @example
     * //compares two Matrix4 instances
     *
     * // a = [10.0, 14.0, 18.0, 22.0]
     * //     [11.0, 15.0, 19.0, 23.0]
     * //     [12.0, 16.0, 20.0, 24.0]
     * //     [13.0, 17.0, 21.0, 25.0]
     *
     * // b = [10.0, 14.0, 18.0, 22.0]
     * //     [11.0, 15.0, 19.0, 23.0]
     * //     [12.0, 16.0, 20.0, 24.0]
     * //     [13.0, 17.0, 21.0, 25.0]
     *
     * if(Matrix4.equals(a,b)) {
     *      console.log("Both matrices are equal");
     * } else {
     *      console.log("They are not equal");
     * }
     *
     * //Prints "Both matrices are equal" on the console
     *
     */
    Matrix4.equals = function(left, right) {
        return (left === right) ||
               (defined(left) &&
                defined(right) &&
                left[0] === right[0] &&
                left[1] === right[1] &&
                left[2] === right[2] &&
                left[3] === right[3] &&
                left[4] === right[4] &&
                left[5] === right[5] &&
                left[6] === right[6] &&
                left[7] === right[7] &&
                left[8] === right[8] &&
                left[9] === right[9] &&
                left[10] === right[10] &&
                left[11] === right[11] &&
                left[12] === right[12] &&
                left[13] === right[13] &&
                left[14] === right[14] &&
                left[15] === right[15]);
    };

    /**
     * Compares the provided matrices componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Matrix4
     *
     * @param {Matrix4} [left] The first matrix.
     * @param {Matrix4} [right] The second matrix.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     *
     * @example
     * //compares two Matrix4 instances
     *
     * // a = [10.5, 14.5, 18.5, 22.5]
     * //     [11.5, 15.5, 19.5, 23.5]
     * //     [12.5, 16.5, 20.5, 24.5]
     * //     [13.5, 17.5, 21.5, 25.5]
     *
     * // b = [10.0, 14.0, 18.0, 22.0]
     * //     [11.0, 15.0, 19.0, 23.0]
     * //     [12.0, 16.0, 20.0, 24.0]
     * //     [13.0, 17.0, 21.0, 25.0]
     *
     * if(Matrix4.equalsEpsilon(a,b,0.1)){
     *      console.log("Difference between both the matrices is less than 0.1");
     * } else {
     *      console.log("Difference between both the matrices is not less than 0.1");
     * }
     *
     * //Prints "Difference between both the matrices is not less than 0.1" on the console
     *
     */
    Matrix4.equalsEpsilon = function(left, right, epsilon) {
                if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number');
        }
        
        return (left === right) ||
                (defined(left) &&
                defined(right) &&
                Math.abs(left[0] - right[0]) <= epsilon &&
                Math.abs(left[1] - right[1]) <= epsilon &&
                Math.abs(left[2] - right[2]) <= epsilon &&
                Math.abs(left[3] - right[3]) <= epsilon &&
                Math.abs(left[4] - right[4]) <= epsilon &&
                Math.abs(left[5] - right[5]) <= epsilon &&
                Math.abs(left[6] - right[6]) <= epsilon &&
                Math.abs(left[7] - right[7]) <= epsilon &&
                Math.abs(left[8] - right[8]) <= epsilon &&
                Math.abs(left[9] - right[9]) <= epsilon &&
                Math.abs(left[10] - right[10]) <= epsilon &&
                Math.abs(left[11] - right[11]) <= epsilon &&
                Math.abs(left[12] - right[12]) <= epsilon &&
                Math.abs(left[13] - right[13]) <= epsilon &&
                Math.abs(left[14] - right[14]) <= epsilon &&
                Math.abs(left[15] - right[15]) <= epsilon);
    };

    /**
     * Gets the translation portion of the provided matrix, assuming the matrix is a affine transformation matrix.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     *
     * @see Cartesian3
     */
    Matrix4.getTranslation = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Cartesian3(matrix[12], matrix[13], matrix[14]);
        }
        result.x = matrix[12];
        result.y = matrix[13];
        result.z = matrix[14];
        return result;
    };

    /**
     * Gets the upper left 3x3 rotation matrix of the provided matrix, assuming the matrix is a affine transformation matrix.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to use.
     * @param {Matrix3} [result] The object onto which to store the result.
     * @returns {Matrix3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     *
     * @see Matrix3
     *
     * @example
     * // returns a Matrix3 instance from a Matrix4 instance
     *
     * // m = [10.0, 14.0, 18.0, 22.0]
     * //     [11.0, 15.0, 19.0, 23.0]
     * //     [12.0, 16.0, 20.0, 24.0]
     * //     [13.0, 17.0, 21.0, 25.0]
     *
     * var b = new Matrix3();
     * Matrix4.getRotation(m,b);
     *
     * // b = [10.0, 14.0, 18.0]
     * //     [11.0, 15.0, 19.0]
     * //     [12.0, 16.0, 20.0]
     *
     */
    Matrix4.getRotation = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix3(matrix[0], matrix[4], matrix[8],
                               matrix[1], matrix[5], matrix[9],
                               matrix[2], matrix[6], matrix[10]);
        }
        result[0] = matrix[0];
        result[1] = matrix[1];
        result[2] = matrix[2];
        result[3] = matrix[4];
        result[4] = matrix[5];
        result[5] = matrix[6];
        result[6] = matrix[8];
        result[7] = matrix[9];
        result[8] = matrix[10];
        return result;
    };

     /**
      * Computes the inverse of the provided matrix using Cramers Rule.
      * If the determinant is zero, the matrix can not be inverted, and an exception is thrown.
      * If the matrix is an affine transformation matrix, it is more efficient
      * to invert it with {@link #inverseTransformation}.
      * @memberof Matrix4
      *
      * @param {Matrix4} matrix The matrix to invert.
      * @param {Matrix4} [result] The object onto which to store the result.
      * @returns {Matrix4} The modified result parameter or a new Cartesian3 instance if one was not provided.
      *
      * @exception {DeveloperError} matrix is required.
      * @exception {RuntimeError} matrix is not invertible because its determinate is zero.
      */
    Matrix4.inverse = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        //
        // Ported from:
        //   ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf
        //
        var src0 = matrix[0];
        var src1 = matrix[4];
        var src2 = matrix[8];
        var src3 = matrix[12];
        var src4 = matrix[1];
        var src5 = matrix[5];
        var src6 = matrix[9];
        var src7 = matrix[13];
        var src8 = matrix[2];
        var src9 = matrix[6];
        var src10 = matrix[10];
        var src11 = matrix[14];
        var src12 = matrix[3];
        var src13 = matrix[7];
        var src14 = matrix[11];
        var src15 = matrix[15];

        // calculate pairs for first 8 elements (cofactors)
        var tmp0 = src10 * src15;
        var tmp1 = src11 * src14;
        var tmp2 = src9 * src15;
        var tmp3 = src11 * src13;
        var tmp4 = src9 * src14;
        var tmp5 = src10 * src13;
        var tmp6 = src8 * src15;
        var tmp7 = src11 * src12;
        var tmp8 = src8 * src14;
        var tmp9 = src10 * src12;
        var tmp10 = src8 * src13;
        var tmp11 = src9 * src12;

        // calculate first 8 elements (cofactors)
        var dst0 = (tmp0 * src5 + tmp3 * src6 + tmp4 * src7) - (tmp1 * src5 + tmp2 * src6 + tmp5 * src7);
        var dst1 = (tmp1 * src4 + tmp6 * src6 + tmp9 * src7) - (tmp0 * src4 + tmp7 * src6 + tmp8 * src7);
        var dst2 = (tmp2 * src4 + tmp7 * src5 + tmp10 * src7) - (tmp3 * src4 + tmp6 * src5 + tmp11 * src7);
        var dst3 = (tmp5 * src4 + tmp8 * src5 + tmp11 * src6) - (tmp4 * src4 + tmp9 * src5 + tmp10 * src6);
        var dst4 = (tmp1 * src1 + tmp2 * src2 + tmp5 * src3) - (tmp0 * src1 + tmp3 * src2 + tmp4 * src3);
        var dst5 = (tmp0 * src0 + tmp7 * src2 + tmp8 * src3) - (tmp1 * src0 + tmp6 * src2 + tmp9 * src3);
        var dst6 = (tmp3 * src0 + tmp6 * src1 + tmp11 * src3) - (tmp2 * src0 + tmp7 * src1 + tmp10 * src3);
        var dst7 = (tmp4 * src0 + tmp9 * src1 + tmp10 * src2) - (tmp5 * src0 + tmp8 * src1 + tmp11 * src2);

        // calculate pairs for second 8 elements (cofactors)
        tmp0 = src2 * src7;
        tmp1 = src3 * src6;
        tmp2 = src1 * src7;
        tmp3 = src3 * src5;
        tmp4 = src1 * src6;
        tmp5 = src2 * src5;
        tmp6 = src0 * src7;
        tmp7 = src3 * src4;
        tmp8 = src0 * src6;
        tmp9 = src2 * src4;
        tmp10 = src0 * src5;
        tmp11 = src1 * src4;

        // calculate second 8 elements (cofactors)
        var dst8 = (tmp0 * src13 + tmp3 * src14 + tmp4 * src15) - (tmp1 * src13 + tmp2 * src14 + tmp5 * src15);
        var dst9 = (tmp1 * src12 + tmp6 * src14 + tmp9 * src15) - (tmp0 * src12 + tmp7 * src14 + tmp8 * src15);
        var dst10 = (tmp2 * src12 + tmp7 * src13 + tmp10 * src15) - (tmp3 * src12 + tmp6 * src13 + tmp11 * src15);
        var dst11 = (tmp5 * src12 + tmp8 * src13 + tmp11 * src14) - (tmp4 * src12 + tmp9 * src13 + tmp10 * src14);
        var dst12 = (tmp2 * src10 + tmp5 * src11 + tmp1 * src9) - (tmp4 * src11 + tmp0 * src9 + tmp3 * src10);
        var dst13 = (tmp8 * src11 + tmp0 * src8 + tmp7 * src10) - (tmp6 * src10 + tmp9 * src11 + tmp1 * src8);
        var dst14 = (tmp6 * src9 + tmp11 * src11 + tmp3 * src8) - (tmp10 * src11 + tmp2 * src8 + tmp7 * src9);
        var dst15 = (tmp10 * src10 + tmp4 * src8 + tmp9 * src9) - (tmp8 * src9 + tmp11 * src10 + tmp5 * src8);

        // calculate determinant
        var det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3;

        if (Math.abs(det) < CesiumMath.EPSILON20) {
            throw new RuntimeError('matrix is not invertible because its determinate is zero.');
        }

        // calculate matrix inverse
        det = 1.0 / det;
        if (!defined(result)) {
            return new Matrix4(dst0 * det, dst4 * det, dst8 * det, dst12 * det,
                               dst1 * det, dst5 * det, dst9 * det, dst13 * det,
                               dst2 * det, dst6 * det, dst10 * det, dst14 * det,
                               dst3 * det, dst7 * det, dst11 * det, dst15 * det);
        }

        result[0] = dst0 * det;
        result[1] = dst1 * det;
        result[2] = dst2 * det;
        result[3] = dst3 * det;
        result[4] = dst4 * det;
        result[5] = dst5 * det;
        result[6] = dst6 * det;
        result[7] = dst7 * det;
        result[8] = dst8 * det;
        result[9] = dst9 * det;
        result[10] = dst10 * det;
        result[11] = dst11 * det;
        result[12] = dst12 * det;
        result[13] = dst13 * det;
        result[14] = dst14 * det;
        result[15] = dst15 * det;
        return result;
    };

    /**
     * Computes the inverse of the provided matrix assuming it is
     * an affine transformation matrix, where the upper left 3x3 elements
     * are a rotation matrix, and the upper three elements in the fourth
     * column are the translation.  The bottom row is assumed to be [0, 0, 0, 1].
     * The matrix is not verified to be in the proper form.
     * This method is faster than computing the inverse for a general 4x4
     * matrix using {@link #inverse}.
     * @memberof Matrix4
     *
     * @param {Matrix4} matrix The matrix to invert.
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix4.inverseTransformation = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        //This function is an optimized version of the below 4 lines.
        //var rT = Matrix3.transpose(Matrix4.getRotation(matrix));
        //var rTN = Matrix3.negate(rT);
        //var rTT = Matrix3.multiplyByVector(rTN, Matrix4.getTranslation(matrix));
        //return Matrix4.fromRotationTranslation(rT, rTT, result);

        var matrix0 = matrix[0];
        var matrix1 = matrix[1];
        var matrix2 = matrix[2];
        var matrix4 = matrix[4];
        var matrix5 = matrix[5];
        var matrix6 = matrix[6];
        var matrix8 = matrix[8];
        var matrix9 = matrix[9];
        var matrix10 = matrix[10];

        var vX = matrix[12];
        var vY = matrix[13];
        var vZ = matrix[14];

        var x = -matrix0 * vX - matrix1 * vY - matrix2 * vZ;
        var y = -matrix4 * vX - matrix5 * vY - matrix6 * vZ;
        var z = -matrix8 * vX - matrix9 * vY - matrix10 * vZ;

        if (!defined(result)) {
            return new Matrix4(matrix0, matrix1, matrix2,  x,
                               matrix4, matrix5, matrix6,  y,
                               matrix8, matrix9, matrix10, z,
                               0.0,         0.0,      0.0, 1.0);
        }
        result[0] = matrix0;
        result[1] = matrix4;
        result[2] = matrix8;
        result[3] = 0.0;
        result[4] = matrix1;
        result[5] = matrix5;
        result[6] = matrix9;
        result[7] = 0.0;
        result[8] = matrix2;
        result[9] = matrix6;
        result[10] = matrix10;
        result[11] = 0.0;
        result[12] = x;
        result[13] = y;
        result[14] = z;
        result[15] = 1.0;
        return result;
    };

    /**
     * An immutable Matrix4 instance initialized to the identity matrix.
     * @memberof Matrix4
     */
    Matrix4.IDENTITY = freezeObject(new Matrix4(1.0, 0.0, 0.0, 0.0,
                                                0.0, 1.0, 0.0, 0.0,
                                                0.0, 0.0, 1.0, 0.0,
                                                0.0, 0.0, 0.0, 1.0));

    /**
     * The index into Matrix4 for column 0, row 0.
     * @memberof Matrix4
     */
    Matrix4.COLUMN0ROW0 = 0;

    /**
     * The index into Matrix4 for column 0, row 1.
     * @memberof Matrix4
     */
    Matrix4.COLUMN0ROW1 = 1;

    /**
     * The index into Matrix4 for column 0, row 2.
     * @memberof Matrix4
     */
    Matrix4.COLUMN0ROW2 = 2;

    /**
     * The index into Matrix4 for column 0, row 3.
     * @memberof Matrix4
     */
    Matrix4.COLUMN0ROW3 = 3;

    /**
     * The index into Matrix4 for column 1, row 0.
     * @memberof Matrix4
     */
    Matrix4.COLUMN1ROW0 = 4;

    /**
     * The index into Matrix4 for column 1, row 1.
     * @memberof Matrix4
     */
    Matrix4.COLUMN1ROW1 = 5;

    /**
     * The index into Matrix4 for column 1, row 2.
     * @memberof Matrix4
     */
    Matrix4.COLUMN1ROW2 = 6;

    /**
     * The index into Matrix4 for column 1, row 3.
     * @memberof Matrix4
     */
    Matrix4.COLUMN1ROW3 = 7;

    /**
     * The index into Matrix4 for column 2, row 0.
     * @memberof Matrix4
     */
    Matrix4.COLUMN2ROW0 = 8;

    /**
     * The index into Matrix4 for column 2, row 1.
     * @memberof Matrix4
     */
    Matrix4.COLUMN2ROW1 = 9;

    /**
     * The index into Matrix4 for column 2, row 2.
     * @memberof Matrix4
     */
    Matrix4.COLUMN2ROW2 = 10;

    /**
     * The index into Matrix4 for column 2, row 3.
     * @memberof Matrix4
     */
    Matrix4.COLUMN2ROW3 = 11;

    /**
     * The index into Matrix4 for column 3, row 0.
     * @memberof Matrix4
     */
    Matrix4.COLUMN3ROW0 = 12;

    /**
     * The index into Matrix4 for column 3, row 1.
     * @memberof Matrix4
     */
    Matrix4.COLUMN3ROW1 = 13;

    /**
     * The index into Matrix4 for column 3, row 2.
     * @memberof Matrix4
     */
    Matrix4.COLUMN3ROW2 = 14;

    /**
     * The index into Matrix4 for column 3, row 3.
     * @memberof Matrix4
     */
    Matrix4.COLUMN3ROW3 = 15;

    /**
     * Duplicates the provided Matrix4 instance.
     * @memberof Matrix4
     *
     * @param {Matrix4} [result] The object onto which to store the result.
     * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
     */
    Matrix4.prototype.clone = function(result) {
        return Matrix4.clone(this, result);
    };

    /**
     * Compares this matrix to the provided matrix componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Matrix4
     *
     * @param {Matrix4} [right] The right hand side matrix.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Matrix4.prototype.equals = function(right) {
        return Matrix4.equals(this, right);
    };

    /**
     * Compares this matrix to the provided matrix componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Matrix4
     *
     * @param {Matrix4} [right] The right hand side matrix.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Matrix4.prototype.equalsEpsilon = function(right, epsilon) {
        return Matrix4.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Computes a string representing this Matrix with each row being
     * on a separate line and in the format '(column0, column1, column2, column3)'.
     * @memberof Matrix4
     *
     * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2, column3)'.
     */
    Matrix4.prototype.toString = function() {
        return '(' + this[0] + ', ' + this[4] + ', ' + this[8] + ', ' + this[12] +')\n' +
               '(' + this[1] + ', ' + this[5] + ', ' + this[9] + ', ' + this[13] +')\n' +
               '(' + this[2] + ', ' + this[6] + ', ' + this[10] + ', ' + this[14] +')\n' +
               '(' + this[3] + ', ' + this[7] + ', ' + this[11] + ', ' + this[15] +')';
    };

    return Matrix4;
});

/*global define*/
define('Core/BoundingSphere',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './Cartesian3',
        './Cartesian4',
        './Cartographic',
        './Ellipsoid',
        './GeographicProjection',
        './Intersect',
        './Interval',
        './Matrix4'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        Cartesian3,
        Cartesian4,
        Cartographic,
        Ellipsoid,
        GeographicProjection,
        Intersect,
        Interval,
        Matrix4) {
    "use strict";

    /**
     * A bounding sphere with a center and a radius.
     * @alias BoundingSphere
     * @constructor
     *
     * @param {Cartesian3} [center=Cartesian3.ZERO] The center of the bounding sphere.
     * @param {Number} [radius=0.0] The radius of the bounding sphere.
     *
     * @see AxisAlignedBoundingBox
     * @see BoundingRectangle
     */
    var BoundingSphere = function(center, radius) {
        /**
         * The center point of the sphere.
         * @type {Cartesian3}
         * @default {@link Cartesian3.ZERO}
         */
        this.center = Cartesian3.clone(defaultValue(center, Cartesian3.ZERO));

        /**
         * The radius of the sphere.
         * @type {Number}
         * @default 0.0
         */
        this.radius = defaultValue(radius, 0.0);
    };

    var fromPointsXMin = new Cartesian3();
    var fromPointsYMin = new Cartesian3();
    var fromPointsZMin = new Cartesian3();
    var fromPointsXMax = new Cartesian3();
    var fromPointsYMax = new Cartesian3();
    var fromPointsZMax = new Cartesian3();
    var fromPointsCurrentPos = new Cartesian3();
    var fromPointsScratch = new Cartesian3();
    var fromPointsRitterCenter = new Cartesian3();
    var fromPointsMinBoxPt = new Cartesian3();
    var fromPointsMaxBoxPt = new Cartesian3();
    var fromPointsNaiveCenterScratch = new Cartesian3();

    /**
     * Computes a tight-fitting bounding sphere enclosing a list of 3D Cartesian points.
     * The bounding sphere is computed by running two algorithms, a naive algorithm and
     * Ritter's algorithm. The smaller of the two spheres is used to ensure a tight fit.
     * @memberof BoundingSphere
     *
     * @param {Array} positions An array of points that the bounding sphere will enclose.  Each point must have <code>x</code>, <code>y</code>, and <code>z</code> properties.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
     *
     * @see <a href='http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/'>Bounding Sphere computation article</a>
     */
    BoundingSphere.fromPoints = function(positions, result) {
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        if (!defined(positions) || positions.length === 0) {
            result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
            result.radius = 0.0;
            return result;
        }

        var currentPos = Cartesian3.clone(positions[0], fromPointsCurrentPos);

        var xMin = Cartesian3.clone(currentPos, fromPointsXMin);
        var yMin = Cartesian3.clone(currentPos, fromPointsYMin);
        var zMin = Cartesian3.clone(currentPos, fromPointsZMin);

        var xMax = Cartesian3.clone(currentPos, fromPointsXMax);
        var yMax = Cartesian3.clone(currentPos, fromPointsYMax);
        var zMax = Cartesian3.clone(currentPos, fromPointsZMax);

        var numPositions = positions.length;
        for ( var i = 1; i < numPositions; i++) {
            Cartesian3.clone(positions[i], currentPos);

            var x = currentPos.x;
            var y = currentPos.y;
            var z = currentPos.z;

            // Store points containing the the smallest and largest components
            if (x < xMin.x) {
                Cartesian3.clone(currentPos, xMin);
            }

            if (x > xMax.x) {
                Cartesian3.clone(currentPos, xMax);
            }

            if (y < yMin.y) {
                Cartesian3.clone(currentPos, yMin);
            }

            if (y > yMax.y) {
                Cartesian3.clone(currentPos, yMax);
            }

            if (z < zMin.z) {
                Cartesian3.clone(currentPos, zMin);
            }

            if (z > zMax.z) {
                Cartesian3.clone(currentPos, zMax);
            }
        }

        // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
        var xSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(xMax, xMin, fromPointsScratch));
        var ySpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(yMax, yMin, fromPointsScratch));
        var zSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(zMax, zMin, fromPointsScratch));

        // Set the diameter endpoints to the largest span.
        var diameter1 = xMin;
        var diameter2 = xMax;
        var maxSpan = xSpan;
        if (ySpan > maxSpan) {
            maxSpan = ySpan;
            diameter1 = yMin;
            diameter2 = yMax;
        }
        if (zSpan > maxSpan) {
            maxSpan = zSpan;
            diameter1 = zMin;
            diameter2 = zMax;
        }

        // Calculate the center of the initial sphere found by Ritter's algorithm
        var ritterCenter = fromPointsRitterCenter;
        ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
        ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
        ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;

        // Calculate the radius of the initial sphere found by Ritter's algorithm
        var radiusSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
        var ritterRadius = Math.sqrt(radiusSquared);

        // Find the center of the sphere found using the Naive method.
        var minBoxPt = fromPointsMinBoxPt;
        minBoxPt.x = xMin.x;
        minBoxPt.y = yMin.y;
        minBoxPt.z = zMin.z;

        var maxBoxPt = fromPointsMaxBoxPt;
        maxBoxPt.x = xMax.x;
        maxBoxPt.y = yMax.y;
        maxBoxPt.z = zMax.z;

        var naiveCenter = Cartesian3.multiplyByScalar(Cartesian3.add(minBoxPt, maxBoxPt, fromPointsScratch), 0.5, fromPointsNaiveCenterScratch);

        // Begin 2nd pass to find naive radius and modify the ritter sphere.
        var naiveRadius = 0;
        for (i = 0; i < numPositions; i++) {
            Cartesian3.clone(positions[i], currentPos);

            // Find the furthest point from the naive center to calculate the naive radius.
            var r = Cartesian3.magnitude(Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
            if (r > naiveRadius) {
                naiveRadius = r;
            }

            // Make adjustments to the Ritter Sphere to include all points.
            var oldCenterToPointSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
            if (oldCenterToPointSquared > radiusSquared) {
                var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
                // Calculate new radius to include the point that lies outside
                ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
                radiusSquared = ritterRadius * ritterRadius;
                // Calculate center of new Ritter sphere
                var oldToNew = oldCenterToPoint - ritterRadius;
                ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
                ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
                ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
            }
        }

        if (ritterRadius < naiveRadius) {
            Cartesian3.clone(ritterCenter, result.center);
            result.radius = ritterRadius;
        } else {
            Cartesian3.clone(naiveCenter, result.center);
            result.radius = naiveRadius;
        }

        return result;
    };

    var defaultProjection = new GeographicProjection();
    var fromExtent2DLowerLeft = new Cartesian3();
    var fromExtent2DUpperRight = new Cartesian3();
    var fromExtent2DSouthwest = new Cartographic();
    var fromExtent2DNortheast = new Cartographic();

    /**
     * Computes a bounding sphere from an extent projected in 2D.
     *
     * @memberof BoundingSphere
     *
     * @param {Extent} extent The extent around which to create a bounding sphere.
     * @param {Object} [projection=GeographicProjection] The projection used to project the extent into 2D.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     */
    BoundingSphere.fromExtent2D = function(extent, projection, result) {
        return BoundingSphere.fromExtentWithHeights2D(extent, projection, 0.0, 0.0, result);
    };

    /**
     * Computes a bounding sphere from an extent projected in 2D.  The bounding sphere accounts for the
     * object's minimum and maximum heights over the extent.
     *
     * @memberof BoundingSphere
     *
     * @param {Extent} extent The extent around which to create a bounding sphere.
     * @param {Object} [projection=GeographicProjection] The projection used to project the extent into 2D.
     * @param {Number} [minimumHeight=0.0] The minimum height over the extent.
     * @param {Number} [maximumHeight=0.0] The maximum height over the extent.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     */
    BoundingSphere.fromExtentWithHeights2D = function(extent, projection, minimumHeight, maximumHeight, result) {
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        if (!defined(extent)) {
            result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
            result.radius = 0.0;
            return result;
        }

        projection = defaultValue(projection, defaultProjection);

        extent.getSouthwest(fromExtent2DSouthwest);
        fromExtent2DSouthwest.height = minimumHeight;
        extent.getNortheast(fromExtent2DNortheast);
        fromExtent2DNortheast.height = maximumHeight;

        var lowerLeft = projection.project(fromExtent2DSouthwest, fromExtent2DLowerLeft);
        var upperRight = projection.project(fromExtent2DNortheast, fromExtent2DUpperRight);

        var width = upperRight.x - lowerLeft.x;
        var height = upperRight.y - lowerLeft.y;
        var elevation = upperRight.z - lowerLeft.z;

        result.radius = Math.sqrt(width * width + height * height + elevation * elevation) * 0.5;
        var center = result.center;
        center.x = lowerLeft.x + width * 0.5;
        center.y = lowerLeft.y + height * 0.5;
        center.z = lowerLeft.z + elevation * 0.5;
        return result;
    };

    var fromExtent3DScratch = [];

    /**
     * Computes a bounding sphere from an extent in 3D. The bounding sphere is created using a subsample of points
     * on the ellipsoid and contained in the extent. It may not be accurate for all extents on all types of ellipsoids.
     * @memberof BoundingSphere
     *
     * @param {Extent} extent The valid extent used to create a bounding sphere.
     * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid used to determine positions of the extent.
     * @param {Number} [surfaceHeight=0.0] The height above the surface of the ellipsoid.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     */
    BoundingSphere.fromExtent3D = function(extent, ellipsoid, surfaceHeight, result) {
        ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
        surfaceHeight = defaultValue(surfaceHeight, 0.0);

        var positions;
        if (defined(extent)) {
            positions = extent.subsample(ellipsoid, surfaceHeight, fromExtent3DScratch);
        }

        return BoundingSphere.fromPoints(positions, result);
    };

    /**
     * Computes a tight-fitting bounding sphere enclosing a list of 3D points, where the points are
     * stored in a flat array in X, Y, Z, order.  The bounding sphere is computed by running two
     * algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to
     * ensure a tight fit.
     *
     * @memberof BoundingSphere
     *
     * @param {Array} positions An array of points that the bounding sphere will enclose.  Each point
     *        is formed from three elements in the array in the order X, Y, Z.
     * @param {Cartesian3} [center=Cartesian3.ZERO] The position to which the positions are relative, which need not be the
     *        origin of the coordinate system.  This is useful when the positions are to be used for
     *        relative-to-center (RTC) rendering.
     * @param {Number} [stride=3] The number of array elements per vertex.  It must be at least 3, but it may
     *        be higher.  Regardless of the value of this parameter, the X coordinate of the first position
     *        is at array index 0, the Y coordinate is at array index 1, and the Z coordinate is at array index
     *        2.  When stride is 3, the X coordinate of the next position then begins at array index 3.  If
     *        the stride is 5, however, two array elements are skipped and the next position begins at array
     *        index 5.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
     *
     * @see <a href='http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/'>Bounding Sphere computation article</a>
     *
     * @example
     * // Compute the bounding sphere from 3 positions, each specified relative to a center.
     * // In addition to the X, Y, and Z coordinates, the points array contains two additional
     * // elements per point which are ignored for the purpose of computing the bounding sphere.
     * var center = new Cartesian3(1.0, 2.0, 3.0);
     * var points = [1.0, 2.0, 3.0, 0.1, 0.2,
     *               4.0, 5.0, 6.0, 0.1, 0.2,
     *               7.0, 8.0, 9.0, 0.1, 0.2];
     * var sphere = BoundingSphere.fromVertices(points, center, 5);
     */
    BoundingSphere.fromVertices = function(positions, center, stride, result) {
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        if (!defined(positions) || positions.length === 0) {
            result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
            result.radius = 0.0;
            return result;
        }

        center = defaultValue(center, Cartesian3.ZERO);

        stride = defaultValue(stride, 3);

                if (stride < 3) {
            throw new DeveloperError('stride must be 3 or greater.');
        }
        
        var currentPos = fromPointsCurrentPos;
        currentPos.x = positions[0] + center.x;
        currentPos.y = positions[1] + center.y;
        currentPos.z = positions[2] + center.z;

        var xMin = Cartesian3.clone(currentPos, fromPointsXMin);
        var yMin = Cartesian3.clone(currentPos, fromPointsYMin);
        var zMin = Cartesian3.clone(currentPos, fromPointsZMin);

        var xMax = Cartesian3.clone(currentPos, fromPointsXMax);
        var yMax = Cartesian3.clone(currentPos, fromPointsYMax);
        var zMax = Cartesian3.clone(currentPos, fromPointsZMax);

        var numElements = positions.length;
        for (var i = 0; i < numElements; i += stride) {
            var x = positions[i] + center.x;
            var y = positions[i + 1] + center.y;
            var z = positions[i + 2] + center.z;

            currentPos.x = x;
            currentPos.y = y;
            currentPos.z = z;

            // Store points containing the the smallest and largest components
            if (x < xMin.x) {
                Cartesian3.clone(currentPos, xMin);
            }

            if (x > xMax.x) {
                Cartesian3.clone(currentPos, xMax);
            }

            if (y < yMin.y) {
                Cartesian3.clone(currentPos, yMin);
            }

            if (y > yMax.y) {
                Cartesian3.clone(currentPos, yMax);
            }

            if (z < zMin.z) {
                Cartesian3.clone(currentPos, zMin);
            }

            if (z > zMax.z) {
                Cartesian3.clone(currentPos, zMax);
            }
        }

        // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
        var xSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(xMax, xMin, fromPointsScratch));
        var ySpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(yMax, yMin, fromPointsScratch));
        var zSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(zMax, zMin, fromPointsScratch));

        // Set the diameter endpoints to the largest span.
        var diameter1 = xMin;
        var diameter2 = xMax;
        var maxSpan = xSpan;
        if (ySpan > maxSpan) {
            maxSpan = ySpan;
            diameter1 = yMin;
            diameter2 = yMax;
        }
        if (zSpan > maxSpan) {
            maxSpan = zSpan;
            diameter1 = zMin;
            diameter2 = zMax;
        }

        // Calculate the center of the initial sphere found by Ritter's algorithm
        var ritterCenter = fromPointsRitterCenter;
        ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
        ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
        ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;

        // Calculate the radius of the initial sphere found by Ritter's algorithm
        var radiusSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
        var ritterRadius = Math.sqrt(radiusSquared);

        // Find the center of the sphere found using the Naive method.
        var minBoxPt = fromPointsMinBoxPt;
        minBoxPt.x = xMin.x;
        minBoxPt.y = yMin.y;
        minBoxPt.z = zMin.z;

        var maxBoxPt = fromPointsMaxBoxPt;
        maxBoxPt.x = xMax.x;
        maxBoxPt.y = yMax.y;
        maxBoxPt.z = zMax.z;

        var naiveCenter = Cartesian3.multiplyByScalar(Cartesian3.add(minBoxPt, maxBoxPt, fromPointsScratch), 0.5, fromPointsNaiveCenterScratch);

        // Begin 2nd pass to find naive radius and modify the ritter sphere.
        var naiveRadius = 0;
        for (i = 0; i < numElements; i += stride) {
            currentPos.x = positions[i] + center.x;
            currentPos.y = positions[i + 1] + center.y;
            currentPos.z = positions[i + 2] + center.z;

            // Find the furthest point from the naive center to calculate the naive radius.
            var r = Cartesian3.magnitude(Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
            if (r > naiveRadius) {
                naiveRadius = r;
            }

            // Make adjustments to the Ritter Sphere to include all points.
            var oldCenterToPointSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
            if (oldCenterToPointSquared > radiusSquared) {
                var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
                // Calculate new radius to include the point that lies outside
                ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
                radiusSquared = ritterRadius * ritterRadius;
                // Calculate center of new Ritter sphere
                var oldToNew = oldCenterToPoint - ritterRadius;
                ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
                ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
                ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
            }
        }

        if (ritterRadius < naiveRadius) {
            Cartesian3.clone(ritterCenter, result.center);
            result.radius = ritterRadius;
        } else {
            Cartesian3.clone(naiveCenter, result.center);
            result.radius = naiveRadius;
        }

        return result;
    };

    /**
     * Computes a bounding sphere from the corner points of an axis-aligned bounding box.  The sphere
     * tighly and fully encompases the box.
     *
     * @memberof BoundingSphere
     *
     * @param {Number} [corner] The minimum height over the extent.
     * @param {Number} [oppositeCorner] The maximum height over the extent.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     *
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} corner and oppositeCorner are required.
     *
     * @example
     * // Create a bounding sphere around the unit cube
     * var sphere = BoundingSphere.fromCornerPoints(new Cartesian3(-0.5, -0.5, -0.5), new Cartesian3(0.5, 0.5, 0.5));
     */
    BoundingSphere.fromCornerPoints = function(corner, oppositeCorner, result) {
                if (!defined(corner) || !defined(oppositeCorner)) {
            throw new DeveloperError('corner and oppositeCorner are required.');
        }
        
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        var center = result.center;
        Cartesian3.add(corner, oppositeCorner, center);
        Cartesian3.multiplyByScalar(center, 0.5, center);
        result.radius = Cartesian3.distance(center, oppositeCorner);
        return result;
    };

    /**
     * Creates a bounding sphere encompassing an ellipsoid.
     *
     * @memberof BoundingSphere
     *
     * @param {Ellipsoid} ellipsoid The ellipsoid around which to create a bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     *
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} ellipsoid is required.
     *
     * @example
     * var boundingSphere = BoundingSphere.fromEllipsoid(ellipsoid);
     */
    BoundingSphere.fromEllipsoid = function(ellipsoid, result) {
                if (!defined(ellipsoid)) {
            throw new DeveloperError('ellipsoid is required.');
        }
        
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        Cartesian3.clone(Cartesian3.ZERO, result.center);
        result.radius = ellipsoid.getMaximumRadius();
        return result;
    };

    /**
     * Duplicates a BoundingSphere instance.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere The bounding sphere to duplicate.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. (Returns undefined if sphere is undefined)
     */
    BoundingSphere.clone = function(sphere, result) {
        if (!defined(sphere)) {
            return undefined;
        }

        if (!defined(result)) {
            return new BoundingSphere(sphere.center, sphere.radius);
        }

        result.center = Cartesian3.clone(sphere.center, result.center);
        result.radius = sphere.radius;
        return result;
    };

    var unionScratch = new Cartesian3();
    var unionScratchCenter = new Cartesian3();
    /**
     * Computes a bounding sphere that contains both the left and right bounding spheres.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} left A sphere to enclose in a bounding sphere.
     * @param {BoundingSphere} right A sphere to enclose in a bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    BoundingSphere.union = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required.');
        }

        if (!defined(right)) {
            throw new DeveloperError('right is required.');
        }
        
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        var leftCenter = left.center;
        var rightCenter = right.center;

        Cartesian3.add(leftCenter, rightCenter, unionScratchCenter);
        var center = Cartesian3.multiplyByScalar(unionScratchCenter, 0.5, unionScratchCenter);

        var radius1 = Cartesian3.magnitude(Cartesian3.subtract(leftCenter, center, unionScratch)) + left.radius;
        var radius2 = Cartesian3.magnitude(Cartesian3.subtract(rightCenter, center, unionScratch)) + right.radius;

        result.radius = Math.max(radius1, radius2);
        Cartesian3.clone(center, result.center);

        return result;
    };

    var expandScratch = new Cartesian3();
    /**
     * Computes a bounding sphere by enlarging the provided sphere to contain the provided point.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere A sphere to expand.
     * @param {Cartesian3} point A point to enclose in a bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} sphere is required.
     * @exception {DeveloperError} point is required.
     */
    BoundingSphere.expand = function(sphere, point, result) {
                if (!defined(sphere)) {
            throw new DeveloperError('sphere is required.');
        }

        if (!defined(point)) {
            throw new DeveloperError('point is required.');
        }
        
        result = BoundingSphere.clone(sphere, result);

        var radius = Cartesian3.magnitude(Cartesian3.subtract(point, result.center, expandScratch));
        if (radius > result.radius) {
            result.radius = radius;
        }

        return result;
    };

    /**
     * Determines which side of a plane a sphere is located.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere The bounding sphere to test.
     * @param {Cartesian4} plane The coefficients of the plane in the for ax + by + cz + d = 0
     *                           where the coefficients a, b, c, and d are the components x, y, z,
     *                           and w of the {Cartesian4}, respectively.
     * @returns {Intersect} {Intersect.INSIDE} if the entire sphere is on the side of the plane the normal
     *                     is pointing, {Intersect.OUTSIDE} if the entire sphere is on the opposite side,
     *                     and {Intersect.INTERSETING} if the sphere intersects the plane.
     *
     * @exception {DeveloperError} sphere is required.
     * @exception {DeveloperError} plane is required.
     */
    BoundingSphere.intersect = function(sphere, plane) {
                if (!defined(sphere)) {
            throw new DeveloperError('sphere is required.');
        }

        if (!defined(plane)) {
            throw new DeveloperError('plane is required.');
        }
        
        var center = sphere.center;
        var radius = sphere.radius;
        var distanceToPlane = Cartesian3.dot(plane, center) + plane.w;

        if (distanceToPlane < -radius) {
            // The center point is negative side of the plane normal
            return Intersect.OUTSIDE;
        } else if (distanceToPlane < radius) {
            // The center point is positive side of the plane, but radius extends beyond it; partial overlap
            return Intersect.INTERSECTING;
        }
        return Intersect.INSIDE;
    };

    var columnScratch = new Cartesian3();

    /**
     * Applies a 4x4 affine transformation matrix to a bounding sphere.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
     * @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} sphere is required.
     * @exception {DeveloperError} transform is required.
     */
    BoundingSphere.transform = function(sphere, transform, result) {
                if (!defined(sphere)) {
            throw new DeveloperError('sphere is required.');
        }

        if (!defined(transform)) {
            throw new DeveloperError('transform is required.');
        }
        
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center);
        result.radius = Math.max(Cartesian3.magnitude(Matrix4.getColumn(transform, 0, columnScratch)),
                Cartesian3.magnitude(Matrix4.getColumn(transform, 1, columnScratch)),
                Cartesian3.magnitude(Matrix4.getColumn(transform, 2, columnScratch))) * sphere.radius;

        return result;
    };

    /**
     * Applies a 4x4 affine transformation matrix to a bounding sphere where there is no scale
     * The transformation matrix is not verified to have a uniform scale of 1.
     * This method is faster than computing the general bounding sphere transform using {@link #transform}.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
     * @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} sphere is required.
     * @exception {DeveloperError} transform is required.
     *
     * @example
     * var modelMatrix = Transforms.eastNorthUpToFixedFrame(positionOnEllipsoid);
     * var boundingSphere = new BoundingSphere();
     * var newBoundingSphere = BoundingSphere.transformWithoutScale(boundingSphere, modelMatrix);
     */
    BoundingSphere.transformWithoutScale = function(sphere, transform, result) {
                if (!defined(sphere)) {
            throw new DeveloperError('sphere is required.');
        }

        if (!defined(transform)) {
            throw new DeveloperError('transform is required.');
        }
        
        if (!defined(result)) {
            result = new BoundingSphere();
        }

        result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center);
        result.radius = sphere.radius;

        return result;
    };

    var scratchCartesian3 = new Cartesian3();
    /**
     * The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
     * plus/minus the radius of the bounding sphere.
     * <br>
     * If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
     * closest and farthest planes from position that intersect the bounding sphere.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere The bounding sphere to calculate the distance to.
     * @param {Cartesian3} position The position to calculate the distance from.
     * @param {Cartesian3} direction The direction from position.
     * @param {Cartesian2} [result] A Cartesian2 to store the nearest and farthest distances.
     * @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction.
     *
     * @exception {DeveloperError} sphere is required.
     * @exception {DeveloperError} position is required.
     * @exception {DeveloperError} direction is required.
     */
    BoundingSphere.getPlaneDistances = function(sphere, position, direction, result) {
                if (!defined(sphere)) {
            throw new DeveloperError('sphere is required.');
        }

        if (!defined(position)) {
            throw new DeveloperError('position is required.');
        }

        if (!defined(direction)) {
            throw new DeveloperError('direction is required.');
        }
        
        if (!defined(result)) {
            result = new Interval();
        }

        var toCenter = Cartesian3.subtract(sphere.center, position, scratchCartesian3);
        var proj = Cartesian3.multiplyByScalar(direction, Cartesian3.dot(direction, toCenter), scratchCartesian3);
        var mag = Cartesian3.magnitude(proj);

        result.start = mag - sphere.radius;
        result.stop = mag + sphere.radius;
        return result;
    };

    var projectTo2DNormalScratch = new Cartesian3();
    var projectTo2DEastScratch = new Cartesian3();
    var projectTo2DNorthScratch = new Cartesian3();
    var projectTo2DWestScratch = new Cartesian3();
    var projectTo2DSouthScratch = new Cartesian3();
    var projectTo2DCartographicScratch = new Cartographic();
    var projectTo2DPositionsScratch = new Array(8);
    for (var n = 0; n < 8; ++n) {
        projectTo2DPositionsScratch[n] = new Cartesian3();
    }
    var projectTo2DProjection = new GeographicProjection();
    /**
     * Creates a bounding sphere in 2D from a bounding sphere in 3D world coordinates.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} sphere The bounding sphere to transform to 2D.
     * @param {Object} [projection=GeographicProjection] The projection to 2D.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} sphere is required.
     */
    BoundingSphere.projectTo2D = function(sphere, projection, result) {
                if (!defined(sphere)) {
            throw new DeveloperError('sphere is required.');
        }
        
        projection = defaultValue(projection, projectTo2DProjection);

        var ellipsoid = projection.getEllipsoid();
        var center = sphere.center;
        var radius = sphere.radius;

        var normal = ellipsoid.geodeticSurfaceNormal(center, projectTo2DNormalScratch);
        var east = Cartesian3.cross(Cartesian3.UNIT_Z, normal, projectTo2DEastScratch);
        Cartesian3.normalize(east, east);
        var north = Cartesian3.cross(normal, east, projectTo2DNorthScratch);
        Cartesian3.normalize(north, north);

        Cartesian3.multiplyByScalar(normal, radius, normal);
        Cartesian3.multiplyByScalar(north, radius, north);
        Cartesian3.multiplyByScalar(east, radius, east);

        var south = Cartesian3.negate(north, projectTo2DSouthScratch);
        var west = Cartesian3.negate(east, projectTo2DWestScratch);

        var positions = projectTo2DPositionsScratch;

        // top NE corner
        var corner = positions[0];
        Cartesian3.add(normal, north, corner);
        Cartesian3.add(corner, east, corner);

        // top NW corner
        corner = positions[1];
        Cartesian3.add(normal, north, corner);
        Cartesian3.add(corner, west, corner);

        // top SW corner
        corner = positions[2];
        Cartesian3.add(normal, south, corner);
        Cartesian3.add(corner, west, corner);

        // top SE corner
        corner = positions[3];
        Cartesian3.add(normal, south, corner);
        Cartesian3.add(corner, east, corner);

        Cartesian3.negate(normal, normal);

        // bottom NE corner
        corner = positions[4];
        Cartesian3.add(normal, north, corner);
        Cartesian3.add(corner, east, corner);

        // bottom NW corner
        corner = positions[5];
        Cartesian3.add(normal, north, corner);
        Cartesian3.add(corner, west, corner);

        // bottom SW corner
        corner = positions[6];
        Cartesian3.add(normal, south, corner);
        Cartesian3.add(corner, west, corner);

        // bottom SE corner
        corner = positions[7];
        Cartesian3.add(normal, south, corner);
        Cartesian3.add(corner, east, corner);

        var length = positions.length;
        for (var i = 0; i < length; ++i) {
            var position = positions[i];
            Cartesian3.add(center, position, position);
            var cartographic = ellipsoid.cartesianToCartographic(position, projectTo2DCartographicScratch);
            projection.project(cartographic, position);
        }

        result = BoundingSphere.fromPoints(positions, result);

        // swizzle center components
        center = result.center;
        var x = center.x;
        var y = center.y;
        var z = center.z;
        center.x = z;
        center.y = x;
        center.z = y;

        return result;
    };

    /**
     * Compares the provided BoundingSphere componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} [left] The first BoundingSphere.
     * @param {BoundingSphere} [right] The second BoundingSphere.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    BoundingSphere.equals = function(left, right) {
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                Cartesian3.equals(left.center, right.center) &&
                left.radius === right.radius);
    };

    /**
     * Duplicates this BoundingSphere instance.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     */
    BoundingSphere.prototype.clone = function(result) {
        return BoundingSphere.clone(this, result);
    };

    /**
     * Computes a bounding sphere that contains both this bounding sphere and the argument sphere.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} right The sphere to enclose in this bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     *
     * @exception {DeveloperError} sphere is required.
     */
    BoundingSphere.prototype.union = function(right, result) {
        return BoundingSphere.union(this, right, result);
    };

    /**
     * Computes a bounding sphere that is sphere expanded to contain point.
     * @memberof BoundingSphere
     *
     * @param {Cartesian3} point A point to enclose in a bounding sphere.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
     *
     * @exception {DeveloperError} point is required.
     */
    BoundingSphere.prototype.expand = function(point, result) {
        return BoundingSphere.expand(this, point, result);
    };

    /**
     * Determines which side of a plane the sphere is located.
     * @memberof BoundingSphere
     *
     * @param {Cartesian4} plane The coefficients of the plane in the for ax + by + cz + d = 0
     *                           where the coefficients a, b, c, and d are the components x, y, z,
     *                           and w of the {Cartesian4}, respectively.
     * @returns {Intersect} {Intersect.INSIDE} if the entire sphere is on the side of the plane the normal
     *                     is pointing, {Intersect.OUTSIDE} if the entire sphere is on the opposite side,
     *                     and {Intersect.INTERSETING} if the sphere intersects the plane.
     *
     * @exception {DeveloperError} plane is required.
     */
    BoundingSphere.prototype.intersect = function(plane) {
        return BoundingSphere.intersect(this, plane);
    };

    /**
     * The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
     * plus/minus the radius of the bounding sphere.
     * <br>
     * If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
     * closest and farthest planes from position that intersect the bounding sphere.
     * @memberof BoundingSphere
     *
     * @param {Cartesian3} position The position to calculate the distance from.
     * @param {Cartesian3} direction The direction from position.
     * @param {Cartesian2} [result] A Cartesian2 to store the nearest and farthest distances.
     * @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction.
     *
     * @exception {DeveloperError} position is required.
     * @exception {DeveloperError} direction is required.
     */
    BoundingSphere.prototype.getPlaneDistances = function(position, direction, result) {
        return BoundingSphere.getPlaneDistances(this, position, direction, result);
    };

    /**
     * Creates a bounding sphere in 2D from this bounding sphere. This bounding sphere must be in 3D world coordinates.
     * @memberof BoundingSphere
     *
     * @param {Object} [projection=GeographicProjection] The projection to 2D.
     * @param {BoundingSphere} [result] The object onto which to store the result.
     * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
     */
    BoundingSphere.prototype.projectTo2D = function(projection, result) {
        return BoundingSphere.projectTo2D(this, projection, result);
    };

    /**
     * Compares this BoundingSphere against the provided BoundingSphere componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof BoundingSphere
     *
     * @param {BoundingSphere} [right] The right hand side BoundingSphere.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    BoundingSphere.prototype.equals = function(right) {
        return BoundingSphere.equals(this, right);
    };

    return BoundingSphere;
});

/*global define*/
define('Core/Fullscreen',['./defined'], function(defined) {
    "use strict";

    var _supportsFullscreen;
    var _names = {
        requestFullscreen : undefined,
        exitFullscreen : undefined,
        fullscreenEnabled : undefined,
        fullscreenElement : undefined,
        fullscreenchange : undefined,
        fullscreenerror : undefined
    };

    /**
     * Browser-independent functions for working with the standard fullscreen API.
     *
     * @exports Fullscreen
     *
     * @see <a href='http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html'>W3C Fullscreen Living Specification</a>
     */
    var Fullscreen = {};

    /**
     * Detects whether the browser supports the standard fullscreen API.
     *
     * @returns <code>true</code> if the browser supports the standard fullscreen API,
     * <code>false</code> otherwise.
     */
    Fullscreen.supportsFullscreen = function() {
        if (defined(_supportsFullscreen)) {
            return _supportsFullscreen;
        }

        _supportsFullscreen = false;

        var body = document.body;
        if (typeof body.requestFullscreen === 'function') {
            // go with the unprefixed, standard set of names
            _names.requestFullscreen = 'requestFullscreen';
            _names.exitFullscreen = 'exitFullscreen';
            _names.fullscreenEnabled = 'fullscreenEnabled';
            _names.fullscreenElement = 'fullscreenElement';
            _names.fullscreenchange = 'fullscreenchange';
            _names.fullscreenerror = 'fullscreenerror';
            _supportsFullscreen = true;
            return _supportsFullscreen;
        }

        //check for the correct combination of prefix plus the various names that browsers use
        var prefixes = ['webkit', 'moz', 'o', 'ms', 'khtml'];
        var name;
        for ( var i = 0, len = prefixes.length; i < len; ++i) {
            var prefix = prefixes[i];

            // casing of Fullscreen differs across browsers
            name = prefix + 'RequestFullscreen';
            if (typeof body[name] === 'function') {
                _names.requestFullscreen = name;
                _supportsFullscreen = true;
            } else {
                name = prefix + 'RequestFullScreen';
                if (typeof body[name] === 'function') {
                    _names.requestFullscreen = name;
                    _supportsFullscreen = true;
                }
            }

            // disagreement about whether it's "exit" as per spec, or "cancel"
            name = prefix + 'ExitFullscreen';
            if (typeof document[name] === 'function') {
                _names.exitFullscreen = name;
            } else {
                name = prefix + 'CancelFullScreen';
                if (typeof document[name] === 'function') {
                    _names.exitFullscreen = name;
                }
            }

            // casing of Fullscreen differs across browsers
            name = prefix + 'FullscreenEnabled';
            if (defined(document[name])) {
                _names.fullscreenEnabled = name;
            } else {
                name = prefix + 'FullScreenEnabled';
                if (defined(document[name])) {
                    _names.fullscreenEnabled = name;
                }
            }

            // casing of Fullscreen differs across browsers
            name = prefix + 'FullscreenElement';
            if (defined(document[name])) {
                _names.fullscreenElement = name;
            } else {
                name = prefix + 'FullScreenElement';
                if (defined(document[name])) {
                    _names.fullscreenElement = name;
                }
            }

            // thankfully, event names are all lowercase per spec
            name = prefix + 'fullscreenchange';
            // event names do not have 'on' in the front, but the property on the document does
            if (defined(document['on' + name])) {
                //except on IE
                if (prefix === 'ms') {
                    name = 'MSFullscreenChange';
                }
                _names.fullscreenchange = name;
            }

            name = prefix + 'fullscreenerror';
            if (defined(document['on' + name])) {
                //except on IE
                if (prefix === 'ms') {
                    name = 'MSFullscreenError';
                }
                _names.fullscreenerror = name;
            }
        }

        return _supportsFullscreen;
    };

    /**
     * Asynchronously requests the browser to enter fullscreen mode on the given element.
     * If fullscreen mode is not supported by the browser, does nothing.
     *
     * @param {Object} element The HTML element which will be placed into fullscreen mode.
     *
     * @example
     * // Put the entire page into fullscreen.
     * Fullscreen.requestFullscreen(document.body)
     *
     * // Place only the Cesium canvas into fullscreen.
     * Fullscreen.requestFullscreen(scene.getCanvas())
     */
    Fullscreen.requestFullscreen = function(element) {
        if (!Fullscreen.supportsFullscreen()) {
            return;
        }

        element[_names.requestFullscreen]();
    };

    /**
     * Asynchronously exits fullscreen mode.  If the browser is not currently
     * in fullscreen, or if fullscreen mode is not supported by the browser, does nothing.
     */
    Fullscreen.exitFullscreen = function() {
        if (!Fullscreen.supportsFullscreen()) {
            return;
        }

        document[_names.exitFullscreen]();
    };

    /**
     * Determine whether the browser will allow an element to be made fullscreen, or not.
     * For example, by default, iframes cannot go fullscreen unless the containing page
     * adds an "allowfullscreen" attribute (or prefixed equivalent).
     *
     * @returns {Boolean} <code>true</code> if the browser is able to enter fullscreen mode,
     * <code>false</code> if not, and <code>undefined</code> if the browser does not
     * support fullscreen mode.
     */
    Fullscreen.isFullscreenEnabled = function() {
        if (!Fullscreen.supportsFullscreen()) {
            return undefined;
        }

        return document[_names.fullscreenEnabled];
    };

    /**
     * Gets the element that is currently fullscreen, if any.  To simply check if the
     * browser is in fullscreen mode or not, use {@link Fullscreen#isFullscreen}.
     *
     * @returns {Object} the element that is currently fullscreen, or <code>null</code> if the browser is
     * not in fullscreen mode, or <code>undefined</code> if the browser does not support fullscreen
     * mode.
     */
    Fullscreen.getFullscreenElement = function() {
        if (!Fullscreen.supportsFullscreen()) {
            return undefined;
        }

        return document[_names.fullscreenElement];
    };

    /**
     * Determines if the browser is currently in fullscreen mode.
     *
     * @returns {Boolean} <code>true</code> if the browser is currently in fullscreen mode, <code>false</code>
     * if it is not, or <code>undefined</code> if the browser does not support fullscreen mode.
     */
    Fullscreen.isFullscreen = function() {
        if (!Fullscreen.supportsFullscreen()) {
            return undefined;
        }

        return Fullscreen.getFullscreenElement() !== null;
    };

    /**
     * Gets the name of the event on the document that is fired when fullscreen is
     * entered or exited.  This event name is intended for use with addEventListener.
     *
     * In your event handler, to determine if the browser is in fullscreen mode or not,
     * use {@link Fullscreen#isFullscreen}.
     *
     * @returns {String} the name of the event that is fired when fullscreen is entered or
     * exited, or <code>undefined</code> if fullscreen is not supported.
     */
    Fullscreen.getFullscreenChangeEventName = function() {
        if (!Fullscreen.supportsFullscreen()) {
            return undefined;
        }

        return _names.fullscreenchange;
    };

    /**
     * Gets the name of the event that is fired when a fullscreen error
     * occurs.  This event name is intended for use with addEventListener.
     *
     * @returns {String} the name of the event that is fired when a fullscreen error occurs,
     * or <code>undefined</code> if fullscreen is not supported.
     */
    Fullscreen.getFullscreenErrorEventName = function() {
        if (!Fullscreen.supportsFullscreen()) {
            return undefined;
        }

        return _names.fullscreenerror;
    };

    return Fullscreen;
});
/*global define*/
define('Core/FeatureDetection',[
        './defined',
        './Fullscreen'
    ], function(
        defined,
        Fullscreen) {
    "use strict";

    function extractVersion(versionString) {
        var parts = versionString.split('.');
        for ( var i = 0, len = parts.length; i < len; ++i) {
            parts[i] = parseInt(parts[i], 10);
        }
        return parts;
    }

    var isChromeResult;
    var chromeVersionResult;
    function isChrome() {
        if (!defined(isChromeResult)) {
            var fields = (/ Chrome\/([\.0-9]+)/).exec(navigator.userAgent);
            if (fields === null) {
                isChromeResult = false;
            } else {
                isChromeResult = true;
                chromeVersionResult = extractVersion(fields[1]);
            }
        }

        return isChromeResult;
    }

    function chromeVersion() {
        return isChrome() && chromeVersionResult;
    }

    var isSafariResult;
    var safariVersionResult;
    function isSafari() {
        if (!defined(isSafariResult)) {
            // Chrome contains Safari in the user agent too
            if (isChrome() || !(/ Safari\/[\.0-9]+/).test(navigator.userAgent)) {
                isSafariResult = false;
            } else {
                var fields = (/ Version\/([\.0-9]+)/).exec(navigator.userAgent);
                if (fields === null) {
                    isSafariResult = false;
                } else {
                    isSafariResult = true;
                    safariVersionResult = extractVersion(fields[1]);
                }
            }
        }

        return isSafariResult;
    }

    function safariVersion() {
        return isSafari() && safariVersionResult;
    }

    var isWebkitResult;
    var webkitVersionResult;
    function isWebkit() {
        if (!defined(isWebkitResult)) {
            var fields = (/ AppleWebKit\/([\.0-9]+)(\+?)/).exec(navigator.userAgent);
            if (fields === null) {
                isWebkitResult = false;
            } else {
                isWebkitResult = true;
                webkitVersionResult = extractVersion(fields[1]);
                webkitVersionResult.isNightly = !!fields[2];
            }
        }

        return isWebkitResult;
    }

    function webkitVersion() {
        return isWebkit() && webkitVersionResult;
    }

    var isInternetExplorerResult;
    var internetExplorerVersionResult;
    function isInternetExplorer() {
        if (!defined(isInternetExplorerResult)) {
            var fields = (/ MSIE ([\.0-9]+)/).exec(navigator.userAgent);
            if (fields === null) {
                isInternetExplorerResult = false;
            } else {
                isInternetExplorerResult = true;
                internetExplorerVersionResult = extractVersion(fields[1]);
            }
        }
        return isInternetExplorerResult;
    }

    function internetExplorerVersion() {
        return isInternetExplorer() && internetExplorerVersionResult;
    }

    /**
     * A set of functions to detect whether the current browser supports
     * various features.
     *
     * @exports FeatureDetection
     */
    var FeatureDetection = {
        isChrome : isChrome,
        chromeVersion : chromeVersion,
        isSafari : isSafari,
        safariVersion : safariVersion,
        isWebkit : isWebkit,
        webkitVersion : webkitVersion,
        isInternetExplorer : isInternetExplorer,
        internetExplorerVersion : internetExplorerVersion
    };

    var supportsCrossOriginImagery;

    /**
     * Detects whether the current browser supports the use of cross-origin
     * requests to load streaming imagery.
     *
     * @returns true if the browser can load cross-origin streaming imagery, false if not.
     *
     * @see <a href='http://www.w3.org/TR/cors/'>Cross-Origin Resource Sharing</a>
     */
    FeatureDetection.supportsCrossOriginImagery = function() {
        if (!defined(supportsCrossOriginImagery)) {
            if (isSafari() && webkitVersion()[0] < 536) {
                // versions of Safari below this incorrectly throw a DOM error when calling
                // readPixels on a canvas containing a cross-origin image.
                supportsCrossOriginImagery = false;
            } else {
                // any other versions of browsers that incorrectly block
                // readPixels on canvas containing crossOrigin images?
                supportsCrossOriginImagery = 'withCredentials' in new XMLHttpRequest();
            }
        }
        return supportsCrossOriginImagery;
    };

    /**
     * Detects whether the current browser supports the full screen standard.
     *
     * @returns true if the browser supports the full screen standard, false if not.
     *
     * @see Fullscreen
     * @see <a href='http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html'>W3C Fullscreen Living Specification</a>
     */
    FeatureDetection.supportsFullscreen = function() {
        return Fullscreen.supportsFullscreen();
    };

    /**
     * Detects whether the current browser supports typed arrays.
     *
     * @returns true if the browser supports typed arrays, false if not.
     *
     * @see <a href='http://www.khronos.org/registry/typedarray/specs/latest/'>Typed Array Specification</a>
     */
    FeatureDetection.supportsTypedArrays = function() {
        return typeof ArrayBuffer !== 'undefined';
    };

    return FeatureDetection;
});
/*global define*/
define('Core/ComponentDatatype',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './FeatureDetection',
        './Enumeration'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        FeatureDetection,
        Enumeration) {
    "use strict";

    // Bail out if the browser doesn't support typed arrays, to prevent the setup function
    // from failing, since we won't be able to create a WebGL context anyway.
    if (!FeatureDetection.supportsTypedArrays()) {
        return {};
    }

    /**
     * Enumerations for WebGL component datatypes.  Components are intrinsics,
     * which form attributes, which form vertices.
     *
     * @alias ComponentDatatype
     * @enumeration
     */
    var ComponentDatatype = {
        /**
         * 8-bit signed byte enumeration corresponding to <code>gl.BYTE</code> and the type
         * of an element in <code>Int8Array</code>.
         *
         * @type {Enumeration}
         * @constant
         * @default 0x1400
         */
        BYTE : new Enumeration(0x1400, 'BYTE', {
            sizeInBytes : Int8Array.BYTES_PER_ELEMENT
        }),

        /**
         * 8-bit unsigned byte enumeration corresponding to <code>UNSIGNED_BYTE</code> and the type
         * of an element in <code>Uint8Array</code>.
         *
         * @type {Enumeration}
         * @constant
         * @default 0x1401
         */
        UNSIGNED_BYTE : new Enumeration(0x1401, 'UNSIGNED_BYTE', {
            sizeInBytes : Uint8Array.BYTES_PER_ELEMENT
        }),

        /**
         * 16-bit signed short enumeration corresponding to <code>SHORT</code> and the type
         * of an element in <code>Int16Array</code>.
         *
         * @type {Enumeration}
         * @constant
         * @default 0x1402
         */
        SHORT : new Enumeration(0x1402, 'SHORT', {
            sizeInBytes : Int16Array.BYTES_PER_ELEMENT
        }),

        /**
         * 16-bit unsigned short enumeration corresponding to <code>UNSIGNED_SHORT</code> and the type
         * of an element in <code>Uint16Array</code>.
         *
         * @type {Enumeration}
         * @constant
         * @default 0x1403
         */
        UNSIGNED_SHORT : new Enumeration(0x1403, 'UNSIGNED_SHORT', {
            sizeInBytes : Uint16Array.BYTES_PER_ELEMENT
        }),

        /**
         * 32-bit floating-point enumeration corresponding to <code>FLOAT</code> and the type
         * of an element in <code>Float32Array</code>.
         *
         * @type {Enumeration}
         * @constant
         * @default 0x1406
         */
        FLOAT : new Enumeration(0x1406, 'FLOAT', {
            sizeInBytes : Float32Array.BYTES_PER_ELEMENT
        }),

        /**
         * 64-bit floating-point enumeration corresponding to <code>gl.DOUBLE</code> (in Desktop OpenGL;
         * this is not supported in WebGL, and is emulated in Cesium via {@link GeometryPipeline.encodeAttribute})
         * and the type of an element in <code>Float64Array</code>.
         *
         * @memberOf ComponentDatatype
         *
         * @type {Enumeration}
         * @constant
         * @default 0x140A
         */
        DOUBLE : new Enumeration(0x140A, 'DOUBLE', {
            sizeInBytes : Float64Array.BYTES_PER_ELEMENT
        })
    };

    /**
     * Validates that the provided component datatype is a valid {@link ComponentDatatype}
     *
     * @param {ComponentDatatype} componentDatatype The component datatype to validate.
     *
     * @returns {Boolean} <code>true</code> if the provided component datatype is a valid enumeration value; otherwise, <code>false</code>.
     *
     * @example
     * if (!ComponentDatatype.validate(componentDatatype)) {
     *   throw new DeveloperError('componentDatatype must be a valid enumeration value.');
     * }
     */
    ComponentDatatype.validate = function(componentDatatype) {
        return defined(componentDatatype) && defined(componentDatatype.value) &&
               (componentDatatype.value === ComponentDatatype.BYTE.value ||
                componentDatatype.value === ComponentDatatype.UNSIGNED_BYTE.value ||
                componentDatatype.value === ComponentDatatype.SHORT.value ||
                componentDatatype.value === ComponentDatatype.UNSIGNED_SHORT.value ||
                componentDatatype.value === ComponentDatatype.FLOAT.value ||
                componentDatatype.value === ComponentDatatype.DOUBLE.value);
    };

    /**
     * Creates a typed array corresponding to component data type.
     * @memberof ComponentDatatype
     *
     * @param {ComponentDatatype} componentDatatype The component data type.
     * @param {Number|Array} valuesOrLength The length of the array to create or an array.
     *
     * @returns {Int8Array|Uint8Array|Int16Array|Uint16Array|Float32Array|Float64Array} A typed array.
     *
     * @exception {DeveloperError} componentDatatype is required.
     * @exception {DeveloperError} valuesOrLength is required.
     * @exception {DeveloperError} componentDatatype is not a valid enumeration value.
     *
     * @example
     * // creates a Float32Array with length of 100
     * var typedArray = ComponentDatatype.createTypedArray(ComponentDatatype.FLOAT, 100);
     */
    ComponentDatatype.createTypedArray = function(componentDatatype, valuesOrLength) {
        if (!defined(componentDatatype)) {
            throw new DeveloperError('componentDatatype is required.');
        }

        if (!defined(valuesOrLength)) {
            throw new DeveloperError('valuesOrLength is required.');
        }

        switch (componentDatatype.value) {
        case ComponentDatatype.BYTE.value:
            return new Int8Array(valuesOrLength);
        case ComponentDatatype.UNSIGNED_BYTE.value:
            return new Uint8Array(valuesOrLength);
        case ComponentDatatype.SHORT.value:
            return new Int16Array(valuesOrLength);
        case ComponentDatatype.UNSIGNED_SHORT.value:
            return new Uint16Array(valuesOrLength);
        case ComponentDatatype.FLOAT.value:
            return new Float32Array(valuesOrLength);
        case ComponentDatatype.DOUBLE.value:
            return new Float64Array(valuesOrLength);
        default:
            throw new DeveloperError('componentDatatype is not a valid enumeration value.');
        }
    };

    /**
     * Creates a typed view of an array of bytes.
     * @memberof ComponentDatatype
     *
     * @param {ComponentDatatype} componentDatatype The type of the view to create.
     * @param {ArrayBuffer} buffer The buffer storage to use for the view.
     * @param {Number} [byteOffset] The offset, in bytes, to the first element in the view.
     * @param {Number} [length] The number of elements in the view.
     *
     * @returns {Int8Array|Uint8Array|Int16Array|Uint16Array|Float32Array|Float64Array} A typed array view of the buffer.
     *
     * @exception {DeveloperError} componentDatatype is required.
     * @exception {DeveloperError} buffer is required.
     * @exception {DeveloperError} componentDatatype is not a valid enumeration value.
     */
    ComponentDatatype.createArrayBufferView = function(componentDatatype, buffer, byteOffset, length) {
        if (!defined(componentDatatype)) {
            throw new DeveloperError('componentDatatype is required.');
        }

        if (!defined(buffer)) {
            throw new DeveloperError('buffer is required.');
        }

        byteOffset = defaultValue(byteOffset, 0);
        length = defaultValue(length, (buffer.byteLength - byteOffset) / componentDatatype.sizeInBytes);

        switch (componentDatatype.value) {
        case ComponentDatatype.BYTE.value:
            return new Int8Array(buffer, byteOffset, length);
        case ComponentDatatype.UNSIGNED_BYTE.value:
            return new Uint8Array(buffer, byteOffset, length);
        case ComponentDatatype.SHORT.value:
            return new Int16Array(buffer, byteOffset, length);
        case ComponentDatatype.UNSIGNED_SHORT.value:
            return new Uint16Array(buffer, byteOffset, length);
        case ComponentDatatype.FLOAT.value:
            return new Float32Array(buffer, byteOffset, length);
        case ComponentDatatype.DOUBLE.value:
            return new Float64Array(buffer, byteOffset, length);
        default:
            throw new DeveloperError('componentDatatype is not a valid enumeration value.');
        }
    };

    return ComponentDatatype;
});

/*global define*/
define('Core/IndexDatatype',[
        './defined',
        './DeveloperError',
        './Math'
    ], function(
        defined,
        DeveloperError,
        CesiumMath) {
    "use strict";

    /**
     * Constants for WebGL index datatypes.  These corresponds to the
     * <code>type</code> parameter of <a href="http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawElements.xml">drawElements</a>.
     *
     * @alias IndexDatatype
     * @enumeration
     */
    var IndexDatatype = {
        /**
         * 0x1401.  8-bit unsigned byte corresponding to <code>UNSIGNED_BYTE</code> and the type
         * of an element in <code>Uint8Array</code>.
         *
         * @type {Number}
         * @constant
         */
        UNSIGNED_BYTE : 0x1401,

        /**
         * 0x1403.  16-bit unsigned short corresponding to <code>UNSIGNED_SHORT</code> and the type
         * of an element in <code>Uint16Array</code>.
         *
         * @type {Number}
         * @constant
         */
        UNSIGNED_SHORT : 0x1403,

        /**
         * 0x1405.  32-bit unsigned int corresponding to <code>UNSIGNED_INT</code> and the type
         * of an element in <code>Uint32Array</code>.
         *
         * @type {Number}
         * @constant
         */
        UNSIGNED_INT : 0x1405
    };

    /**
     * Returns the size, in bytes, of the corresponding datatype.
     *
     * @param {IndexDatatype} indexDatatype The index datatype to get the size of.
     *
     * @returns {Number} The size in bytes.
     *
     * @exception {DeveloperError} indexDatatype is required and must be a valid IndexDatatype constant.
     *
     * @example
     * // Returns 2
     * var size = IndexDatatype.getSizeInBytes(IndexDatatype.UNSIGNED_SHORT);
     */
    IndexDatatype.getSizeInBytes = function(indexDatatype) {
        switch(indexDatatype) {
            case IndexDatatype.UNSIGNED_BYTE:
                return Uint8Array.BYTES_PER_ELEMENT;
            case IndexDatatype.UNSIGNED_SHORT:
                return Uint16Array.BYTES_PER_ELEMENT;
            case IndexDatatype.UNSIGNED_INT:
                return Uint32Array.BYTES_PER_ELEMENT;
        }

        throw new DeveloperError('indexDatatype is required and must be a valid IndexDatatype constant.');
    };

    /**
     * Validates that the provided index datatype is a valid {@link IndexDatatype}.
     *
     * @param {IndexDatatype} indexDatatype The index datatype to validate.
     *
     * @returns {Boolean} <code>true</code> if the provided index datatype is a valid value; otherwise, <code>false</code>.
     *
     * @example
     * if (!IndexDatatype.validate(indexDatatype)) {
     *   throw new DeveloperError('indexDatatype must be a valid value.');
     * }
     */
    IndexDatatype.validate = function(indexDatatype) {
        return defined(indexDatatype) &&
               (indexDatatype === IndexDatatype.UNSIGNED_BYTE ||
                indexDatatype === IndexDatatype.UNSIGNED_SHORT ||
                indexDatatype === IndexDatatype.UNSIGNED_INT);
    };

    /**
     * Creates a typed array that will store indices, using either <code><Uint16Array</code>
     * or <code>Uint32Array</code> depending on the number of vertices.
     *
     * @param {Number} numberOfVertices Number of vertices that the indices will reference.
     * @param {Any} indicesLengthOrArray Passed through to the typed array constructor.
     *
     * @returns {Array} A <code>Uint16Array</code> or <code>Uint32Array</code> constructed with <code>indicesLengthOrArray</code>.
     *
     * @exception {DeveloperError} center is required.
     *
     * @example
     * this.indices = IndexDatatype.createTypedArray(positions.length / 3, numberOfIndices);
     */
    IndexDatatype.createTypedArray = function(numberOfVertices, indicesLengthOrArray) {
        if (!defined(numberOfVertices)) {
            throw new DeveloperError('numberOfVertices is required.');
        }

        if (numberOfVertices > CesiumMath.SIXTY_FOUR_KILOBYTES) {
            return new Uint32Array(indicesLengthOrArray);
        }

        return new Uint16Array(indicesLengthOrArray);
    };

    return IndexDatatype;
});

/*global define*/
define('Core/Geometry',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './BoundingSphere'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        BoundingSphere) {
    "use strict";

    /**
     * A geometry representation with attributes forming vertices and optional index data
     * defining primitives.  Geometries and an {@link Appearance}, which describes the shading,
     * can be assigned to a {@link Primitive} for visualization.  A <code>Primitive</code> can
     * be created from many heterogeneous - in many cases - geometries for performance.
     * <p>
     * In low-level rendering code, a vertex array can be created from a geometry using
     * {@link Context#createVertexArrayFromGeometry}.
     * </p>
     * <p>
     * Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.
     * </p>
     *
     * @alias Geometry
     * @constructor
     *
     * @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.
     * @param {PrimitiveType} options.primitiveType The type of primitives in the geometry.
     * @param {Array} [options.indices] Optional index data that determines the primitives in the geometry.
     * @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.

     * @exception {DeveloperError} options.attributes is required.
     * @exception {DeveloperError} options.primitiveType is required.
     *
     * @example
     * // Create geometry with a position attribute and indexed lines.
     * var positions = new Float64Array([
     *   0.0, 0.0, 0.0,
     *   7500000.0, 0.0, 0.0,
     *   0.0, 7500000.0, 0.0
     * ]);
     *
     * var geometry = new Geometry({
     *   attributes : {
     *     position : new GeometryAttribute({
     *       componentDatatype : ComponentDatatype.DOUBLE,
     *       componentsPerAttribute : 3,
     *       values : positions
     *     })
     *   },
     *   indices : new Uint16Array([0, 1, 1, 2, 2, 0]),
     *   primitiveType : PrimitiveType.LINES,
     *   boundingSphere : BoundingSphere.fromVertices(positions)
     * });
     *
     * @demo <a href="http://cesiumjs.org/Cesium/Apps/Sandcastle/index.html?src=Geometry%20and%20Appearances.html">Geometry and Appearances Demo</a>
     *
     * @see PolygonGeometry
     * @see ExtentGeometry
     * @see EllipseGeometry
     * @see CircleGeometry
     * @see WallGeometry
     * @see SimplePolylineGeometry
     * @see BoxGeometry
     * @see EllipsoidGeometry
     */
    var Geometry = function(options) {
        options = defaultValue(options, defaultValue.EMPTY_OBJECT);

        if (!defined(options.attributes)) {
            throw new DeveloperError('options.attributes is required.');
        }

        if (!defined(options.primitiveType)) {
            throw new DeveloperError('options.primitiveType is required.');
        }

        /**
         * Attributes, which make up the geometry's vertices.  Each property in this object corresponds to a
         * {@link GeometryAttribute} containing the attribute's data.
         * <p>
         * Attributes are always stored non-interleaved in a Geometry.  When geometry is prepared for rendering
         * with {@link Context#createVertexArrayFromGeometry}, attributes are generally written interleaved
         * into the vertex buffer for better rendering performance.
         * </p>
         * <p>
         * There are reserved attribute names with well-known semantics.  The following attributes
         * are created by a Geometry (depending on the provided {@link VertexFormat}.
         * <ul>
         *    <li><code>position</code> - 3D vertex position.  64-bit floating-point (for precision).  3 components per attribute.  See {@link VertexFormat#position}.</li>
         *    <li><code>normal</code> - Normal (normalized), commonly used for lighting.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#normal}.</li>
         *    <li><code>st</code> - 2D texture coordinate.  32-bit floating-point.  2 components per attribute.  See {@link VertexFormat#st}.</li>
         *    <li><code>binormal</code> - Binormal (normalized), used for tangent-space effects like bump mapping.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#binormal}.</li>
         *    <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#tangent}.</li>
         * </ul>
         * </p>
         * <p>
         * The following attribute names are generally not created by a Geometry, but are added
         * to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare
         * the geometry for rendering.
         * <ul>
         *    <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
         *    <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
         *    <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
         *    <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
         *    <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}.  32-bit floating-point.  4 components per attribute.</li>
         *    <li><code>pickColor</code> - RGBA color used for picking, created from {@link Context#createPickId}.  32-bit floating-point.  4 components per attribute.</li>
         * </ul>
         * </p>
         *
         * @type GeometryAttributes
         *
         * @default undefined
         *
         * @example
         * geometry.attributes.position = new GeometryAttribute({
         *   componentDatatype : ComponentDatatype.FLOAT,
         *   componentsPerAttribute : 3,
         *   values : new Float32Array()
         * });
         *
         * @see GeometryAttribute
         * @see VertexFormat
         */
        this.attributes = options.attributes;

        /**
         * Optional index data that - along with {@link Geometry#primitiveType} -
         * determines the primitives in the geometry.
         *
         * @type Array
         *
         * @default undefined
         */
        this.indices = options.indices;

        /**
         * The type of primitives in the geometry.  This is most often {@link PrimitiveType.TRIANGLES},
         * but can varying based on the specific geometry.
         *
         * @type PrimitiveType
         *
         * @default undefined
         */
        this.primitiveType = options.primitiveType;

        /**
         * An optional bounding sphere that fully encloses the geometry.  This is
         * commonly used for culling.
         *
         * @type BoundingSphere
         *
         * @default undefined
         */
        this.boundingSphere = options.boundingSphere;
    };

    /**
     * Computes the number of vertices in a geometry.  The runtime is linear with
     * respect to the number of attributes in a vertex, not the number of vertices.
     *
     * @memberof Geometry
     *
     * @param {Cartesian3} geometry The geometry.
     *
     * @returns {Number} The number of vertices in the geometry.
     *
     * @exception {DeveloperError} geometries is required.
     *
     * @example
     * var numVertices = Geometry.computeNumberOfVertices(geometry);
     */
    Geometry.computeNumberOfVertices = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var numberOfVertices = -1;
        for ( var property in geometry.attributes) {
            if (geometry.attributes.hasOwnProperty(property) &&
                    defined(geometry.attributes[property]) &&
                    defined(geometry.attributes[property].values)) {

                var attribute = geometry.attributes[property];
                var num = attribute.values.length / attribute.componentsPerAttribute;
                if ((numberOfVertices !== num) && (numberOfVertices !== -1)) {
                    throw new DeveloperError('All attribute lists must have the same number of attributes.');
                }
                numberOfVertices = num;
            }
        }

        return numberOfVertices;
    };

    return Geometry;
});

/*global define*/
define('Core/GeometryAttribute',[
        './defaultValue',
        './defined',
        './DeveloperError'
    ], function(
        defaultValue,
        defined,
        DeveloperError) {
    "use strict";

    /**
     * Values and type information for geometry attributes.  A {@link Geometry}
     * generally contains one or more attributes.  All attributes together form
     * the geometry's vertices.
     *
     * @alias GeometryAttribute
     * @constructor
     *
     * @param {ComponentDatatype} [options.componentDatatype=undefined] The datatype of each component in the attribute, e.g., individual elements in values.
     * @param {Number} [options.componentsPerAttribute=undefined] A number between 1 and 4 that defines the number of components in an attributes.
     * @param {Boolean} [options.normalize=false] When <code>true</code> and <code>componentDatatype</code> is an integer format, indicate that the components should be mapped to the range [0, 1] (unsigned) or [-1, 1] (signed) when they are accessed as floating-point for rendering.
     * @param {Array} [options.values=undefined] The values for the attributes stored in a typed array.
     *
     * @exception {DeveloperError} options.componentDatatype is required.
     * @exception {DeveloperError} options.componentsPerAttribute is required.
     * @exception {DeveloperError} options.componentsPerAttribute must be between 1 and 4.
     * @exception {DeveloperError} options.values is required.
     *
     * @example
     * var geometry = new Geometry({
     *   attributes : {
     *     position : new GeometryAttribute({
     *       componentDatatype : ComponentDatatype.FLOAT,
     *       componentsPerAttribute : 3,
     *       values : [
     *         0.0, 0.0, 0.0,
     *         7500000.0, 0.0, 0.0,
     *         0.0, 7500000.0, 0.0
     *       ]
     *     })
     *   },
     *   primitiveType : PrimitiveType.LINE_LOOP
     * });
     *
     * @see Geometry
     */
    var GeometryAttribute = function(options) {
        options = defaultValue(options, defaultValue.EMPTY_OBJECT);

        if (!defined(options.componentDatatype)) {
            throw new DeveloperError('options.componentDatatype is required.');
        }

        if (!defined(options.componentsPerAttribute)) {
            throw new DeveloperError('options.componentsPerAttribute is required.');
        }

        if (options.componentsPerAttribute < 1 || options.componentsPerAttribute > 4) {
            throw new DeveloperError('options.componentsPerAttribute must be between 1 and 4.');
        }

        if (!defined(options.values)) {
            throw new DeveloperError('options.values is required.');
        }

        /**
         * The datatype of each component in the attribute, e.g., individual elements in
         * {@see GeometryAttribute#values}.
         *
         * @type ComponentDatatype
         *
         * @default undefined
         */
        this.componentDatatype = options.componentDatatype;

        /**
         * A number between 1 and 4 that defines the number of components in an attributes.
         * For example, a position attribute with x, y, and z components would have 3 as
         * shown in the code example.
         *
         * @type Number
         *
         * @default undefined
         *
         * @example
         * attribute.componentDatatype : ComponentDatatype.FLOAT,
         * attribute.componentsPerAttribute : 3,
         * attribute.values = new Float32Array([
         *   0.0, 0.0, 0.0,
         *   7500000.0, 0.0, 0.0,
         *   0.0, 7500000.0, 0.0
         * ]);
         */
        this.componentsPerAttribute = options.componentsPerAttribute;

        /**
         * When <code>true</code> and <code>componentDatatype</code> is an integer format,
         * indicate that the components should be mapped to the range [0, 1] (unsigned)
         * or [-1, 1] (signed) when they are accessed as floating-point for rendering.
         * <p>
         * This is commonly used when storing colors using {@ ComponentDatatype.UNSIGNED_BYTE}.
         * </p>
         *
         * @type Boolean
         *
         * @default false
         *
         * @example
         * attribute.componentDatatype : ComponentDatatype.UNSIGNED_BYTE,
         * attribute.componentsPerAttribute : 4,
         * attribute.normalize = true;
         * attribute.values = new Uint8Array([
         *   Color.floatToByte(color.red)
         *   Color.floatToByte(color.green)
         *   Color.floatToByte(color.blue)
         *   Color.floatToByte(color.alpha)
         * ]);
         */
        this.normalize = defaultValue(options.normalize, false);

        /**
         * The values for the attributes stored in a typed array.  In the code example,
         * every three elements in <code>values</code> defines one attributes since
         * <code>componentsPerAttribute</code> is 3.
         *
         * @type Array
         *
         * @default undefined
         *
         * @example
         * attribute.componentDatatype : ComponentDatatype.FLOAT,
         * attribute.componentsPerAttribute : 3,
         * attribute.values = new Float32Array([
         *   0.0, 0.0, 0.0,
         *   7500000.0, 0.0, 0.0,
         *   0.0, 7500000.0, 0.0
         * ]);
         */
        this.values = options.values;
    };

    return GeometryAttribute;
});

/*global define*/
define('Core/GeometryAttributes',['./defaultValue'], function(defaultValue) {
    "use strict";

    /**
     * Attributes, which make up a geometry's vertices.  Each property in this object corresponds to a
     * {@link GeometryAttribute} containing the attribute's data.
     * <p>
     * Attributes are always stored non-interleaved in a Geometry.  When geometry is prepared for rendering
     * with {@link Context#createVertexArrayFromGeometry}, attributes are generally written interleaved
     * into the vertex buffer for better rendering performance.
     * </p>
     *
     * @alias GeometryAttributes
     * @constructor
     */
    var GeometryAttributes = function(options) {
        options = defaultValue(options, defaultValue.EMPTY_OBJECT);

        /**
         * The 3D position attribute.
         * <p>
         * 64-bit floating-point (for precision).  3 components per attribute.
         * </p>
         *
         * @type GeometryAttribute
         *
         * @default undefined
         */
        this.position = options.position;

        /**
         * The normal attribute (normalized), which is commonly used for lighting.
         * <p>
         * 32-bit floating-point.  3 components per attribute.
         * </p>
         *
         * @type GeometryAttribute
         *
         * @default undefined
         */
        this.normal = options.normal;

        /**
         * The 2D texture coordinate attribute.
         * <p>
         * 32-bit floating-point.  2 components per attribute
         * </p>
         *
         * @type GeometryAttribute
         *
         * @default undefined
         */
        this.st = options.st;

        /**
         * The binormal attribute (normalized), which is used for tangent-space effects like bump mapping.
         * <p>
         * 32-bit floating-point.  3 components per attribute.
         * </p>
         *
         * @type GeometryAttribute
         *
         * @default undefined
         */
        this.binormal = options.binormal;

        /**
         * The tangent attribute (normalized), which is used for tangent-space effects like bump mapping.
         * <p>
         * 32-bit floating-point.  3 components per attribute.
         * </p>
         *
         * @type GeometryAttribute
         *
         * @default undefined
         */
        this.tangent = options.tangent;

        /**
         * The color attribute.
         * <p>
         * 8-bit unsigned integer. 4 components per attribute.
         * </p>
         *
         * @type GeometryAttribute
         *
         * @default undefined
         */
        this.color = options.color;
    };

    return GeometryAttributes;
});
/*global define*/
define('Core/Cartesian2',[
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject'
    ], function(
        defaultValue,
        defined,
        DeveloperError,
        freezeObject) {
    "use strict";

    /**
     * A 2D Cartesian point.
     * @alias Cartesian2
     * @constructor
     *
     * @param {Number} [x=0.0] The X component.
     * @param {Number} [y=0.0] The Y component.
     *
     * @see Packable
     * @see Cartesian3
     * @see Cartesian4
     */
    var Cartesian2 = function(x, y) {
        /**
         * The Y component.
         * @type {Number}
         * @default 0.0
         */
        this.x = defaultValue(x, 0.0);

        /**
         * The X component.
         * @type {Number}
         * @default 0.0
         */
        this.y = defaultValue(y, 0.0);
    };

    /**
     * Creates a Cartesian2 instance from x and y coordinates.
     * @memberof Cartesian2
     *
     * @param {Number} x The x coordinate.
     * @param {Number} y The y coordinate.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     */
    Cartesian2.fromElements = function(x, y, result) {
        if (!defined(result)) {
            return new Cartesian2(x, y);
        }

        result.x = x;
        result.y = y;
        return result;
    };

    /**
     * Duplicates a Cartesian2 instance.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian to duplicate.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined)
     */
    Cartesian2.clone = function(cartesian, result) {
        if (!defined(cartesian)) {
            return undefined;
        }

        if (!defined(result)) {
            return new Cartesian2(cartesian.x, cartesian.y);
        }

        result.x = cartesian.x;
        result.y = cartesian.y;
        return result;
    };

    /**
     * Creates a Cartesian2 instance from an existing Cartesian3.  This simply takes the
     * x and y properties of the Cartesian3 and drops z.
     * @memberof Cartesian2
     * @function
     *
     * @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.fromCartesian3 = Cartesian2.clone;

    /**
     * Creates a Cartesian2 instance from an existing Cartesian4.  This simply takes the
     * x and y properties of the Cartesian4 and drops z and w.
     * @function
     *
     * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.fromCartesian4 = Cartesian2.clone;

    /**
     * The number of elements used to pack the object into an array.
     * @Type {Number}
     */
    Cartesian2.packedLength = 2;

    /**
     * Stores the provided instance into the provided array.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} value The value to pack.
     * @param {Array} array The array to pack into.
     * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
     *
     * @exception {DeveloperError} value is required.
     * @exception {DeveloperError} array is required.
     */
    Cartesian2.pack = function(value, array, startingIndex) {
                if (!defined(value)) {
            throw new DeveloperError('value is required');
        }

        if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        array[startingIndex++] = value.x;
        array[startingIndex] = value.y;
    };

    /**
     * Retrieves an instance from a packed array.
     * @memberof Cartesian2
     *
     * @param {Array} array The packed array.
     * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
     * @param {Cartesian2} [result] The object into which to store the result.
     *
     * @exception {DeveloperError} array is required.
     */
    Cartesian2.unpack = function(array, startingIndex, result) {
                if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Cartesian2();
        }
        result.x = array[startingIndex++];
        result.y = array[startingIndex];
        return result;
    };

    /**
     * Creates a Cartesian2 from two consecutive elements in an array.
     * @memberof Cartesian2
     *
     * @param {Array} array The array whose two consecutive elements correspond to the x and y components, respectively.
     * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
     * @param {Cartesian2} [result] The object onto which to store the result.
     *
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} array is required.
     *
     * @example
     * // Create a Cartesian2 with (1.0, 2.0)
     * var v = [1.0, 2.0];
     * var p = Cartesian2.fromArray(v);
     *
     * // Create a Cartesian2 with (1.0, 2.0) using an offset into an array
     * var v2 = [0.0, 0.0, 1.0, 2.0];
     * var p2 = Cartesian2.fromArray(v2, 2);
     */
    Cartesian2.fromArray = Cartesian2.unpack;

    /**
     * Computes the value of the maximum component for the supplied Cartesian.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} The cartesian to use.
     * @returns {Number} The value of the maximum component.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.getMaximumComponent = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return Math.max(cartesian.x, cartesian.y);
    };

    /**
     * Computes the value of the minimum component for the supplied Cartesian.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} The cartesian to use.
     * @returns {Number} The value of the minimum component.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.getMinimumComponent = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return Math.min(cartesian.x, cartesian.y);
    };

    /**
     * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} first A cartesian to compare.
     * @param {Cartesian2} second A cartesian to compare.
     * @param {Cartesian2} [result] The object into which to store the result.
     * @returns {Cartesian2} A cartesian with the minimum components.
     *
     * @exception {DeveloperError} first is required.
     * @exception {DeveloperError} second is required.
     */
    Cartesian2.getMinimumByComponent = function(first, second, result) {
                if (!defined(first)) {
            throw new DeveloperError('first is required.');
        }
        if (!defined(second)) {
            throw new DeveloperError('second is required.');
        }
        
        if (!defined(result)) {
            result = new Cartesian2();
        }

        result.x = Math.min(first.x, second.x);
        result.y = Math.min(first.y, second.y);

        return result;
    };

    /**
     * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} first A cartesian to compare.
     * @param {Cartesian2} second A cartesian to compare.
     * @param {Cartesian2} [result] The object into which to store the result.
     * @returns {Cartesian2} A cartesian with the maximum components.
     *
     * @exception {DeveloperError} first is required.
     * @exception {DeveloperError} second is required.
     */
    Cartesian2.getMaximumByComponent = function(first, second, result) {
                if (!defined(first)) {
            throw new DeveloperError('first is required.');
        }
        if (!defined(second)) {
            throw new DeveloperError('second is required.');
        }
        
        if (!defined(result)) {
            result = new Cartesian2();
        }

        result.x = Math.max(first.x, second.x);
        result.y = Math.max(first.y, second.y);
        return result;
    };

    /**
     * Computes the provided Cartesian's squared magnitude.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed.
     * @returns {Number} The squared magnitude.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.magnitudeSquared = function(cartesian) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        return cartesian.x * cartesian.x + cartesian.y * cartesian.y;
    };

    /**
     * Computes the Cartesian's magnitude (length).
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed.
     * @returns {Number} The magnitude.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.magnitude = function(cartesian) {
        return Math.sqrt(Cartesian2.magnitudeSquared(cartesian));
    };

    var distanceScratch = new Cartesian2();

    /**
     * Computes the distance between two points
     * @memberof Cartesian2
     *
     * @param {Cartesian2} left The first point to compute the distance from.
     * @param {Cartesian2} right The second point to compute the distance to.
     *
     * @returns {Number} The distance between two points.
     *
     * @exception {DeveloperError} left and right are required.
     *
     * @example
     * // Returns 1.0
     * var d = Cartesian2.distance(new Cartesian2(1.0, 0.0), new Cartesian2(2.0, 0.0));
     */
    Cartesian2.distance = function(left, right) {
                if (!defined(left) || !defined(right)) {
            throw new DeveloperError('left and right are required.');
        }
        
        Cartesian2.subtract(left, right, distanceScratch);
        return Cartesian2.magnitude(distanceScratch);
    };

    /**
     * Computes the normalized form of the supplied Cartesian.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian to be normalized.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.normalize = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var magnitude = Cartesian2.magnitude(cartesian);
        if (!defined(result)) {
            return new Cartesian2(cartesian.x / magnitude, cartesian.y / magnitude);
        }
        result.x = cartesian.x / magnitude;
        result.y = cartesian.y / magnitude;
        return result;
    };

    /**
     * Computes the dot (scalar) product of two Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} left The first Cartesian.
     * @param {Cartesian2} right The second Cartesian.
     * @returns {Number} The dot product.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian2.dot = function(left, right) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        return left.x * right.x + left.y * right.y;
    };

    /**
     * Computes the componentwise product of two Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} left The first Cartesian.
     * @param {Cartesian2} right The second Cartesian.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian2.multiplyComponents = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian2(left.x * right.x, left.y * right.y);
        }
        result.x = left.x * right.x;
        result.y = left.y * right.y;
        return result;
    };

    /**
     * Computes the componentwise sum of two Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} left The first Cartesian.
     * @param {Cartesian2} right The second Cartesian.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian2.add = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian2(left.x + right.x, left.y + right.y);
        }
        result.x = left.x + right.x;
        result.y = left.y + right.y;
        return result;
    };

    /**
     * Computes the componentwise difference of two Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} left The first Cartesian.
     * @param {Cartesian2} right The second Cartesian.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian2.subtract = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        if (!defined(result)) {
            return new Cartesian2(left.x - right.x, left.y - right.y);
        }
        result.x = left.x - right.x;
        result.y = left.y - right.y;
        return result;
    };

    /**
     * Multiplies the provided Cartesian componentwise by the provided scalar.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian to be scaled.
     * @param {Number} scalar The scalar to multiply with.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Cartesian2.multiplyByScalar = function(cartesian, scalar, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number.');
        }
        
        if (!defined(result)) {
            return new Cartesian2(cartesian.x * scalar, cartesian.y * scalar);
        }
        result.x = cartesian.x * scalar;
        result.y = cartesian.y * scalar;
        return result;
    };

    /**
     * Divides the provided Cartesian componentwise by the provided scalar.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian to be divided.
     * @param {Number} scalar The scalar to divide by.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Cartesian2.divideByScalar = function(cartesian, scalar, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number.');
        }
        
        if (!defined(result)) {
            return new Cartesian2(cartesian.x / scalar, cartesian.y / scalar);
        }
        result.x = cartesian.x / scalar;
        result.y = cartesian.y / scalar;
        return result;
    };

    /**
     * Negates the provided Cartesian.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian to be negated.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.negate = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        if (!defined(result)) {
            return new Cartesian2(-cartesian.x, -cartesian.y);
        }
        result.x = -cartesian.x;
        result.y = -cartesian.y;
        return result;
    };

    /**
     * Computes the absolute value of the provided Cartesian.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.abs = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        if (!defined(result)) {
            return new Cartesian2(Math.abs(cartesian.x), Math.abs(cartesian.y));
        }
        result.x = Math.abs(cartesian.x);
        result.y = Math.abs(cartesian.y);
        return result;
    };

    var lerpScratch = new Cartesian2();
    /**
     * Computes the linear interpolation or extrapolation at t using the provided cartesians.
     * @memberof Cartesian2
     *
     * @param start The value corresponding to t at 0.0.
     * @param end The value corresponding to t at 1.0.
     * @param t The point along t at which to interpolate.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} start is required.
     * @exception {DeveloperError} end is required.
     * @exception {DeveloperError} t is required and must be a number.
     */
    Cartesian2.lerp = function(start, end, t, result) {
                if (!defined(start)) {
            throw new DeveloperError('start is required.');
        }
        if (!defined(end)) {
            throw new DeveloperError('end is required.');
        }
        if (typeof t !== 'number') {
            throw new DeveloperError('t is required and must be a number.');
        }
        
        Cartesian2.multiplyByScalar(end, t, lerpScratch);
        result = Cartesian2.multiplyByScalar(start, 1.0 - t, result);
        return Cartesian2.add(lerpScratch, result, result);
    };

    var angleBetweenScratch = new Cartesian2();
    var angleBetweenScratch2 = new Cartesian2();
    /**
     * Returns the angle, in radians, between the provided Cartesians.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} left The first Cartesian.
     * @param {Cartesian2} right The second Cartesian.
     * @returns {Number} The angle between the Cartesians.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Cartesian2.angleBetween = function(left, right) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        Cartesian2.normalize(left, angleBetweenScratch);
        Cartesian2.normalize(right, angleBetweenScratch2);
        return Math.acos(Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2));
    };

    var mostOrthogonalAxisScratch = new Cartesian2();
    /**
     * Returns the axis that is most orthogonal to the provided Cartesian.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The most orthogonal axis.
     *
     * @exception {DeveloperError} cartesian is required.
     */
    Cartesian2.mostOrthogonalAxis = function(cartesian, result) {
                if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required.');
        }
        
        var f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch);
        Cartesian2.abs(f, f);

        if (f.x <= f.y) {
            result = Cartesian2.clone(Cartesian2.UNIT_X, result);
        } else {
            result = Cartesian2.clone(Cartesian2.UNIT_Y, result);
        }

        return result;
    };

    /**
     * Compares the provided Cartesians componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} [left] The first Cartesian.
     * @param {Cartesian2} [right] The second Cartesian.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Cartesian2.equals = function(left, right) {
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (left.x === right.x) &&
                (left.y === right.y));
    };

    /**
     * Compares the provided Cartesians componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} [left] The first Cartesian.
     * @param {Cartesian2} [right] The second Cartesian.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartesian2.equalsEpsilon = function(left, right, epsilon) {
                if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number.');
        }
        
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (Math.abs(left.x - right.x) <= epsilon) &&
                (Math.abs(left.y - right.y) <= epsilon));
    };

    /**
     * An immutable Cartesian2 instance initialized to (0.0, 0.0).
     * @memberof Cartesian2
     */
    Cartesian2.ZERO = freezeObject(new Cartesian2(0.0, 0.0));

    /**
     * An immutable Cartesian2 instance initialized to (1.0, 0.0).
     * @memberof Cartesian2
     */
    Cartesian2.UNIT_X = freezeObject(new Cartesian2(1.0, 0.0));

    /**
     * An immutable Cartesian2 instance initialized to (0.0, 1.0).
     * @memberof Cartesian2
     */
    Cartesian2.UNIT_Y = freezeObject(new Cartesian2(0.0, 1.0));

    /**
     * Duplicates this Cartesian2 instance.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     */
    Cartesian2.prototype.clone = function(result) {
        return Cartesian2.clone(this, result);
    };

    /**
     * Compares this Cartesian against the provided Cartesian componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} [right] The right hand side Cartesian.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Cartesian2.prototype.equals = function(right) {
        return Cartesian2.equals(this, right);
    };

    /**
     * Compares this Cartesian against the provided Cartesian componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Cartesian2
     *
     * @param {Cartesian2} [right] The right hand side Cartesian.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Cartesian2.prototype.equalsEpsilon = function(right, epsilon) {
        return Cartesian2.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Creates a string representing this Cartesian in the format '(x, y)'.
     * @memberof Cartesian2
     *
     * @returns {String} A string representing the provided Cartesian in the format '(x, y)'.
     */
    Cartesian2.prototype.toString = function() {
        return '(' + this.x + ', ' + this.y + ')';
    };

    return Cartesian2;
});

/*global define*/
define('Core/Matrix2',[
        './Cartesian2',
        './defaultValue',
        './defined',
        './DeveloperError',
        './freezeObject'
    ], function(
        Cartesian2,
        defaultValue,
        defined,
        DeveloperError,
        freezeObject) {
    "use strict";

    /**
     * A 2x2 matrix, indexable as a column-major order array.
     * Constructor parameters are in row-major order for code readability.
     * @alias Matrix2
     * @constructor
     *
     * @param {Number} [column0Row0=0.0] The value for column 0, row 0.
     * @param {Number} [column1Row0=0.0] The value for column 1, row 0.
     * @param {Number} [column0Row1=0.0] The value for column 0, row 1.
     * @param {Number} [column1Row1=0.0] The value for column 1, row 1.
     *
     * @see Matrix2.fromColumnMajor
     * @see Matrix2.fromRowMajorArray
     * @see Matrix2.fromScale
     * @see Matrix2.fromUniformScale
     * @see Matrix3
     * @see Matrix4
     */
    var Matrix2 = function(column0Row0, column1Row0, column0Row1, column1Row1) {
        this[0] = defaultValue(column0Row0, 0.0);
        this[1] = defaultValue(column0Row1, 0.0);
        this[2] = defaultValue(column1Row0, 0.0);
        this[3] = defaultValue(column1Row1, 0.0);
    };

    /**
     * Duplicates a Matrix2 instance.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to duplicate.
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. (Returns undefined if matrix is undefined)
     */
    Matrix2.clone = function(values, result) {
        if (!defined(values)) {
            return undefined;
        }
        if (!defined(result)) {
            return new Matrix2(values[0], values[2],
                               values[1], values[3]);
        }
        result[0] = values[0];
        result[1] = values[1];
        result[2] = values[2];
        result[3] = values[3];
        return result;
    };

    /**
     * Creates a Matrix2 from 4 consecutive elements in an array.
     * @memberof Matrix2
     *
     * @param {Array} array The array whose 4 consecutive elements correspond to the positions of the matrix.  Assumes column-major order.
     * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
     * @param {Matrix2} [result] The object onto which to store the result.
     *
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} array is required.
     *
     * @example
     * // Create the Matrix2:
     * // [1.0, 2.0]
     * // [1.0, 2.0]
     *
     * var v = [1.0, 1.0, 2.0, 2.0];
     * var m = Matrix2.fromArray(v);
     *
     * // Create same Matrix2 with using an offset into an array
     * var v2 = [0.0, 0.0, 1.0, 1.0, 2.0, 2.0];
     * var m2 = Matrix2.fromArray(v2, 2);
     */
    Matrix2.fromArray = function(array, startingIndex, result) {
                if (!defined(array)) {
            throw new DeveloperError('array is required');
        }
        
        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Matrix2();
        }

        result[0] = array[startingIndex];
        result[1] = array[startingIndex + 1];
        result[2] = array[startingIndex + 2];
        result[3] = array[startingIndex + 3];
        return result;
    };

    /**
     * Creates a Matrix2 instance from a column-major order array.
     * @memberof Matrix2
     * @function
     *
     * @param {Array} values The column-major order array.
     * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} values is required.
     */
    Matrix2.fromColumnMajorArray = function(values, result) {
                if (!defined(values)) {
            throw new DeveloperError('values parameter is required');
        }
        
        return Matrix2.clone(values, result);
    };

    /**
     * Creates a Matrix2 instance from a row-major order array.
     * The resulting matrix will be in column-major order.
     * @memberof Matrix2
     *
     * @param {Array} values The row-major order array.
     * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} values is required.
     */
    Matrix2.fromRowMajorArray = function(values, result) {
                if (!defined(values)) {
            throw new DeveloperError('values is required.');
        }
        
        if (!defined(result)) {
            return new Matrix2(values[0], values[1],
                               values[2], values[3]);
        }
        result[0] = values[0];
        result[1] = values[2];
        result[2] = values[1];
        result[3] = values[3];
        return result;
    };

    /**
     * Computes a Matrix2 instance representing a non-uniform scale.
     * @memberof Matrix2
     *
     * @param {Cartesian2} scale The x and y scale factors.
     * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * // Creates
     * //   [7.0, 0.0]
     * //   [0.0, 8.0]
     * var m = Matrix2.fromScale(new Cartesian2(7.0, 8.0));
     */
    Matrix2.fromScale = function(scale, result) {
                if (!defined(scale)) {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            return new Matrix2(
                scale.x, 0.0,
                0.0,     scale.y);
        }

        result[0] = scale.x;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = scale.y;
        return result;
    };

    /**
     * Computes a Matrix2 instance representing a uniform scale.
     * @memberof Matrix2
     *
     * @param {Number} scale The uniform scale factor.
     * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
     * @returns The modified result parameter, or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} scale is required.
     *
     * @example
     * // Creates
     * //   [2.0, 0.0]
     * //   [0.0, 2.0]
     * var m = Matrix2.fromUniformScale(2.0);
     */
    Matrix2.fromUniformScale = function(scale, result) {
                if (typeof scale !== 'number') {
            throw new DeveloperError('scale is required.');
        }
        
        if (!defined(result)) {
            return new Matrix2(
                scale, 0.0,
                0.0,   scale);
        }

        result[0] = scale;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = scale;
        return result;
    };

    /**
     * Creates a rotation matrix.
     *
     * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise.
     * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
     *
     * @returns The modified result parameter, or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} angle is required.
     *
     * @example
     * // Rotate a point 45 degrees counterclockwise.
     * var p = new Cartesian2(5, 6);
     * var m = Matrix2.fromRotation(CesiumMath.toRadians(45.0));
     * var rotated = Matrix2.multiplyByVector(m, p);
     */
    Matrix2.fromRotation = function(angle, result) {
                if (!defined(angle)) {
            throw new DeveloperError('angle is required.');
        }
        
        var cosAngle = Math.cos(angle);
        var sinAngle = Math.sin(angle);

        if (!defined(result)) {
            return new Matrix2(
                cosAngle, -sinAngle,
                sinAngle, cosAngle);
        }
        result[0] = cosAngle;
        result[1] = sinAngle;
        result[2] = -sinAngle;
        result[3] = cosAngle;
        return result;
    };

    /**
     * Creates an Array from the provided Matrix2 instance.
     * The array will be in column-major order.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to use..
     * @param {Array} [result] The Array onto which to store the result.
     * @returns {Array} The modified Array parameter or a new Array instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix2.toArray = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return [matrix[0], matrix[1], matrix[2], matrix[3]];
        }
        result[0] = matrix[0];
        result[1] = matrix[1];
        result[2] = matrix[2];
        result[3] = matrix[3];
        return result;
    };

    /**
     * Computes the array index of the element at the provided row and column.
     * @memberof Matrix2
     *
     * @param {Number} row The zero-based index of the row.
     * @param {Number} column The zero-based index of the column.
     * @returns {Number} The index of the element at the provided row and column.
     *
     * @exception {DeveloperError} row is required and must be 0 or 1.
     * @exception {DeveloperError} column is required and must be 0 or 1.
     *
     * @example
     * var myMatrix = new Matrix2();
     * var column1Row0Index = Matrix2.getElementIndex(1, 0);
     * var column1Row0 = myMatrix[column1Row0Index]
     * myMatrix[column1Row0Index] = 10.0;
     */
    Matrix2.getElementIndex = function(column, row) {
                if (typeof row !== 'number' || row < 0 || row > 1) {
            throw new DeveloperError('row is required and must be 0 or 1.');
        }
        if (typeof column !== 'number' || column < 0 || column > 1) {
            throw new DeveloperError('column is required and must be 0 or 1.');
        }
        
        return column * 2 + row;
    };

    /**
     * Retrieves a copy of the matrix column at the provided index as a Cartesian2 instance.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to use.
     * @param {Number} index The zero-based index of the column to retrieve.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} index is required and must be 0 or 1.
     *
     * @see Cartesian2
     */
    Matrix2.getColumn = function(matrix, index, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }

        if (typeof index !== 'number' || index < 0 || index > 1) {
            throw new DeveloperError('index is required and must be 0 or 1.');
        }
        
        var startIndex = index * 2;
        var x = matrix[startIndex];
        var y = matrix[startIndex + 1];

        if (!defined(result)) {
            return new Cartesian2(x, y);
        }
        result.x = x;
        result.y = y;
        return result;
    };

    /**
     * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian2 instance.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to use.
     * @param {Number} index The zero-based index of the column to set.
     * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified column.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} index is required and must be 0 or 1.
     *
     * @see Cartesian2
     */
    Matrix2.setColumn = function(matrix, index, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof index !== 'number' || index < 0 || index > 1) {
            throw new DeveloperError('index is required and must be 0 or 1.');
        }
        
        result = Matrix2.clone(matrix, result);
        var startIndex = index * 2;
        result[startIndex] = cartesian.x;
        result[startIndex + 1] = cartesian.y;
        return result;
    };

    /**
     * Retrieves a copy of the matrix row at the provided index as a Cartesian2 instance.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to use.
     * @param {Number} index The zero-based index of the row to retrieve.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} index is required and must be 0 or 1.
     *
     * @see Cartesian2
     */
    Matrix2.getRow = function(matrix, index, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required.');
        }

        if (typeof index !== 'number' || index < 0 || index > 1) {
            throw new DeveloperError('index is required and must be 0 or 1.');
        }
        
        var x = matrix[index];
        var y = matrix[index + 2];

        if (!defined(result)) {
            return new Cartesian2(x, y);
        }
        result.x = x;
        result.y = y;
        return result;
    };

    /**
     * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian2 instance.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to use.
     * @param {Number} index The zero-based index of the row to set.
     * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified row.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} index is required and must be 0 or 1.
     *
     * @see Cartesian2
     */
    Matrix2.setRow = function(matrix, index, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        if (typeof index !== 'number' || index < 0 || index > 1) {
            throw new DeveloperError('index is required and must be 0 or 1.');
        }
        
        result = Matrix2.clone(matrix, result);
        result[index] = cartesian.x;
        result[index + 2] = cartesian.y;
        return result;
    };

    /**
     * Computes the product of two matrices.
     * @memberof Matrix2
     *
     * @param {Matrix2} left The first matrix.
     * @param {Matrix2} right The second matrix.
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} left is required.
     * @exception {DeveloperError} right is required.
     */
    Matrix2.multiply = function(left, right, result) {
                if (!defined(left)) {
            throw new DeveloperError('left is required');
        }
        if (!defined(right)) {
            throw new DeveloperError('right is required');
        }
        
        var column0Row0 = left[0] * right[0] + left[2] * right[1];
        var column1Row0 = left[0] * right[2] + left[2] * right[3];
        var column0Row1 = left[1] * right[0] + left[3] * right[1];
        var column1Row1 = left[1] * right[2] + left[3] * right[3];

        if (!defined(result)) {
            return new Matrix2(column0Row0, column1Row0,
                               column0Row1, column1Row1);
        }
        result[0] = column0Row0;
        result[1] = column0Row1;
        result[2] = column1Row0;
        result[3] = column1Row1;
        return result;
    };

    /**
     * Computes the product of a matrix and a column vector.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix.
     * @param {Cartesian2} cartesian The column.
     * @param {Cartesian2} [result] The object onto which to store the result.
     * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} cartesian is required.
     */
    Matrix2.multiplyByVector = function(matrix, cartesian, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }
        
        var x = matrix[0] * cartesian.x + matrix[2] * cartesian.y;
        var y = matrix[1] * cartesian.x + matrix[3] * cartesian.y;

        if (!defined(result)) {
            return new Cartesian2(x, y);
        }
        result.x = x;
        result.y = y;
        return result;
    };

    /**
     * Computes the product of a matrix and a scalar.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix.
     * @param {Number} scalar The number to multiply by.
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Cartesian2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     * @exception {DeveloperError} scalar is required and must be a number.
     */
    Matrix2.multiplyByScalar = function(matrix, scalar, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        if (typeof scalar !== 'number') {
            throw new DeveloperError('scalar is required and must be a number');
        }
        
        if (!defined(result)) {
            return new Matrix2(matrix[0] * scalar, matrix[2] * scalar,
                               matrix[1] * scalar, matrix[3] * scalar);
        }
        result[0] = matrix[0] * scalar;
        result[1] = matrix[1] * scalar;
        result[2] = matrix[2] * scalar;
        result[3] = matrix[3] * scalar;
        return result;
    };

    /**
     * Creates a negated copy of the provided matrix.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to negate.
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix2.negate = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix2(-matrix[0], -matrix[2],
                               -matrix[1], -matrix[3]);
        }
        result[0] = -matrix[0];
        result[1] = -matrix[1];
        result[2] = -matrix[2];
        result[3] = -matrix[3];
        return result;
    };

    /**
     * Computes the transpose of the provided matrix.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix to transpose.
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix2.transpose = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        var column0Row0 = matrix[0];
        var column0Row1 = matrix[2];
        var column1Row0 = matrix[1];
        var column1Row1 = matrix[3];

        if (!defined(result)) {
            return new Matrix2(column0Row0, column1Row0,
                               column0Row1, column1Row1);
        }
        result[0] = column0Row0;
        result[1] = column0Row1;
        result[2] = column1Row0;
        result[3] = column1Row1;
        return result;
    };

    /**
     * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
     * @memberof Matrix2
     *
     * @param {Matrix2} matrix The matrix with signed elements.
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     *
     * @exception {DeveloperError} matrix is required.
     */
    Matrix2.abs = function(matrix, result) {
                if (!defined(matrix)) {
            throw new DeveloperError('matrix is required');
        }
        
        if (!defined(result)) {
            return new Matrix2(Math.abs(matrix[0]), Math.abs(matrix[2]),
                               Math.abs(matrix[1]), Math.abs(matrix[3]));
        }
        result[0] = Math.abs(matrix[0]);
        result[1] = Math.abs(matrix[1]);
        result[2] = Math.abs(matrix[2]);
        result[3] = Math.abs(matrix[3]);

        return result;
    };

    /**
     * Compares the provided matrices componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Matrix2
     *
     * @param {Matrix2} [left] The first matrix.
     * @param {Matrix2} [right] The second matrix.
     * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
     */
    Matrix2.equals = function(left, right) {
        return (left === right) ||
               (defined(left) &&
                defined(right) &&
                left[0] === right[0] &&
                left[1] === right[1] &&
                left[2] === right[2] &&
                left[3] === right[3]);
    };

    /**
     * Compares the provided matrices componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Matrix2
     *
     * @param {Matrix2} [left] The first matrix.
     * @param {Matrix2} [right] The second matrix.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Matrix2.equalsEpsilon = function(left, right, epsilon) {
                if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number');
        }
        
        return (left === right) ||
                (defined(left) &&
                defined(right) &&
                Math.abs(left[0] - right[0]) <= epsilon &&
                Math.abs(left[1] - right[1]) <= epsilon &&
                Math.abs(left[2] - right[2]) <= epsilon &&
                Math.abs(left[3] - right[3]) <= epsilon);
    };

    /**
     * An immutable Matrix2 instance initialized to the identity matrix.
     * @memberof Matrix2
     */
    Matrix2.IDENTITY = freezeObject(new Matrix2(1.0, 0.0,
                                                0.0, 1.0));

    /**
     * The index into Matrix2 for column 0, row 0.
     * @memberof Matrix2
     *
     * @example
     * var matrix = new Matrix2();
     * matrix[Matrix2.COLUMN0ROW0] = 5.0; //set column 0, row 0 to 5.0
     */
    Matrix2.COLUMN0ROW0 = 0;

    /**
     * The index into Matrix2 for column 0, row 1.
     * @memberof Matrix2
     *
     * @example
     * var matrix = new Matrix2();
     * matrix[Matrix2.COLUMN0ROW1] = 5.0; //set column 0, row 1 to 5.0
     */
    Matrix2.COLUMN0ROW1 = 1;

    /**
     * The index into Matrix2 for column 1, row 0.
     * @memberof Matrix2
     *
     * @example
     * var matrix = new Matrix2();
     * matrix[Matrix2.COLUMN1ROW0] = 5.0; //set column 1, row 0 to 5.0
     */
    Matrix2.COLUMN1ROW0 = 2;

    /**
     * The index into Matrix2 for column 1, row 1.
     * @memberof Matrix2
     *
     * @example
     * var matrix = new Matrix2();
     * matrix[Matrix2.COLUMN1ROW1] = 5.0; //set column 1, row 1 to 5.0
     */
    Matrix2.COLUMN1ROW1 = 3;

    /**
     * Duplicates the provided Matrix2 instance.
     * @memberof Matrix2
     *
     * @param {Matrix2} [result] The object onto which to store the result.
     * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
     */
    Matrix2.prototype.clone = function(result) {
        return Matrix2.clone(this, result);
    };

    /**
     * Compares this matrix to the provided matrix componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Matrix2
     *
     * @param {Matrix2} [right] The right hand side matrix.
     * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
     */
    Matrix2.prototype.equals = function(right) {
        return Matrix2.equals(this, right);
    };

    /**
     * Compares this matrix to the provided matrix componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Matrix2
     *
     * @param {Matrix2} [right] The right hand side matrix.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Matrix2.prototype.equalsEpsilon = function(right, epsilon) {
        return Matrix2.equalsEpsilon(this, right, epsilon);
    };

    /**
     * Creates a string representing this Matrix with each row being
     * on a separate line and in the format '(column0, column1)'.
     * @memberof Matrix2
     *
     * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1)'.
     */
    Matrix2.prototype.toString = function() {
        return '(' + this[0] + ', ' + this[2] + ')\n' +
               '(' + this[1] + ', ' + this[3] + ')';
    };

    return Matrix2;
});

/*global define*/
define('Core/PrimitiveType',[],function() {
    "use strict";

    /**
     * DOC_TBA
     *
     * @exports PrimitiveType
     */
    var PrimitiveType = {
        /**
         * 0x0000.  Points primitive where each vertex (or index) is a separate point.
         *
         * @type {Number}
         * @constant
         */
        POINTS : 0x0000,
        /**
         * 0x0001.  Lines primitive where each two vertices (or indices) is a line segment.  Line segments are not necessarily connected.
         *
         * @type {Number}
         * @constant
         */
        LINES : 0x0001,
        /**
         * 0x0002.  Line loop primitive where each vertex (or index) after the first connects a line to
         * the previous vertex, and the last vertex implicitly connects to the first.
         *
         * @type {Number}
         * @constant
         */
        LINE_LOOP : 0x0002,
        /**
         * 0x0003.  Line strip primitive where each vertex (or index) after the first connects a line to the previous vertex.
         *
         * @type {Number}
         * @constant
         */
        LINE_STRIP : 0x0003,
        /**
         * 0x0004.  Triangles primitive where each three vertices (or indices) is a triangle.  Triangles do not necessarily share edges.
         *
         * @type {Number}
         * @constant
         */
        TRIANGLES : 0x0004,
        /**
         * 0x0005.  Triangle strip primitive where each vertex (or index) after the first two connect to
         * the previous two vertices forming a triangle.  For example, this can be used to model a wall.
         *
         * @type {Number}
         * @constant
         */
        TRIANGLE_STRIP : 0x0005,
        /**
         * 0x0006.  Triangle fan primitive where each vertex (or index) after the first two connect to
         * the previous vertex and the first vertex forming a triangle.  For example, this can be used
         * to model a cone or circle.
         *
         * @type {Number}
         * @constant
         */
        TRIANGLE_FAN : 0x0006,

        /**
         * DOC_TBA
         *
         * @param {PrimitiveType} primitiveType
         *
         * @returns {Boolean}
         */
        validate : function(primitiveType) {
            return ((primitiveType === PrimitiveType.POINTS) ||
                    (primitiveType === PrimitiveType.LINES) ||
                    (primitiveType === PrimitiveType.LINE_LOOP) ||
                    (primitiveType === PrimitiveType.LINE_STRIP) ||
                    (primitiveType === PrimitiveType.TRIANGLES) ||
                    (primitiveType === PrimitiveType.TRIANGLE_STRIP) ||
                    (primitiveType === PrimitiveType.TRIANGLE_FAN));
        }
    };

    return PrimitiveType;
});

/*global define*/
define('Core/ExtentOutlineGeometry',[
        './defaultValue',
        './defined',
        './BoundingSphere',
        './Cartesian3',
        './Cartographic',
        './ComponentDatatype',
        './IndexDatatype',
        './DeveloperError',
        './Ellipsoid',
        './GeographicProjection',
        './Geometry',
        './GeometryAttribute',
        './GeometryAttributes',
        './Math',
        './Matrix2',
        './PrimitiveType'
    ], function(
        defaultValue,
        defined,
        BoundingSphere,
        Cartesian3,
        Cartographic,
        ComponentDatatype,
        IndexDatatype,
        DeveloperError,
        Ellipsoid,
        GeographicProjection,
        Geometry,
        GeometryAttribute,
        GeometryAttributes,
        CesiumMath,
        Matrix2,
        PrimitiveType) {
    "use strict";

    function isValidLatLon(latitude, longitude) {
        if (latitude < -CesiumMath.PI_OVER_TWO || latitude > CesiumMath.PI_OVER_TWO) {
            return false;
        }
        if (longitude > CesiumMath.PI || longitude < -CesiumMath.PI) {
            return false;
        }
        return true;
    }

    var nw = new Cartesian3();
    var nwCartographic = new Cartographic();
    var centerCartographic = new Cartographic();
    var center = new Cartesian3();
    var rotationMatrix = new Matrix2();
    var proj = new GeographicProjection();
    var position = new Cartesian3();
    var extrudedPosition = new Cartesian3();
    var bottomBoundingSphere = new BoundingSphere();
    var topBoundingSphere = new BoundingSphere();

    var cos = Math.cos;
    var sin = Math.sin;
    var sqrt = Math.sqrt;

    var stLatitude, stLongitude;

    function computePosition(params, row, col, maxHeight, minHeight) {
        var radiiSquared = params.radiiSquared;

        stLatitude = nwCartographic.latitude - params.granYCos * row + col * params.granXSin;
        var cosLatitude = cos(stLatitude);
        var nZ = sin(stLatitude);
        var kZ = radiiSquared.z * nZ;

        stLongitude = nwCartographic.longitude + row * params.granYSin + col * params.granXCos;
        var nX = cosLatitude * cos(stLongitude);
        var nY = cosLatitude * sin(stLongitude);

        var kX = radiiSquared.x * nX;
        var kY = radiiSquared.y * nY;

        var gamma = sqrt((kX * nX) + (kY * nY) + (kZ * nZ));

        var rSurfaceX = kX / gamma;
        var rSurfaceY = kY / gamma;
        var rSurfaceZ = kZ / gamma;

        if (defined(maxHeight)) {
            position.x = rSurfaceX + nX * maxHeight; // top
            position.y = rSurfaceY + nY * maxHeight;
            position.z = rSurfaceZ + nZ * maxHeight;
        }

        if (defined(minHeight)) {
            extrudedPosition.x = rSurfaceX + nX * minHeight; // bottom
            extrudedPosition.y = rSurfaceY + nY * minHeight;
            extrudedPosition.z = rSurfaceZ + nZ * minHeight;
        }
    }

    function constructExtent(params) {
        var extent = params.extent;
        var ellipsoid = params.ellipsoid;
        var size = params.size;
        var height = params.height;
        var width = params.width;
        var surfaceHeight = params.surfaceHeight;

        var positions = new Float64Array(size * 3);

        var posIndex = 0;
        var row = 0;
        var col;
        for (col = 0; col < width; col++) {
            computePosition(params, row, col, surfaceHeight);

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        col = width - 1;
        for (row = 1; row < height; row++) {
            computePosition(params, row, col, surfaceHeight);

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        row = height - 1;
        for (col = width-2; col >=0; col--){
            computePosition(params, row, col, surfaceHeight);

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        col = 0;
        for (row = height - 2; row > 0; row--) {
            computePosition(params, row, col, surfaceHeight);

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        var indicesSize = positions.length/3 * 2;
        var indices = IndexDatatype.createTypedArray(positions.length / 3, indicesSize);

        var index = 0;
        for(var i = 0; i < (positions.length/3)-1; i++) {
            indices[index++] = i;
            indices[index++] = i+1;
        }
        indices[index++] = (positions.length/3)-1;
        indices[index++] = 0;

        return {
            boundingSphere : BoundingSphere.fromExtent3D(extent, ellipsoid, surfaceHeight),
            positions: positions,
            indices: indices
        };
    }

    function constructExtrudedExtent(params, extrudedHeight) {
        var surfaceHeight = params.surfaceHeight;
        var minHeight = Math.min(extrudedHeight, surfaceHeight);
        var maxHeight = Math.max(extrudedHeight, surfaceHeight);
        if (CesiumMath.equalsEpsilon(minHeight, maxHeight, 0.1)) {
            return constructExtent(params);
        }
        var extent = params.extent;
        var height = params.height;
        var width = params.width;
        var size = params.size * 3;
        var ellipsoid = params.ellipsoid;

        var posIndex = 0;
        var row = 0;
        var col;
        var positions = new Float64Array(size * 2);
        for (col = 0; col < width; col++) {
            computePosition(params, row, col, maxHeight, minHeight);

            positions[posIndex + size] = extrudedPosition.x;
            positions[posIndex + size + 1] = extrudedPosition.y;
            positions[posIndex + size + 2] = extrudedPosition.z;

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        col = width - 1;
        for (row = 1; row < height; row++) {
            computePosition(params, row, col, maxHeight, minHeight);

            positions[posIndex + size] = extrudedPosition.x;
            positions[posIndex + size + 1] = extrudedPosition.y;
            positions[posIndex + size + 2] = extrudedPosition.z;

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        row = height - 1;
        for (col = width-2; col >=0; col--){
            computePosition(params, row, col, maxHeight, minHeight);

            positions[posIndex + size] = extrudedPosition.x;
            positions[posIndex + size + 1] = extrudedPosition.y;
            positions[posIndex + size + 2] = extrudedPosition.z;

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }
        col = 0;
        for (row = height - 2; row > 0; row--) {
            computePosition(params, row, col, maxHeight, minHeight);

            positions[posIndex + size] = extrudedPosition.x;
            positions[posIndex + size + 1] = extrudedPosition.y;
            positions[posIndex + size + 2] = extrudedPosition.z;

            positions[posIndex++] = position.x;
            positions[posIndex++] = position.y;
            positions[posIndex++] = position.z;
        }

        var indicesSize = positions.length/3 * 2 + 8;
        var indices = IndexDatatype.createTypedArray(positions.length / 3, indicesSize);
        var length = positions.length/6;
        var index = 0;
        for (var i = 0; i < length - 1; i++) {
            indices[index++] = i;
            indices[index++] =i+1;
            indices[index++] = i + length;
            indices[index++] = i + length + 1;
        }
        indices[index++] = length - 1;
        indices[index++] = 0;
        indices[index++] = length + length - 1;
        indices[index++] = length;

        indices[index++] = 0;
        indices[index++] = length;
        indices[index++] = width-1;
        indices[index++] = length + width-1;
        indices[index++] = width + height - 2;
        indices[index++] = width + height - 2 + length;
        indices[index++] =  2*width + height - 3;
        indices[index++] = 2*width + height - 3 + length;


        var topBS = BoundingSphere.fromExtent3D(extent, ellipsoid, maxHeight, topBoundingSphere);
        var bottomBS = BoundingSphere.fromExtent3D(extent, ellipsoid, minHeight, bottomBoundingSphere);
        var boundingSphere = BoundingSphere.union(topBS, bottomBS);

        return {
            boundingSphere : boundingSphere,
            positions: positions,
            indices: indices
        };
    }

    /**
     * A description of the outline of a a cartographic extent on an ellipsoid centered at the origin.
     *
     * @alias ExtentOutlineGeometry
     * @constructor
     *
     * @param {Extent} options.extent A cartographic extent with north, south, east and west properties in radians.
     * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the extent lies.
     * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
     * @param {Number} [options.height=0.0] The height from the surface of the ellipsoid.
     * @param {Number} [options.rotation=0.0] The rotation of the extent, in radians. A positive rotation is counter-clockwise.
     * @param {Number} [options.extrudedHeight] Height of extruded surface.
     *
     * @exception {DeveloperError} <code>options.extent</code> is required and must have north, south, east and west attributes.
     * @exception {DeveloperError} <code>options.extent.north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
     * @exception {DeveloperError} <code>options.extent.south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
     * @exception {DeveloperError} <code>options.extent.east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
     * @exception {DeveloperError} <code>options.extent.west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
     * @exception {DeveloperError} <code>options.extent.north</code> must be greater than <code>extent.south</code>.
     * @exception {DeveloperError} <code>options.extent.east</code> must be greater than <code>extent.west</code>.
     *
     * @see ExtentOutlineGeometry#createGeometry
     *
     * @example
     * var extent = new ExtentOutlineGeometry({
     *   ellipsoid : Ellipsoid.WGS84,
     *   extent : Extent.fromDegrees(-80.0, 39.0, -74.0, 42.0),
     *   height : 10000.0
     * });
     * var geometry = ExtentOutlineGeometry.createGeometry(extent);
     */
    var ExtentOutlineGeometry = function(options) {
        options = defaultValue(options, defaultValue.EMPTY_OBJECT);

        var extent = options.extent;
        var granularity = defaultValue(options.granularity, CesiumMath.RADIANS_PER_DEGREE);
        var ellipsoid = defaultValue(options.ellipsoid, Ellipsoid.WGS84);
        var surfaceHeight = defaultValue(options.height, 0.0);
        var rotation = options.rotation;

        if (!defined(extent)) {
            throw new DeveloperError('extent is required.');
        }

        extent.validate();

        this._extent = extent;
        this._granularity = granularity;
        this._ellipsoid = ellipsoid;
        this._surfaceHeight = surfaceHeight;
        this._rotation = rotation;
        this._extrudedHeight = options.extrudedHeight;
        this._workerName = 'createExtentOutlineGeometry';
    };

    /**
     * Computes the geometric representation of an outline of an extent, including its vertices, indices, and a bounding sphere.
     * @memberof ExtentOutlineGeometry
     *
     * @param {ExtentOutlineGeometry} extentGeometry A description of the extent outline.
     * @returns {Geometry} The computed vertices and indices.
     *
     * @exception {DeveloperError} Rotated extent is invalid.
     */
    ExtentOutlineGeometry.createGeometry = function(extentGeometry) {
        var extent = extentGeometry._extent;
        var granularity = extentGeometry._granularity;
        var ellipsoid = extentGeometry._ellipsoid;
        var surfaceHeight = extentGeometry._surfaceHeight;
        var rotation = extentGeometry._rotation;
        var extrudedHeight = extentGeometry._extrudedHeight;

        var width = Math.ceil((extent.east - extent.west) / granularity) + 1;
        var height = Math.ceil((extent.north - extent.south) / granularity) + 1;
        var granularityX = (extent.east - extent.west) / (width - 1);
        var granularityY = (extent.north - extent.south) / (height - 1);

        var radiiSquared = ellipsoid.getRadiiSquared();

        extent.getNorthwest(nwCartographic);
        extent.getCenter(centerCartographic);

        var granYCos = granularityY;
        var granXCos = granularityX;
        var granYSin = 0.0;
        var granXSin = 0.0;

        if (defined(rotation)) {
            var cosRotation = cos(rotation);
            granYCos *= cosRotation;
            granXCos *= cosRotation;

            var sinRotation = sin(rotation);
            granYSin = granularityY * sinRotation;
            granXSin = granularityX * sinRotation;

            proj.project(nwCartographic, nw);
            proj.project(centerCartographic, center);

            Cartesian3.subtract(nw, center, nw);
            Matrix2.fromRotation(rotation, rotationMatrix);
            Matrix2.multiplyByVector(rotationMatrix, nw, nw);
            Cartesian3.add(nw, center, nw);
            proj.unproject(nw, nwCartographic);

            var latitude = nwCartographic.latitude;
            var latitude0 = latitude + (width - 1) * granXSin;
            var latitude1 = latitude - granYCos * (height - 1);
            var latitude2 = latitude - granYCos * (height - 1) + (width - 1) * granXSin;

            var north = Math.max(latitude, latitude0, latitude1, latitude2);
            var south = Math.min(latitude, latitude0, latitude1, latitude2);

            var longitude = nwCartographic.longitude;
            var longitude0 = longitude + (width - 1) * granXCos;
            var longitude1 = longitude + (height - 1) * granYSin;
            var longitude2 = longitude + (height - 1) * granYSin + (width - 1) * granXCos;

            var east = Math.max(longitude, longitude0, longitude1, longitude2);
            var west = Math.min(longitude, longitude0, longitude1, longitude2);

            if (!isValidLatLon(north, west) || !isValidLatLon(north, east) ||
                    !isValidLatLon(south, west) || !isValidLatLon(south, east)) {
                throw new DeveloperError('Rotated extent is invalid.');
            }
        }

        var size = 2*width + 2*height - 4;

        var params = {
            granYCos : granYCos,
            granYSin : granYSin,
            granXCos : granXCos,
            granXSin : granXSin,
            radiiSquared : radiiSquared,
            ellipsoid : ellipsoid,
            extent : extent,
            width : width,
            height : height,
            surfaceHeight : surfaceHeight,
            size : size
        };

        var geometry;
        if (defined(extrudedHeight)) {
            geometry = constructExtrudedExtent(params, extrudedHeight);
        } else {
            geometry = constructExtent(params);
        }

        var attributes = new GeometryAttributes({
            position: new GeometryAttribute({
                componentDatatype : ComponentDatatype.DOUBLE,
                componentsPerAttribute : 3,
                values : geometry.positions
            })
        });

        return new Geometry({
            attributes : attributes,
            indices : geometry.indices,
            primitiveType : PrimitiveType.LINES,
            boundingSphere : geometry.boundingSphere
        });
    };

    return ExtentOutlineGeometry;
});

/*global define*/
define('Core/Extent',[
        './freezeObject',
        './defaultValue',
        './defined',
        './Ellipsoid',
        './Cartographic',
        './DeveloperError',
        './Math'
    ], function(
        freezeObject,
        defaultValue,
        defined,
        Ellipsoid,
        Cartographic,
        DeveloperError,
        CesiumMath) {
    "use strict";

    /**
     * A two dimensional region specified as longitude and latitude coordinates.
     *
     * @alias Extent
     * @constructor
     *
     * @param {Number} [west=0.0] The westernmost longitude, in radians, in the range [-Pi, Pi].
     * @param {Number} [south=0.0] The southernmost latitude, in radians, in the range [-Pi/2, Pi/2].
     * @param {Number} [east=0.0] The easternmost longitude, in radians, in the range [-Pi, Pi].
     * @param {Number} [north=0.0] The northernmost latitude, in radians, in the range [-Pi/2, Pi/2].
     */
    var Extent = function(west, south, east, north) {
        /**
         * The westernmost longitude in radians in the range [-Pi, Pi].
         *
         * @type {Number}
         * @default 0.0
         */
        this.west = defaultValue(west, 0.0);

        /**
         * The southernmost latitude in radians in the range [-Pi/2, Pi/2].
         *
         * @type {Number}
         * @default 0.0
         */
        this.south = defaultValue(south, 0.0);

        /**
         * The easternmost longitude in radians in the range [-Pi, Pi].
         *
         * @type {Number}
         * @default 0.0
         */
        this.east = defaultValue(east, 0.0);

        /**
         * The northernmost latitude in radians in the range [-Pi/2, Pi/2].
         *
         * @type {Number}
         * @default 0.0
         */
        this.north = defaultValue(north, 0.0);
    };

    /**
     * Creates an extent given the boundary longitude and latitude in degrees.
     *
     * @memberof Extent
     *
     * @param {Number} [west=0.0] The westernmost longitude in degrees in the range [-180.0, 180.0].
     * @param {Number} [south=0.0] The southernmost latitude in degrees in the range [-90.0, 90.0].
     * @param {Number} [east=0.0] The easternmost longitude in degrees in the range [-180.0, 180.0].
     * @param {Number} [north=0.0] The northernmost latitude in degrees in the range [-90.0, 90.0].
     * @param {Extent} [result] The object onto which to store the result, or undefined if a new instance should be created.
     *
     * @returns {Extent} The modified result parameter or a new Extent instance if none was provided.
     *
     * @example
     * var extent = Extent.fromDegrees(0.0, 20.0, 10.0, 30.0);
     */
    Extent.fromDegrees = function(west, south, east, north, result) {
        west = CesiumMath.toRadians(defaultValue(west, 0.0));
        south = CesiumMath.toRadians(defaultValue(south, 0.0));
        east = CesiumMath.toRadians(defaultValue(east, 0.0));
        north = CesiumMath.toRadians(defaultValue(north, 0.0));

        if (!defined(result)) {
            return new Extent(west, south, east, north);
        }

        result.west = west;
        result.south = south;
        result.east = east;
        result.north = north;

        return result;
    };

    /**
     * Creates the smallest possible Extent that encloses all positions in the provided array.
     * @memberof Extent
     *
     * @param {Array} cartographics The list of Cartographic instances.
     * @param {Extent} [result] The object onto which to store the result, or undefined if a new instance should be created.
     * @returns {Extent} The modified result parameter or a new Extent instance if none was provided.
     */
    Extent.fromCartographicArray = function(cartographics, result) {
        if (!defined(cartographics)) {
            throw new DeveloperError('cartographics is required.');
        }

        var minLon = Number.MAX_VALUE;
        var maxLon = -Number.MAX_VALUE;
        var minLat = Number.MAX_VALUE;
        var maxLat = -Number.MAX_VALUE;

        for ( var i = 0, len = cartographics.length; i < len; i++) {
            var position = cartographics[i];
            minLon = Math.min(minLon, position.longitude);
            maxLon = Math.max(maxLon, position.longitude);
            minLat = Math.min(minLat, position.latitude);
            maxLat = Math.max(maxLat, position.latitude);
        }

        if (!defined(result)) {
            return new Extent(minLon, minLat, maxLon, maxLat);
        }

        result.west = minLon;
        result.south = minLat;
        result.east = maxLon;
        result.north = maxLat;
        return result;
    };

    /**
     * Duplicates an Extent.
     *
     * @memberof Extent
     *
     * @param {Extent} extent The extent to clone.
     * @param {Extent} [result] The object onto which to store the result, or undefined if a new instance should be created.
     * @returns {Extent} The modified result parameter or a new Extent instance if none was provided. (Returns undefined if extent is undefined)
     */
    Extent.clone = function(extent, result) {
        if (!defined(extent)) {
            return undefined;
        }

        if (!defined(result)) {
            return new Extent(extent.west, extent.south, extent.east, extent.north);
        }

        result.west = extent.west;
        result.south = extent.south;
        result.east = extent.east;
        result.north = extent.north;
        return result;
    };

    /**
     * Duplicates this Extent.
     *
     * @memberof Extent
     *
     * @param {Extent} [result] The object onto which to store the result.
     * @returns {Extent} The modified result parameter or a new Extent instance if none was provided.
     */
    Extent.prototype.clone = function(result) {
        return Extent.clone(this, result);
    };

    /**
     * Compares the provided Extent with this Extent componentwise and returns
     * <code>true</code> if they are equal, <code>false</code> otherwise.
     * @memberof Extent
     *
     * @param {Extent} [other] The Extent to compare.
     * @returns {Boolean} <code>true</code> if the Extents are equal, <code>false</code> otherwise.
     */
    Extent.prototype.equals = function(other) {
        return Extent.equals(this, other);
    };

    /**
     * Compares the provided extents and returns <code>true</code> if they are equal,
     * <code>false</code> otherwise.
     *
     * @memberof Extent
     *
     * @param {Extent} [left] The first Extent.
     * @param {Extent} [right] The second Extent.
     *
     * @returns {Boolean} <code>true</code> if left and right are equal; otherwise <code>false</code>.
     */
    Extent.equals = function(left, right) {
        return (left === right) ||
               ((defined(left)) &&
                (defined(right)) &&
                (left.west === right.west) &&
                (left.south === right.south) &&
                (left.east === right.east) &&
                (left.north === right.north));
    };

    /**
     * Compares the provided Extent with this Extent componentwise and returns
     * <code>true</code> if they are within the provided epsilon,
     * <code>false</code> otherwise.
     * @memberof Extent
     *
     * @param {Extent} [other] The Extent to compare.
     * @param {Number} epsilon The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if the Extents are within the provided epsilon, <code>false</code> otherwise.
     *
     * @exception {DeveloperError} epsilon is required and must be a number.
     */
    Extent.prototype.equalsEpsilon = function(other, epsilon) {
        if (typeof epsilon !== 'number') {
            throw new DeveloperError('epsilon is required and must be a number.');
        }

        return defined(other) &&
               (Math.abs(this.west - other.west) <= epsilon) &&
               (Math.abs(this.south - other.south) <= epsilon) &&
               (Math.abs(this.east - other.east) <= epsilon) &&
               (Math.abs(this.north - other.north) <= epsilon);
    };

    /**
     * Checks this Extent's properties and throws if they are not in valid ranges.
     *
     * @exception {DeveloperError} <code>north</code> is required to be a number.
     * @exception {DeveloperError} <code>south</code> is required to be a number.
     * @exception {DeveloperError} <code>east</code> is required to be a number.
     * @exception {DeveloperError} <code>west</code> is required to be a number.
     * @exception {DeveloperError} <code>north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
     * @exception {DeveloperError} <code>south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
     * @exception {DeveloperError} <code>east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
     * @exception {DeveloperError} <code>west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
     */
    Extent.prototype.validate = function() {
        var north = this.north;
        if (typeof north !== 'number') {
            throw new DeveloperError('north is required to be a number.');
        }

        if (north < -CesiumMath.PI_OVER_TWO || north > CesiumMath.PI_OVER_TWO) {
            throw new DeveloperError('north must be in the interval [-Pi/2, Pi/2].');
        }

        var south = this.south;
        if (typeof south !== 'number') {
            throw new DeveloperError('south is required to be a number.');
        }

        if (south < -CesiumMath.PI_OVER_TWO || south > CesiumMath.PI_OVER_TWO) {
            throw new DeveloperError('south must be in the interval [-Pi/2, Pi/2].');
        }

        var west = this.west;
        if (typeof west !== 'number') {
            throw new DeveloperError('west is required to be a number.');
        }

        if (west < -Math.PI || west > Math.PI) {
            throw new DeveloperError('west must be in the interval [-Pi, Pi].');
        }

        var east = this.east;
        if (typeof east !== 'number') {
            throw new DeveloperError('east is required to be a number.');
        }

        if (east < -Math.PI || east > Math.PI) {
            throw new DeveloperError('east must be in the interval [-Pi, Pi].');
        }
    };

    /**
     * Computes the southwest corner of this extent.
     * @memberof Extent
     *
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
     */
    Extent.prototype.getSouthwest = function(result) {
        if (!defined(result)) {
            return new Cartographic(this.west, this.south);
        }
        result.longitude = this.west;
        result.latitude = this.south;
        result.height = 0.0;
        return result;
    };

    /**
     * Computes the northwest corner of this extent.
     * @memberof Extent
     *
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
     */
    Extent.prototype.getNorthwest = function(result) {
        if (!defined(result)) {
            return new Cartographic(this.west, this.north);
        }
        result.longitude = this.west;
        result.latitude = this.north;
        result.height = 0.0;
        return result;
    };

    /**
     * Computes the northeast corner of this extent.
     * @memberof Extent
     *
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
     */
    Extent.prototype.getNortheast = function(result) {
        if (!defined(result)) {
            return new Cartographic(this.east, this.north);
        }
        result.longitude = this.east;
        result.latitude = this.north;
        result.height = 0.0;
        return result;
    };

    /**
     * Computes the southeast corner of this extent.
     * @memberof Extent
     *
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
     */
    Extent.prototype.getSoutheast = function(result) {
        if (!defined(result)) {
            return new Cartographic(this.east, this.south);
        }
        result.longitude = this.east;
        result.latitude = this.south;
        result.height = 0.0;
        return result;
    };

    /**
     * Computes the center of this extent.
     * @memberof Extent
     *
     * @param {Cartographic} [result] The object onto which to store the result.
     * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
     */
    Extent.prototype.getCenter = function(result) {
        if (!defined(result)) {
            return new Cartographic((this.west + this.east) * 0.5, (this.south + this.north) * 0.5);
        }
        result.longitude = (this.west + this.east) * 0.5;
        result.latitude = (this.south + this.north) * 0.5;
        result.height = 0.0;
        return result;
    };

    /**
     * Computes the intersection of this extent with the provided extent.
     * @memberof Extent
     *
     * @param otherExtent The extent to intersect with this extent.
     * @param {Extent} [result] The object onto which to store the result.
     * @returns {Extent} The modified result parameter or a new Extent instance if none was provided.
     *
     * @exception {DeveloperError} otherExtent is required.
     */
    Extent.prototype.intersectWith = function(otherExtent, result) {
        if (!defined(otherExtent)) {
            throw new DeveloperError('otherExtent is required.');
        }
        var west = Math.max(this.west, otherExtent.west);
        var south = Math.max(this.south, otherExtent.south);
        var east = Math.min(this.east, otherExtent.east);
        var north = Math.min(this.north, otherExtent.north);
        if (!defined(result)) {
            return new Extent(west, south, east, north);
        }
        result.west = west;
        result.south = south;
        result.east = east;
        result.north = north;
        return result;
    };

    /**
     * Returns true if the provided cartographic is on or inside the extent, false otherwise.
     * @memberof Extent
     *
     * @param {Cartographic} cartographic The cartographic to test.
     * @returns {Boolean} true if the provided cartographic is inside the extent, false otherwise.
     *
     * @exception {DeveloperError} cartographic is required.
     */
    Extent.prototype.contains = function(cartographic) {
        if (!defined(cartographic)) {
            throw new DeveloperError('cartographic is required.');
        }
        return cartographic.longitude >= this.west &&
               cartographic.longitude <= this.east &&
               cartographic.latitude >= this.south &&
               cartographic.latitude <= this.north;
    };

    /**
     * Determines if the extent is empty, i.e., if <code>west >= east</code>
     * or <code>south >= north</code>.
     *
     * @memberof Extent
     *
     * @returns {Boolean} True if the extent is empty; otherwise, false.
     */
    Extent.prototype.isEmpty = function() {
        return this.west >= this.east || this.south >= this.north;
    };

    var subsampleLlaScratch = new Cartographic();
    /**
     * Samples this extent so that it includes a list of Cartesian points suitable for passing to
     * {@link BoundingSphere#fromPoints}.  Sampling is necessary to account
     * for extents that cover the poles or cross the equator.
     *
     * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid to use.
     * @param {Number} [surfaceHeight=0.0] The height of the extent above the ellipsoid.
     * @param {Array} [result] The array of Cartesians onto which to store the result.
     * @returns {Array} The modified result parameter or a new Array of Cartesians instances if none was provided.
     */
    Extent.prototype.subsample = function(ellipsoid, surfaceHeight, result) {
        ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
        surfaceHeight = defaultValue(surfaceHeight, 0.0);

        if (!defined(result)) {
            result = [];
        }
        var length = 0;

        var north = this.north;
        var south = this.south;
        var east = this.east;
        var west = this.west;

        var lla = subsampleLlaScratch;
        lla.height = surfaceHeight;

        lla.longitude = west;
        lla.latitude = north;
        result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
        length++;

        lla.longitude = east;
        result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
        length++;

        lla.latitude = south;
        result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
        length++;

        lla.longitude = west;
        result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
        length++;

        if (north < 0.0) {
            lla.latitude = north;
        } else if (south > 0.0) {
            lla.latitude = south;
        } else {
            lla.latitude = 0.0;
        }

        for ( var i = 1; i < 8; ++i) {
            var temp = -Math.PI + i * CesiumMath.PI_OVER_TWO;
            if (west < temp && temp < east) {
                lla.longitude = temp;
                result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
                length++;
            }
        }

        if (lla.latitude === 0.0) {
            lla.longitude = west;
            result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
            length++;
            lla.longitude = east;
            result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
            length++;
        }
        result.length = length;
        return result;
    };

    /**
     * The largest possible extent.
     * @memberof Extent
     * @type Extent
    */
    Extent.MAX_VALUE = freezeObject(new Extent(-Math.PI, -CesiumMath.PI_OVER_TWO, Math.PI, CesiumMath.PI_OVER_TWO));

    return Extent;
});

/*global define*/
define('Core/Color',[
        './defaultValue',
        './defined',
        './freezeObject',
        './DeveloperError',
        './FeatureDetection',
        './Math'
    ], function(
        defaultValue,
        defined,
        freezeObject,
        DeveloperError,
        FeatureDetection,
        CesiumMath) {
    "use strict";

    function hue2rgb(m1, m2, h) {
        if (h < 0) {
            h += 1;
        }
        if (h > 1) {
            h -= 1;
        }
        if (h * 6 < 1) {
            return m1 + (m2 - m1) * 6 * h;
        }
        if (h * 2 < 1) {
            return m2;
        }
        if (h * 3 < 2) {
            return m1 + (m2 - m1) * (2 / 3 - h) * 6;
        }
        return m1;
    }

    /**
     * A color, specified using red, green, blue, and alpha values,
     * which range from <code>0</code> (no intensity) to <code>1.0</code> (full intensity).
     * @param {Number} [red=1.0] The red component.
     * @param {Number} [green=1.0] The green component.
     * @param {Number} [blue=1.0] The blue component.
     * @param {Number} [alpha=1.0] The alpha component.
     *
     * @constructor
     * @alias Color
     *
     * @see Packable
     */
    var Color = function(red, green, blue, alpha) {
        /**
         * The red component.
         * @type {Number}
         * @default 1.0
         */
        this.red = defaultValue(red, 1.0);
        /**
         * The green component.
         * @type {Number}
         * @default 1.0
         */
        this.green = defaultValue(green, 1.0);
        /**
         * The blue component.
         * @type {Number}
         * @default 1.0
         */
        this.blue = defaultValue(blue, 1.0);
        /**
         * The alpha component.
         * @type {Number}
         * @default 1.0
         */
        this.alpha = defaultValue(alpha, 1.0);
    };

    /**
     * Creates a new Color specified using red, green, blue, and alpha values
     * that are in the range of 0 to 255, converting them internally to a range of 0.0 to 1.0.
     * @memberof Color
     *
     * @param {Number} [red=255] The red component.
     * @param {Number} [green=255] The green component.
     * @param {Number} [blue=255] The blue component.
     * @param {Number} [alpha=255] The alpha component.
     * @returns {Color} A new color instance.
     */
    Color.fromBytes = function(red, green, blue, alpha) {
        red = Color.byteToFloat(defaultValue(red, 255.0));
        green = Color.byteToFloat(defaultValue(green, 255.0));
        blue = Color.byteToFloat(defaultValue(blue, 255.0));
        alpha = Color.byteToFloat(defaultValue(alpha, 255.0));
        return new Color(red, green, blue, alpha);
    };

    var scratchArrayBuffer;
    var scratchUint32Array;
    var scratchUint8Array;
    if (FeatureDetection.supportsTypedArrays()) {
        scratchArrayBuffer = new ArrayBuffer(4);
        scratchUint32Array = new Uint32Array(scratchArrayBuffer);
        scratchUint8Array = new Uint8Array(scratchArrayBuffer);
    }

    /**
     * Creates a new Color from a single numeric unsigned 32-bit RGBA value, using the endianness
     * of the system.
     *
     * @memberof Color
     *
     * @param {Number} rgba A single numeric unsigned 32-bit RGBA value.
     * @returns {Color} A new color instance.
     *
     * @example
     * var color = Color.fromRgba(0x67ADDFFF);
     *
     * @see Color#toRgba
     */
    Color.fromRgba = function(rgba) {
        // scratchUint32Array and scratchUint8Array share an underlying array buffer
        scratchUint32Array[0] = rgba;
        return Color.fromBytes(scratchUint8Array[0], scratchUint8Array[1], scratchUint8Array[2], scratchUint8Array[3]);
    };

    /**
     * Creates a Color instance from hue, saturation, and lightness.
     * @memberof Color
     *
     * @param {Number} [hue=0] The hue angle 0...1
     * @param {Number} [saturation=0] The saturation value 0...1
     * @param {Number} [lightness=0] The lightness value 0...1
     * @param {Number} [alpha=1.0] The alpha component 0...1
     * @returns {Color} The color object.
     *
     * @see <a href="http://www.w3.org/TR/css3-color/#hsl-color">CSS color values</a>
     */
    Color.fromHsl = function(hue, saturation, lightness, alpha) {
        hue = defaultValue(hue, 0.0) % 1.0;
        saturation = defaultValue(saturation, 0.0);
        lightness = defaultValue(lightness, 0.0);
        alpha = defaultValue(alpha, 1.0);

        var red = lightness;
        var green = lightness;
        var blue = lightness;

        if (saturation !== 0) {
            var m2;
            if (lightness < 0.5) {
                m2 = lightness * (1 + saturation);
            } else {
                m2 = lightness + saturation - lightness * saturation;
            }

            var m1 = 2.0 * lightness - m2;
            red = hue2rgb(m1, m2, hue + 1 / 3);
            green = hue2rgb(m1, m2, hue);
            blue = hue2rgb(m1, m2, hue - 1 / 3);
        }

        return new Color(red, green, blue, alpha);
    };

    /**
     * Creates a random color using the provided options. For reproducible random colors, you should
     * call {@link CesiumMath#setRandomNumberSeed} once at the beginning of your application.
     * @memberof Color
     *
     * @param {Object} [options] Object containing the options.
     * @param {Number} [options.red] If specified, the red component to use instead of a randomized value.
     * @param {Number} [options.minimumRed=0.0] The maximum red value to generate if none was specified.
     * @param {Number} [options.maximumRed=1.0] The minimum red value to generate if none was specified.
     * @param {Number} [options.green] If specified, the green component to use instead of a randomized value.
     * @param {Number} [options.minimumGreen=0.0] The maximum green value to generate if none was specified.
     * @param {Number} [options.maximumGreen=1.0] The minimum green value to generate if none was specified.
     * @param {Number} [options.blue] If specified, the blue component to use instead of a randomized value.
     * @param {Number} [options.minimumBlue=0.0] The maximum blue value to generate if none was specified.
     * @param {Number} [options.maximumBlue=1.0] The minimum blue value to generate if none was specified.
     * @param {Number} [options.alpha] If specified, the alpha component to use instead of a randomized value.
     * @param {Number} [options.minimumAlpha=0.0] The maximum alpha value to generate if none was specified.
     * @param {Number} [options.maximumAlpha=1.0] The minimum alpha value to generate if none was specified.
     * @param {Color} [result] The object to store the result in, if undefined a new instance will be created.
     *
     * @returns {Color} The modified result parameter or a new instance if result was undefined.
     *
     * @exception {DeveloperError} minimumRed must be less than or equal to maximumRed.
     * @exception {DeveloperError} minimumGreen must be less than or equal to maximumGreen.
     * @exception {DeveloperError} minimumBlue must be less than or equal to maximumBlue.
     * @exception {DeveloperError} minimumAlpha must be less than or equal to maximumAlpha.
     *
     * @example
     * //Create a completely random color
     * var color = Color.fromRandom();
     *
     * //Create a random shade of yellow.
     * var color = Color.fromRandom({
     *     red : 1.0,
     *     green : 1.0,
     *     alpha : 1.0
     * });
     *
     * //Create a random bright color.
     * var color = Color.fromRandom({
     *     minimumRed : 0.75,
     *     minimumGreen : 0.75,
     *     minimumBlue : 0.75,
     *     alpha : 1.0
     * });
     */
    Color.fromRandom = function(options, result) {
        options = defaultValue(options, defaultValue.EMPTY_OBJECT);

        var red = options.red;
        if (!defined(red)) {
            var minimumRed = defaultValue(options.minimumRed, 0);
            var maximumRed = defaultValue(options.maximumRed, 1.0);

            if (minimumRed > maximumRed) {
                throw new DeveloperError("minimumRed must be less than or equal to maximumRed");
            }
            red = minimumRed + (CesiumMath.nextRandomNumber() * (maximumRed - minimumRed));
        }

        var green = options.green;
        if (!defined(green)) {
            var minimumGreen = defaultValue(options.minimumGreen, 0);
            var maximumGreen = defaultValue(options.maximumGreen, 1.0);

            if (minimumGreen > maximumGreen) {
                throw new DeveloperError("minimumGreen must be less than or equal to maximumGreen");
            }
            green = minimumGreen + (CesiumMath.nextRandomNumber() * (maximumGreen - minimumGreen));
        }

        var blue = options.blue;
        if (!defined(blue)) {
            var minimumBlue = defaultValue(options.minimumBlue, 0);
            var maximumBlue = defaultValue(options.maximumBlue, 1.0);

            if (minimumBlue > maximumBlue) {
                throw new DeveloperError("minimumBlue must be less than or equal to maximumBlue");
            }
            blue = minimumBlue + (CesiumMath.nextRandomNumber() * (maximumBlue - minimumBlue));
        }

        var alpha = options.alpha;
        if (!defined(alpha)) {
            var minimumAlpha = defaultValue(options.minimumAlpha, 0);
            var maximumAlpha = defaultValue(options.maximumAlpha, 1.0);

            if (minimumAlpha > maximumAlpha) {
                throw new DeveloperError("minimumAlpha must be less than or equal to maximumAlpha");
            }
            alpha = minimumAlpha + (CesiumMath.nextRandomNumber() * (maximumAlpha - minimumAlpha));
        }

        if (!defined(result)) {
            return new Color(red, green, blue, alpha);
        }

        result.red = red;
        result.green = green;
        result.blue = blue;
        result.alpha = alpha;
        return result;
    };

    //#rgb
    var rgbMatcher = /^#([0-9a-f])([0-9a-f])([0-9a-f])$/i;
    //#rrggbb
    var rrggbbMatcher = /^#([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})$/i;
    //rgb(), rgba(), or rgb%()
    var rgbParenthesesMatcher = /^rgba?\(\s*([0-9.]+%?)\s*,\s*([0-9.]+%?)\s*,\s*([0-9.]+%?)(?:\s*,\s*([0-9.]+))?\s*\)$/i;
    //hsl(), hsla(), or hsl%()
    var hslParenthesesMatcher = /^hsla?\(\s*([0-9.]+)\s*,\s*([0-9.]+%)\s*,\s*([0-9.]+%)(?:\s*,\s*([0-9.]+))?\s*\)$/i;

    /**
     * Creates a Color instance from a CSS color value.
     * @memberof Color
     *
     * @param {String} color The CSS color value in #rgb, #rrggbb, rgb(), rgba(), hsl(), or hsla() format.
     * @returns {Color} The color object, or undefined if the string was not a valid CSS color.
     *
     * @exception {DeveloperError} color is required.
     *
     * @example
     * var cesiumBlue = Color.fromCssColorString('#67ADDF');
     * var green = Color.fromCssColorString('green');
     *
     * @see <a href="http://www.w3.org/TR/css3-color">CSS color values</a>
     */
    Color.fromCssColorString = function(color) {
        if (!defined(color)) {
            throw new DeveloperError('color is required');
        }

        var namedColor = Color[color.toUpperCase()];
        if (defined(namedColor)) {
            return Color.clone(namedColor);
        }

        var matches = rgbMatcher.exec(color);
        if (matches !== null) {
            return new Color(parseInt(matches[1], 16) / 15.0,
                             parseInt(matches[2], 16) / 15.0,
                             parseInt(matches[3], 16) / 15.0);
        }

        matches = rrggbbMatcher.exec(color);
        if (matches !== null) {
            return new Color(parseInt(matches[1], 16) / 255.0,
                             parseInt(matches[2], 16) / 255.0,
                             parseInt(matches[3], 16) / 255.0);
        }

        matches = rgbParenthesesMatcher.exec(color);
        if (matches !== null) {
            return new Color(parseFloat(matches[1]) / ('%' === matches[1].substr(-1) ? 100.0 : 255.0),
                             parseFloat(matches[2]) / ('%' === matches[2].substr(-1) ? 100.0 : 255.0),
                             parseFloat(matches[3]) / ('%' === matches[3].substr(-1) ? 100.0 : 255.0),
                             parseFloat(defaultValue(matches[4], '1.0')));
        }

        matches = hslParenthesesMatcher.exec(color);
        if (matches !== null) {
            return Color.fromHsl(parseFloat(matches[1]) / 360.0,
                                 parseFloat(matches[2]) / 100.0,
                                 parseFloat(matches[3]) / 100.0,
                                 parseFloat(defaultValue(matches[4], '1.0')));
        }

        return undefined;
    };

    /**
     * The number of elements used to pack the object into an array.
     * @Type {Number}
     */
    Color.packedLength = 4;

    /**
     * Stores the provided instance into the provided array.
     * @memberof Color
     *
     * @param {Color} value The value to pack.
     * @param {Array} array The array to pack into.
     * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
     *
     * @exception {DeveloperError} value is required.
     * @exception {DeveloperError} array is required.
     */
    Color.pack = function(value, array, startingIndex) {
        if (!defined(value)) {
            throw new DeveloperError('value is required');
        }

        if (!defined(array)) {
            throw new DeveloperError('array is required');
        }

        startingIndex = defaultValue(startingIndex, 0);

        array[startingIndex++] = value.red;
        array[startingIndex++] = value.green;
        array[startingIndex++] = value.blue;
        array[startingIndex] = value.alpha;
    };

    /**
     * Retrieves an instance from a packed array.
     * @memberof Color
     *
     * @param {Array} array The packed array.
     * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
     * @param {Color} [result] The object into which to store the result.
     *
     * @exception {DeveloperError} array is required.
     */
    Color.unpack = function(array, startingIndex, result) {
        if (!defined(array)) {
            throw new DeveloperError('array is required');
        }

        startingIndex = defaultValue(startingIndex, 0);

        if (!defined(result)) {
            result = new Color();
        }
        result.red = array[startingIndex++];
        result.green = array[startingIndex++];
        result.blue = array[startingIndex++];
        result.alpha = array[startingIndex];
        return result;
    };

    /**
     * Converts a 'byte' color component in the range of 0 to 255 into
     * a 'float' color component in the range of 0 to 1.0.
     * @memberof Color
     *
     * @param {Number} number The number to be converted.
     * @returns {number} The converted number.
     */
    Color.byteToFloat = function(number) {
        return number / 255.0;
    };

    /**
     * Converts a 'float' color component in the range of 0 to 1.0 into
     * a 'byte' color component in the range of 0 to 255.
     * @memberof Color
     *
     * @param {Number} number The number to be converted.
     * @returns {number} The converted number.
     */
    Color.floatToByte = function(number) {
        return number === 1.0 ? 255.0 : (number * 256.0) | 0;
    };

    /**
     * Duplicates a Color.
     * @memberof Color
     *
     * @param {Color} color The Color to duplicate.
     * @param {Color} [result] The object to store the result in, if undefined a new instance will be created.
     * @returns {Color} The modified result parameter or a new instance if result was undefined. (Returns undefined if color is undefined)
     */
    Color.clone = function(color, result) {
        if (!defined(color)) {
            return undefined;
        }
        if (!defined(result)) {
            return new Color(color.red, color.green, color.blue, color.alpha);
        }
        result.red = color.red;
        result.green = color.green;
        result.blue = color.blue;
        result.alpha = color.alpha;
        return result;
    };

    /**
     * Returns true if the first Color equals the second color.
     * @memberof Color
     *
     * @param {Color} left The first Color to compare for equality.
     * @param {Color} right The second Color to compare for equality.
     * @returns {Boolean} <code>true</code> if the Colors are equal; otherwise, <code>false</code>.
     */
    Color.equals = function(left, right) {
        return (left === right) || //
               (defined(left) && //
                defined(right) && //
                left.red === right.red && //
                left.green === right.green && //
                left.blue === right.blue && //
                left.alpha === right.alpha);
    };

    /**
     * Returns a duplicate of a Color instance.
     * @memberof Color
     *
     * @param {Color} [result] The object to store the result in, if undefined a new instance will be created.
     * @returns {Color} The modified result parameter or a new instance if result was undefined.
     */
    Color.prototype.clone = function(result) {
        return Color.clone(this, result);
    };

    /**
     * Returns true if this Color equals other.
     * @memberof Color
     *
     * @param {Color} other The Color to compare for equality.
     * @returns {Boolean} <code>true</code> if the Colors are equal; otherwise, <code>false</code>.
     */
    Color.prototype.equals = function(other) {
        return Color.equals(this, other);
    };

    /**
     * Returns <code>true</code> if this Color equals other componentwise within the specified epsilon.
     * @memberof Color
     *
     * @param {Color} other The Color to compare for equality.
     * @param {Number} [epsilon=0.0] The epsilon to use for equality testing.
     * @returns {Boolean} <code>true</code> if the Colors are equal within the specified epsilon; otherwise, <code>false</code>.
     */
    Color.prototype.equalsEpsilon = function(other, epsilon) {
        return (this === other) || //
               ((defined(other)) && //
                (Math.abs(this.red - other.red) <= epsilon) && //
                (Math.abs(this.green - other.green) <= epsilon) && //
                (Math.abs(this.blue - other.blue) <= epsilon) && //
                (Math.abs(this.alpha - other.alpha) <= epsilon));
    };

    /**
     * Creates a string representing this Color in the format '(red, green, blue, alpha)'.
     * @memberof Color
     *
     * @returns {String} A string representing this Color in the format '(red, green, blue, alpha)'.
     */
    Color.prototype.toString = function() {
        return '(' + this.red + ', ' + this.green + ', ' + this.blue + ', ' + this.alpha + ')';
    };

    /**
     * Creates a string containing the CSS color value for this color.
     * @memberof Color
     *
     * @returns {String} The CSS equivalent of this color.
     * @see <a href="http://www.w3.org/TR/css3-color/#rgba-color">CSS RGB or RGBA color values</a>
     */
    Color.prototype.toCssColorString = function() {
        var red = Color.floatToByte(this.red);
        var green = Color.floatToByte(this.green);
        var blue = Color.floatToByte(this.blue);
        if (this.alpha === 1) {
            return 'rgb(' + red + ',' + green + ',' + blue + ')';
        }
        return 'rgba(' + red + ',' + green + ',' + blue + ',' + this.alpha + ')';
    };

    /**
     * Converts this color to an array of red, green, blue, and alpha values
     * that are in the range of 0 to 255.
     * @memberof Color
     *
     * @param {Array} [result] The array to store the result in, if undefined a new instance will be created.
     * @returns {Array} The modified result parameter or a new instance if result was undefined.
     */
    Color.prototype.toBytes = function(result) {
        var red = Color.floatToByte(this.red);
        var green = Color.floatToByte(this.green);
        var blue = Color.floatToByte(this.blue);
        var alpha = Color.floatToByte(this.alpha);

        if (!defined(result)) {
            return [red, green, blue, alpha];
        }
        result[0] = red;
        result[1] = green;
        result[2] = blue;
        result[3] = alpha;
        return result;
    };

    /**
     * Converts this color to a single numeric unsigned 32-bit RGBA value, using the endianness
     * of the system.
     *
     * @memberof Color
     *
     * @returns {Number} A single numeric unsigned 32-bit RGBA value.
     *
     * @example
     * var rgba = Color.BLUE.toRgba();
     *
     * @see Color.fromRgba
     */
    Color.prototype.toRgba = function() {
        // scratchUint32Array and scratchUint8Array share an underlying array buffer
        scratchUint8Array[0] = Color.floatToByte(this.red);
        scratchUint8Array[1] = Color.floatToByte(this.green);
        scratchUint8Array[2] = Color.floatToByte(this.blue);
        scratchUint8Array[3] = Color.floatToByte(this.alpha);
        return scratchUint32Array[0];
    };

    /**
     * An immutable Color instance initialized to CSS color #F0F8FF
     * <span class="colorSwath" style="background: #F0F8FF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ALICEBLUE = freezeObject(Color.fromCssColorString('#F0F8FF'));

    /**
     * An immutable Color instance initialized to CSS color #FAEBD7
     * <span class="colorSwath" style="background: #FAEBD7;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ANTIQUEWHITE = freezeObject(Color.fromCssColorString('#FAEBD7'));

    /**
     * An immutable Color instance initialized to CSS color #00FFFF
     * <span class="colorSwath" style="background: #00FFFF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.AQUA = freezeObject(Color.fromCssColorString('#00FFFF'));

    /**
     * An immutable Color instance initialized to CSS color #7FFFD4
     * <span class="colorSwath" style="background: #7FFFD4;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.AQUAMARINE = freezeObject(Color.fromCssColorString('#7FFFD4'));

    /**
     * An immutable Color instance initialized to CSS color #F0FFFF
     * <span class="colorSwath" style="background: #F0FFFF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.AZURE = freezeObject(Color.fromCssColorString('#F0FFFF'));

    /**
     * An immutable Color instance initialized to CSS color #F5F5DC
     * <span class="colorSwath" style="background: #F5F5DC;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BEIGE = freezeObject(Color.fromCssColorString('#F5F5DC'));

    /**
     * An immutable Color instance initialized to CSS color #FFE4C4
     * <span class="colorSwath" style="background: #FFE4C4;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BISQUE = freezeObject(Color.fromCssColorString('#FFE4C4'));

    /**
     * An immutable Color instance initialized to CSS color #000000
     * <span class="colorSwath" style="background: #000000;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BLACK = freezeObject(Color.fromCssColorString('#000000'));

    /**
     * An immutable Color instance initialized to CSS color #FFEBCD
     * <span class="colorSwath" style="background: #FFEBCD;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BLANCHEDALMOND = freezeObject(Color.fromCssColorString('#FFEBCD'));

    /**
     * An immutable Color instance initialized to CSS color #0000FF
     * <span class="colorSwath" style="background: #0000FF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BLUE = freezeObject(Color.fromCssColorString('#0000FF'));

    /**
     * An immutable Color instance initialized to CSS color #8A2BE2
     * <span class="colorSwath" style="background: #8A2BE2;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BLUEVIOLET = freezeObject(Color.fromCssColorString('#8A2BE2'));

    /**
     * An immutable Color instance initialized to CSS color #A52A2A
     * <span class="colorSwath" style="background: #A52A2A;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BROWN = freezeObject(Color.fromCssColorString('#A52A2A'));

    /**
     * An immutable Color instance initialized to CSS color #DEB887
     * <span class="colorSwath" style="background: #DEB887;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.BURLYWOOD = freezeObject(Color.fromCssColorString('#DEB887'));

    /**
     * An immutable Color instance initialized to CSS color #5F9EA0
     * <span class="colorSwath" style="background: #5F9EA0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CADETBLUE = freezeObject(Color.fromCssColorString('#5F9EA0'));
    /**
     * An immutable Color instance initialized to CSS color #7FFF00
     * <span class="colorSwath" style="background: #7FFF00;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CHARTREUSE = freezeObject(Color.fromCssColorString('#7FFF00'));

    /**
     * An immutable Color instance initialized to CSS color #D2691E
     * <span class="colorSwath" style="background: #D2691E;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CHOCOLATE = freezeObject(Color.fromCssColorString('#D2691E'));

    /**
     * An immutable Color instance initialized to CSS color #FF7F50
     * <span class="colorSwath" style="background: #FF7F50;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CORAL = freezeObject(Color.fromCssColorString('#FF7F50'));

    /**
     * An immutable Color instance initialized to CSS color #6495ED
     * <span class="colorSwath" style="background: #6495ED;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CORNFLOWERBLUE = freezeObject(Color.fromCssColorString('#6495ED'));

    /**
     * An immutable Color instance initialized to CSS color #FFF8DC
     * <span class="colorSwath" style="background: #FFF8DC;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CORNSILK = freezeObject(Color.fromCssColorString('#FFF8DC'));

    /**
     * An immutable Color instance initialized to CSS color #DC143C
     * <span class="colorSwath" style="background: #DC143C;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CRIMSON = freezeObject(Color.fromCssColorString('#DC143C'));

    /**
     * An immutable Color instance initialized to CSS color #00FFFF
     * <span class="colorSwath" style="background: #00FFFF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.CYAN = freezeObject(Color.fromCssColorString('#00FFFF'));

    /**
     * An immutable Color instance initialized to CSS color #00008B
     * <span class="colorSwath" style="background: #00008B;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKBLUE = freezeObject(Color.fromCssColorString('#00008B'));

    /**
     * An immutable Color instance initialized to CSS color #008B8B
     * <span class="colorSwath" style="background: #008B8B;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKCYAN = freezeObject(Color.fromCssColorString('#008B8B'));

    /**
     * An immutable Color instance initialized to CSS color #B8860B
     * <span class="colorSwath" style="background: #B8860B;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKGOLDENROD = freezeObject(Color.fromCssColorString('#B8860B'));

    /**
     * An immutable Color instance initialized to CSS color #A9A9A9
     * <span class="colorSwath" style="background: #A9A9A9;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKGRAY = freezeObject(Color.fromCssColorString('#A9A9A9'));

    /**
     * An immutable Color instance initialized to CSS color #006400
     * <span class="colorSwath" style="background: #006400;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKGREEN = freezeObject(Color.fromCssColorString('#006400'));

    /**
     * An immutable Color instance initialized to CSS color #A9A9A9
     * <span class="colorSwath" style="background: #A9A9A9;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKGREY = Color.DARKGRAY;

    /**
     * An immutable Color instance initialized to CSS color #BDB76B
     * <span class="colorSwath" style="background: #BDB76B;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKKHAKI = freezeObject(Color.fromCssColorString('#BDB76B'));

    /**
     * An immutable Color instance initialized to CSS color #8B008B
     * <span class="colorSwath" style="background: #8B008B;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKMAGENTA = freezeObject(Color.fromCssColorString('#8B008B'));

    /**
     * An immutable Color instance initialized to CSS color #556B2F
     * <span class="colorSwath" style="background: #556B2F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKOLIVEGREEN = freezeObject(Color.fromCssColorString('#556B2F'));

    /**
     * An immutable Color instance initialized to CSS color #FF8C00
     * <span class="colorSwath" style="background: #FF8C00;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKORANGE = freezeObject(Color.fromCssColorString('#FF8C00'));

    /**
     * An immutable Color instance initialized to CSS color #9932CC
     * <span class="colorSwath" style="background: #9932CC;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKORCHID = freezeObject(Color.fromCssColorString('#9932CC'));

    /**
     * An immutable Color instance initialized to CSS color #8B0000
     * <span class="colorSwath" style="background: #8B0000;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKRED = freezeObject(Color.fromCssColorString('#8B0000'));

    /**
     * An immutable Color instance initialized to CSS color #E9967A
     * <span class="colorSwath" style="background: #E9967A;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKSALMON = freezeObject(Color.fromCssColorString('#E9967A'));

    /**
     * An immutable Color instance initialized to CSS color #8FBC8F
     * <span class="colorSwath" style="background: #8FBC8F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKSEAGREEN = freezeObject(Color.fromCssColorString('#8FBC8F'));

    /**
     * An immutable Color instance initialized to CSS color #483D8B
     * <span class="colorSwath" style="background: #483D8B;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKSLATEBLUE = freezeObject(Color.fromCssColorString('#483D8B'));

    /**
     * An immutable Color instance initialized to CSS color #2F4F4F
     * <span class="colorSwath" style="background: #2F4F4F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKSLATEGRAY = freezeObject(Color.fromCssColorString('#2F4F4F'));

    /**
     * An immutable Color instance initialized to CSS color #2F4F4F
     * <span class="colorSwath" style="background: #2F4F4F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKSLATEGREY = Color.DARKSLATEGRAY;

    /**
     * An immutable Color instance initialized to CSS color #00CED1
     * <span class="colorSwath" style="background: #00CED1;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKTURQUOISE = freezeObject(Color.fromCssColorString('#00CED1'));

    /**
     * An immutable Color instance initialized to CSS color #9400D3
     * <span class="colorSwath" style="background: #9400D3;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DARKVIOLET = freezeObject(Color.fromCssColorString('#9400D3'));

    /**
     * An immutable Color instance initialized to CSS color #FF1493
     * <span class="colorSwath" style="background: #FF1493;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DEEPPINK = freezeObject(Color.fromCssColorString('#FF1493'));

    /**
     * An immutable Color instance initialized to CSS color #00BFFF
     * <span class="colorSwath" style="background: #00BFFF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DEEPSKYBLUE = freezeObject(Color.fromCssColorString('#00BFFF'));

    /**
     * An immutable Color instance initialized to CSS color #696969
     * <span class="colorSwath" style="background: #696969;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DIMGRAY = freezeObject(Color.fromCssColorString('#696969'));

    /**
     * An immutable Color instance initialized to CSS color #696969
     * <span class="colorSwath" style="background: #696969;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DIMGREY = Color.DIMGRAY;

    /**
     * An immutable Color instance initialized to CSS color #1E90FF
     * <span class="colorSwath" style="background: #1E90FF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.DODGERBLUE = freezeObject(Color.fromCssColorString('#1E90FF'));

    /**
     * An immutable Color instance initialized to CSS color #B22222
     * <span class="colorSwath" style="background: #B22222;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.FIREBRICK = freezeObject(Color.fromCssColorString('#B22222'));

    /**
     * An immutable Color instance initialized to CSS color #FFFAF0
     * <span class="colorSwath" style="background: #FFFAF0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.FLORALWHITE = freezeObject(Color.fromCssColorString('#FFFAF0'));

    /**
     * An immutable Color instance initialized to CSS color #228B22
     * <span class="colorSwath" style="background: #228B22;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.FORESTGREEN = freezeObject(Color.fromCssColorString('#228B22'));

    /**
     * An immutable Color instance initialized to CSS color #FF00FF
     * <span class="colorSwath" style="background: #FF00FF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.FUSCHIA = freezeObject(Color.fromCssColorString('#FF00FF'));

    /**
     * An immutable Color instance initialized to CSS color #DCDCDC
     * <span class="colorSwath" style="background: #DCDCDC;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GAINSBORO = freezeObject(Color.fromCssColorString('#DCDCDC'));

    /**
     * An immutable Color instance initialized to CSS color #F8F8FF
     * <span class="colorSwath" style="background: #F8F8FF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GHOSTWHITE = freezeObject(Color.fromCssColorString('#F8F8FF'));

    /**
     * An immutable Color instance initialized to CSS color #FFD700
     * <span class="colorSwath" style="background: #FFD700;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GOLD = freezeObject(Color.fromCssColorString('#FFD700'));

    /**
     * An immutable Color instance initialized to CSS color #DAA520
     * <span class="colorSwath" style="background: #DAA520;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GOLDENROD = freezeObject(Color.fromCssColorString('#DAA520'));

    /**
     * An immutable Color instance initialized to CSS color #808080
     * <span class="colorSwath" style="background: #808080;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GRAY = freezeObject(Color.fromCssColorString('#808080'));

    /**
     * An immutable Color instance initialized to CSS color #008000
     * <span class="colorSwath" style="background: #008000;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GREEN = freezeObject(Color.fromCssColorString('#008000'));

    /**
     * An immutable Color instance initialized to CSS color #ADFF2F
     * <span class="colorSwath" style="background: #ADFF2F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GREENYELLOW = freezeObject(Color.fromCssColorString('#ADFF2F'));

    /**
     * An immutable Color instance initialized to CSS color #808080
     * <span class="colorSwath" style="background: #808080;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.GREY = Color.GRAY;

    /**
     * An immutable Color instance initialized to CSS color #F0FFF0
     * <span class="colorSwath" style="background: #F0FFF0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.HONEYDEW = freezeObject(Color.fromCssColorString('#F0FFF0'));

    /**
     * An immutable Color instance initialized to CSS color #FF69B4
     * <span class="colorSwath" style="background: #FF69B4;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.HOTPINK = freezeObject(Color.fromCssColorString('#FF69B4'));

    /**
     * An immutable Color instance initialized to CSS color #CD5C5C
     * <span class="colorSwath" style="background: #CD5C5C;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.INDIANRED = freezeObject(Color.fromCssColorString('#CD5C5C'));

    /**
     * An immutable Color instance initialized to CSS color #4B0082
     * <span class="colorSwath" style="background: #4B0082;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.INDIGO = freezeObject(Color.fromCssColorString('#4B0082'));

    /**
     * An immutable Color instance initialized to CSS color #FFFFF0
     * <span class="colorSwath" style="background: #FFFFF0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.IVORY = freezeObject(Color.fromCssColorString('#FFFFF0'));

    /**
     * An immutable Color instance initialized to CSS color #F0E68C
     * <span class="colorSwath" style="background: #F0E68C;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.KHAKI = freezeObject(Color.fromCssColorString('#F0E68C'));

    /**
     * An immutable Color instance initialized to CSS color #E6E6FA
     * <span class="colorSwath" style="background: #E6E6FA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LAVENDER = freezeObject(Color.fromCssColorString('#E6E6FA'));

    /**
     * An immutable Color instance initialized to CSS color #FFF0F5
     * <span class="colorSwath" style="background: #FFF0F5;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LAVENDAR_BLUSH = freezeObject(Color.fromCssColorString('#FFF0F5'));

    /**
     * An immutable Color instance initialized to CSS color #7CFC00
     * <span class="colorSwath" style="background: #7CFC00;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LAWNGREEN = freezeObject(Color.fromCssColorString('#7CFC00'));

    /**
     * An immutable Color instance initialized to CSS color #FFFACD
     * <span class="colorSwath" style="background: #FFFACD;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LEMONCHIFFON = freezeObject(Color.fromCssColorString('#FFFACD'));

    /**
     * An immutable Color instance initialized to CSS color #ADD8E6
     * <span class="colorSwath" style="background: #ADD8E6;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTBLUE = freezeObject(Color.fromCssColorString('#ADD8E6'));

    /**
     * An immutable Color instance initialized to CSS color #F08080
     * <span class="colorSwath" style="background: #F08080;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTCORAL = freezeObject(Color.fromCssColorString('#F08080'));

    /**
     * An immutable Color instance initialized to CSS color #E0FFFF
     * <span class="colorSwath" style="background: #E0FFFF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTCYAN = freezeObject(Color.fromCssColorString('#E0FFFF'));

    /**
     * An immutable Color instance initialized to CSS color #FAFAD2
     * <span class="colorSwath" style="background: #FAFAD2;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTGOLDENRODYELLOW = freezeObject(Color.fromCssColorString('#FAFAD2'));

    /**
     * An immutable Color instance initialized to CSS color #D3D3D3
     * <span class="colorSwath" style="background: #D3D3D3;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTGRAY = freezeObject(Color.fromCssColorString('#D3D3D3'));

    /**
     * An immutable Color instance initialized to CSS color #90EE90
     * <span class="colorSwath" style="background: #90EE90;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTGREEN = freezeObject(Color.fromCssColorString('#90EE90'));

    /**
     * An immutable Color instance initialized to CSS color #D3D3D3
     * <span class="colorSwath" style="background: #D3D3D3;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTGREY = Color.LIGHTGRAY;

    /**
     * An immutable Color instance initialized to CSS color #FFB6C1
     * <span class="colorSwath" style="background: #FFB6C1;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTPINK = freezeObject(Color.fromCssColorString('#FFB6C1'));

    /**
     * An immutable Color instance initialized to CSS color #20B2AA
     * <span class="colorSwath" style="background: #20B2AA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTSEAGREEN = freezeObject(Color.fromCssColorString('#20B2AA'));

    /**
     * An immutable Color instance initialized to CSS color #87CEFA
     * <span class="colorSwath" style="background: #87CEFA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTSKYBLUE = freezeObject(Color.fromCssColorString('#87CEFA'));

    /**
     * An immutable Color instance initialized to CSS color #778899
     * <span class="colorSwath" style="background: #778899;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTSLATEGRAY = freezeObject(Color.fromCssColorString('#778899'));

    /**
     * An immutable Color instance initialized to CSS color #778899
     * <span class="colorSwath" style="background: #778899;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTSLATEGREY = Color.LIGHTSLATEGRAY;

    /**
     * An immutable Color instance initialized to CSS color #B0C4DE
     * <span class="colorSwath" style="background: #B0C4DE;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTSTEELBLUE = freezeObject(Color.fromCssColorString('#B0C4DE'));

    /**
     * An immutable Color instance initialized to CSS color #FFFFE0
     * <span class="colorSwath" style="background: #FFFFE0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIGHTYELLOW = freezeObject(Color.fromCssColorString('#FFFFE0'));

    /**
     * An immutable Color instance initialized to CSS color #00FF00
     * <span class="colorSwath" style="background: #00FF00;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIME = freezeObject(Color.fromCssColorString('#00FF00'));

    /**
     * An immutable Color instance initialized to CSS color #32CD32
     * <span class="colorSwath" style="background: #32CD32;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LIMEGREEN = freezeObject(Color.fromCssColorString('#32CD32'));

    /**
     * An immutable Color instance initialized to CSS color #FAF0E6
     * <span class="colorSwath" style="background: #FAF0E6;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.LINEN = freezeObject(Color.fromCssColorString('#FAF0E6'));

    /**
     * An immutable Color instance initialized to CSS color #FF00FF
     * <span class="colorSwath" style="background: #FF00FF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MAGENTA = freezeObject(Color.fromCssColorString('#FF00FF'));

    /**
     * An immutable Color instance initialized to CSS color #800000
     * <span class="colorSwath" style="background: #800000;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MAROON = freezeObject(Color.fromCssColorString('#800000'));

    /**
     * An immutable Color instance initialized to CSS color #66CDAA
     * <span class="colorSwath" style="background: #66CDAA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMAQUAMARINE = freezeObject(Color.fromCssColorString('#66CDAA'));

    /**
     * An immutable Color instance initialized to CSS color #0000CD
     * <span class="colorSwath" style="background: #0000CD;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMBLUE = freezeObject(Color.fromCssColorString('#0000CD'));

    /**
     * An immutable Color instance initialized to CSS color #BA55D3
     * <span class="colorSwath" style="background: #BA55D3;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMORCHID = freezeObject(Color.fromCssColorString('#BA55D3'));

    /**
     * An immutable Color instance initialized to CSS color #9370DB
     * <span class="colorSwath" style="background: #9370DB;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMPURPLE = freezeObject(Color.fromCssColorString('#9370DB'));

    /**
     * An immutable Color instance initialized to CSS color #3CB371
     * <span class="colorSwath" style="background: #3CB371;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMSEAGREEN = freezeObject(Color.fromCssColorString('#3CB371'));

    /**
     * An immutable Color instance initialized to CSS color #7B68EE
     * <span class="colorSwath" style="background: #7B68EE;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMSLATEBLUE = freezeObject(Color.fromCssColorString('#7B68EE'));

    /**
     * An immutable Color instance initialized to CSS color #00FA9A
     * <span class="colorSwath" style="background: #00FA9A;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMSPRINGGREEN = freezeObject(Color.fromCssColorString('#00FA9A'));

    /**
     * An immutable Color instance initialized to CSS color #48D1CC
     * <span class="colorSwath" style="background: #48D1CC;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMTURQUOISE = freezeObject(Color.fromCssColorString('#48D1CC'));

    /**
     * An immutable Color instance initialized to CSS color #C71585
     * <span class="colorSwath" style="background: #C71585;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MEDIUMVIOLETRED = freezeObject(Color.fromCssColorString('#C71585'));

    /**
     * An immutable Color instance initialized to CSS color #191970
     * <span class="colorSwath" style="background: #191970;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MIDNIGHTBLUE = freezeObject(Color.fromCssColorString('#191970'));

    /**
     * An immutable Color instance initialized to CSS color #F5FFFA
     * <span class="colorSwath" style="background: #F5FFFA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MINTCREAM = freezeObject(Color.fromCssColorString('#F5FFFA'));

    /**
     * An immutable Color instance initialized to CSS color #FFE4E1
     * <span class="colorSwath" style="background: #FFE4E1;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MISTYROSE = freezeObject(Color.fromCssColorString('#FFE4E1'));

    /**
     * An immutable Color instance initialized to CSS color #FFE4B5
     * <span class="colorSwath" style="background: #FFE4B5;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.MOCCASIN = freezeObject(Color.fromCssColorString('#FFE4B5'));

    /**
     * An immutable Color instance initialized to CSS color #FFDEAD
     * <span class="colorSwath" style="background: #FFDEAD;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.NAVAJOWHITE = freezeObject(Color.fromCssColorString('#FFDEAD'));

    /**
     * An immutable Color instance initialized to CSS color #000080
     * <span class="colorSwath" style="background: #000080;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.NAVY = freezeObject(Color.fromCssColorString('#000080'));

    /**
     * An immutable Color instance initialized to CSS color #FDF5E6
     * <span class="colorSwath" style="background: #FDF5E6;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.OLDLACE = freezeObject(Color.fromCssColorString('#FDF5E6'));

    /**
     * An immutable Color instance initialized to CSS color #808000
     * <span class="colorSwath" style="background: #808000;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.OLIVE = freezeObject(Color.fromCssColorString('#808000'));

    /**
     * An immutable Color instance initialized to CSS color #6B8E23
     * <span class="colorSwath" style="background: #6B8E23;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.OLIVEDRAB = freezeObject(Color.fromCssColorString('#6B8E23'));

    /**
     * An immutable Color instance initialized to CSS color #FFA500
     * <span class="colorSwath" style="background: #FFA500;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ORANGE = freezeObject(Color.fromCssColorString('#FFA500'));

    /**
     * An immutable Color instance initialized to CSS color #FF4500
     * <span class="colorSwath" style="background: #FF4500;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ORANGERED = freezeObject(Color.fromCssColorString('#FF4500'));

    /**
     * An immutable Color instance initialized to CSS color #DA70D6
     * <span class="colorSwath" style="background: #DA70D6;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ORCHID = freezeObject(Color.fromCssColorString('#DA70D6'));

    /**
     * An immutable Color instance initialized to CSS color #EEE8AA
     * <span class="colorSwath" style="background: #EEE8AA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PALEGOLDENROD = freezeObject(Color.fromCssColorString('#EEE8AA'));

    /**
     * An immutable Color instance initialized to CSS color #98FB98
     * <span class="colorSwath" style="background: #98FB98;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PALEGREEN = freezeObject(Color.fromCssColorString('#98FB98'));

    /**
     * An immutable Color instance initialized to CSS color #AFEEEE
     * <span class="colorSwath" style="background: #AFEEEE;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PALETURQUOISE = freezeObject(Color.fromCssColorString('#AFEEEE'));

    /**
     * An immutable Color instance initialized to CSS color #DB7093
     * <span class="colorSwath" style="background: #DB7093;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PALEVIOLETRED = freezeObject(Color.fromCssColorString('#DB7093'));

    /**
     * An immutable Color instance initialized to CSS color #FFEFD5
     * <span class="colorSwath" style="background: #FFEFD5;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PAPAYAWHIP = freezeObject(Color.fromCssColorString('#FFEFD5'));

    /**
     * An immutable Color instance initialized to CSS color #FFDAB9
     * <span class="colorSwath" style="background: #FFDAB9;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PEACHPUFF = freezeObject(Color.fromCssColorString('#FFDAB9'));

    /**
     * An immutable Color instance initialized to CSS color #CD853F
     * <span class="colorSwath" style="background: #CD853F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PERU = freezeObject(Color.fromCssColorString('#CD853F'));

    /**
     * An immutable Color instance initialized to CSS color #FFC0CB
     * <span class="colorSwath" style="background: #FFC0CB;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PINK = freezeObject(Color.fromCssColorString('#FFC0CB'));

    /**
     * An immutable Color instance initialized to CSS color #DDA0DD
     * <span class="colorSwath" style="background: #DDA0DD;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PLUM = freezeObject(Color.fromCssColorString('#DDA0DD'));

    /**
     * An immutable Color instance initialized to CSS color #B0E0E6
     * <span class="colorSwath" style="background: #B0E0E6;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.POWDERBLUE = freezeObject(Color.fromCssColorString('#B0E0E6'));

    /**
     * An immutable Color instance initialized to CSS color #800080
     * <span class="colorSwath" style="background: #800080;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.PURPLE = freezeObject(Color.fromCssColorString('#800080'));

    /**
     * An immutable Color instance initialized to CSS color #FF0000
     * <span class="colorSwath" style="background: #FF0000;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.RED = freezeObject(Color.fromCssColorString('#FF0000'));

    /**
     * An immutable Color instance initialized to CSS color #BC8F8F
     * <span class="colorSwath" style="background: #BC8F8F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ROSYBROWN = freezeObject(Color.fromCssColorString('#BC8F8F'));

    /**
     * An immutable Color instance initialized to CSS color #4169E1
     * <span class="colorSwath" style="background: #4169E1;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.ROYALBLUE = freezeObject(Color.fromCssColorString('#4169E1'));

    /**
     * An immutable Color instance initialized to CSS color #8B4513
     * <span class="colorSwath" style="background: #8B4513;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SADDLEBROWN = freezeObject(Color.fromCssColorString('#8B4513'));

    /**
     * An immutable Color instance initialized to CSS color #FA8072
     * <span class="colorSwath" style="background: #FA8072;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SALMON = freezeObject(Color.fromCssColorString('#FA8072'));

    /**
     * An immutable Color instance initialized to CSS color #F4A460
     * <span class="colorSwath" style="background: #F4A460;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SANDYBROWN = freezeObject(Color.fromCssColorString('#F4A460'));

    /**
     * An immutable Color instance initialized to CSS color #2E8B57
     * <span class="colorSwath" style="background: #2E8B57;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SEAGREEN = freezeObject(Color.fromCssColorString('#2E8B57'));

    /**
     * An immutable Color instance initialized to CSS color #FFF5EE
     * <span class="colorSwath" style="background: #FFF5EE;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SEASHELL = freezeObject(Color.fromCssColorString('#FFF5EE'));

    /**
     * An immutable Color instance initialized to CSS color #A0522D
     * <span class="colorSwath" style="background: #A0522D;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SIENNA = freezeObject(Color.fromCssColorString('#A0522D'));

    /**
     * An immutable Color instance initialized to CSS color #C0C0C0
     * <span class="colorSwath" style="background: #C0C0C0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SILVER = freezeObject(Color.fromCssColorString('#C0C0C0'));

    /**
     * An immutable Color instance initialized to CSS color #87CEEB
     * <span class="colorSwath" style="background: #87CEEB;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SKYBLUE = freezeObject(Color.fromCssColorString('#87CEEB'));

    /**
     * An immutable Color instance initialized to CSS color #6A5ACD
     * <span class="colorSwath" style="background: #6A5ACD;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SLATEBLUE = freezeObject(Color.fromCssColorString('#6A5ACD'));

    /**
     * An immutable Color instance initialized to CSS color #708090
     * <span class="colorSwath" style="background: #708090;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SLATEGRAY = freezeObject(Color.fromCssColorString('#708090'));

    /**
     * An immutable Color instance initialized to CSS color #708090
     * <span class="colorSwath" style="background: #708090;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SLATEGREY = Color.SLATEGRAY;

    /**
     * An immutable Color instance initialized to CSS color #FFFAFA
     * <span class="colorSwath" style="background: #FFFAFA;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SNOW = freezeObject(Color.fromCssColorString('#FFFAFA'));

    /**
     * An immutable Color instance initialized to CSS color #00FF7F
     * <span class="colorSwath" style="background: #00FF7F;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.SPRINGGREEN = freezeObject(Color.fromCssColorString('#00FF7F'));

    /**
     * An immutable Color instance initialized to CSS color #4682B4
     * <span class="colorSwath" style="background: #4682B4;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.STEELBLUE = freezeObject(Color.fromCssColorString('#4682B4'));

    /**
     * An immutable Color instance initialized to CSS color #D2B48C
     * <span class="colorSwath" style="background: #D2B48C;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.TAN = freezeObject(Color.fromCssColorString('#D2B48C'));

    /**
     * An immutable Color instance initialized to CSS color #008080
     * <span class="colorSwath" style="background: #008080;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.TEAL = freezeObject(Color.fromCssColorString('#008080'));

    /**
     * An immutable Color instance initialized to CSS color #D8BFD8
     * <span class="colorSwath" style="background: #D8BFD8;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.THISTLE = freezeObject(Color.fromCssColorString('#D8BFD8'));

    /**
     * An immutable Color instance initialized to CSS color #FF6347
     * <span class="colorSwath" style="background: #FF6347;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.TOMATO = freezeObject(Color.fromCssColorString('#FF6347'));

    /**
     * An immutable Color instance initialized to CSS color #40E0D0
     * <span class="colorSwath" style="background: #40E0D0;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.TURQUOISE = freezeObject(Color.fromCssColorString('#40E0D0'));

    /**
     * An immutable Color instance initialized to CSS color #EE82EE
     * <span class="colorSwath" style="background: #EE82EE;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.VIOLET = freezeObject(Color.fromCssColorString('#EE82EE'));

    /**
     * An immutable Color instance initialized to CSS color #F5DEB3
     * <span class="colorSwath" style="background: #F5DEB3;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.WHEAT = freezeObject(Color.fromCssColorString('#F5DEB3'));

    /**
     * An immutable Color instance initialized to CSS color #FFFFFF
     * <span class="colorSwath" style="background: #FFFFFF;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.WHITE = freezeObject(Color.fromCssColorString('#FFFFFF'));

    /**
     * An immutable Color instance initialized to CSS color #F5F5F5
     * <span class="colorSwath" style="background: #F5F5F5;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.WHITESMOKE = freezeObject(Color.fromCssColorString('#F5F5F5'));

    /**
     * An immutable Color instance initialized to CSS color #FFFF00
     * <span class="colorSwath" style="background: #FFFF00;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.YELLOW = freezeObject(Color.fromCssColorString('#FFFF00'));

    /**
     * An immutable Color instance initialized to CSS color #9ACD32
     * <span class="colorSwath" style="background: #9ACD32;"></span>
     *
     * @constant
     * @type {Color}
     */
    Color.YELLOWGREEN = freezeObject(Color.fromCssColorString('#9ACD32'));

    return Color;
});

/*global define*/
define('Core/barycentricCoordinates',[
        './Cartesian2',
        './Cartesian3',
        './defined',
        './DeveloperError'
    ], function(
        Cartesian2,
        Cartesian3,
        defined,
        DeveloperError) {
    "use strict";

    var scratchCartesian1 = new Cartesian3();
    var scratchCartesian2 = new Cartesian3();
    var scratchCartesian3 = new Cartesian3();

    /**
     * Computes the barycentric coordinates for a point with respect to a triangle.
     *
     * @exports pointInsideTriangle
     *
     * @param {Cartesian2|Cartesian3} point The point to test.
     * @param {Cartesian2|Cartesian3} p0 The first point of the triangle, corresponding to the barycentric x-axis.
     * @param {Cartesian2|Cartesian3} p1 The second point of the triangle, corresponding to the barycentric y-axis.
     * @param {Cartesian2|Cartesian3} p2 The third point of the triangle, corresponding to the barycentric z-axis.
     * @param {Cartesian3} [result] The object onto which to store the result.
     *
     * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} point, p0, p1, and p2 are required.
     *
     * @example
     * // Returns Cartesian3.UNIT_X
     * var p = new Cartesian3(-1.0, 0.0, 0.0);
     * var b = barycentricCoordinates(p,
     *   new Cartesian3(-1.0, 0.0, 0.0),
     *   new Cartesian3( 1.0, 0.0, 0.0),
     *   new Cartesian3( 0.0, 1.0, 1.0));
     */
    var barycentricCoordinates = function(point, p0, p1, p2, result) {
        if (!defined(point) || !defined(p0) || !defined(p1) || !defined(p2)) {
            throw new DeveloperError('point, p0, p1, and p2 are required.');
        }

        if (!defined(result)) {
            result = new Cartesian3();
        }

        // Implementation based on http://www.blackpawn.com/texts/pointinpoly/default.html.
        var v0, v1, v2;
        var dot00, dot01, dot02, dot11, dot12;

        if(!defined(p0.z)) {
          v0 = Cartesian2.subtract(p1, p0, scratchCartesian1);
          v1 = Cartesian2.subtract(p2, p0, scratchCartesian2);
          v2 = Cartesian2.subtract(point, p0, scratchCartesian3);

          dot00 = Cartesian2.dot(v0, v0);
          dot01 = Cartesian2.dot(v0, v1);
          dot02 = Cartesian2.dot(v0, v2);
          dot11 = Cartesian2.dot(v1, v1);
          dot12 = Cartesian2.dot(v1, v2);
        } else {
          v0 = Cartesian3.subtract(p1, p0, scratchCartesian1);
          v1 = Cartesian3.subtract(p2, p0, scratchCartesian2);
          v2 = Cartesian3.subtract(point, p0, scratchCartesian3);

          dot00 = Cartesian3.dot(v0, v0);
          dot01 = Cartesian3.dot(v0, v1);
          dot02 = Cartesian3.dot(v0, v2);
          dot11 = Cartesian3.dot(v1, v1);
          dot12 = Cartesian3.dot(v1, v2);
        }

        var q = 1.0 / (dot00 * dot11 - dot01 * dot01);
        result.y = (dot11 * dot02 - dot01 * dot12) * q;
        result.z = (dot00 * dot12 - dot01 * dot02) * q;
        result.x = 1.0 - result.y - result.z;
        return result;
    };

    return barycentricCoordinates;
});

/*global define*/
define('Core/EncodedCartesian3',[
        './Cartesian3',
        './defined',
        './DeveloperError'
    ], function(
        Cartesian3,
        defined,
        DeveloperError) {
    "use strict";

    /**
     * A fixed-point encoding of a {@link Cartesian3} with 64-bit floating-point components, as two {@link Cartesian3}
     * values that, when converted to 32-bit floating-point and added, approximate the original input.
     * <p>
     * This is used to encode positions in vertex buffers for rendering without jittering artifacts
     * as described in <a href="http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/">Precisions, Precisions</a>.
     * </p>
     *
     * @alias EncodedCartesian3
     * @constructor
     *
     * @see czm_modelViewRelativeToEye
     * @see czm_modelViewProjectionRelativeToEye
     */
    var EncodedCartesian3 = function() {
        /**
         * The high bits for each component.  Bits 0 to 22 store the whole value.  Bits 23 to 31 are not used.
         * <p>
         * The default is {@link Cartesian3.ZERO}.
         * </p>
         *
         * @type {Cartesian3}
         * @default {@link Cartesian3.ZERO}
         */
        this.high = Cartesian3.clone(Cartesian3.ZERO);

        /**
         * The low bits for each component.  Bits 7 to 22 store the whole value, and bits 0 to 6 store the fraction.  Bits 23 to 31 are not used.
         * <p>
         * The default is {@link Cartesian3.ZERO}.
         * </p>
         *
         * @type {Cartesian3}
         * @default {@link Cartesian3.ZERO}
         */
        this.low = Cartesian3.clone(Cartesian3.ZERO);
    };

    /**
     * Encodes a 64-bit floating-point value as two floating-point values that, when converted to
     * 32-bit floating-point and added, approximate the original input.  The returned object
     * has <code>high</code> and <code>low</code> properties for the high and low bits, respectively.
     * <p>
     * The fixed-point encoding follows <a href="http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/">Precisions, Precisions</a>.
     * </p>
     * @memberof EncodedCartesian3
     *
     * @param {Number} value The floating-point value to encode.
     * @param {Object} [result] The object onto which to store the result.
     *
     * @returns {Object} The modified result parameter or a new instance if one was not provided.
     *
     * @exception {DeveloperError} value is required.
     *
     * @example
     * var value = 1234567.1234567;
     * var splitValue = EncodedCartesian3.encode(value);
     */
    EncodedCartesian3.encode = function(value, result) {
        if (!defined(value)) {
            throw new DeveloperError('value is required');
        }

        if (!defined(result)) {
            result = {
                high : 0.0,
                low : 0.0
            };
        }

        var doubleHigh;
        if (value >= 0.0) {
            doubleHigh = Math.floor(value / 65536.0) * 65536.0;
            result.high = doubleHigh;
            result.low = value - doubleHigh;
        } else {
            doubleHigh = Math.floor(-value / 65536.0) * 65536.0;
            result.high = -doubleHigh;
            result.low = value + doubleHigh;
        }

        return result;
    };

    var scratchEncode = {
        high : 0.0,
        low : 0.0
    };

    /**
     * Encodes a {@link Cartesian3} with 64-bit floating-point components as two {@link Cartesian3}
     * values that, when converted to 32-bit floating-point and added, approximate the original input.
     * <p>
     * The fixed-point encoding follows <a href="http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/">Precisions, Precisions</a>.
     * </p>
     * @memberof EncodedCartesian3
     *
     * @param {Cartesian3} cartesian The cartesian to encode.
     * @param {EncodedCartesian3} [result] The object onto which to store the result.
     * @returns {EncodedCartesian3} The modified result parameter or a new EncodedCartesian3 instance if one was not provided.
     *
     * @exception {DeveloperError} cartesian is required.
     *
     * @example
     * var cart = new Cartesian3(-10000000.0, 0.0, 10000000.0);
     * var encoded = EncodedCartesian3.fromCartesian(cart);
     */
    EncodedCartesian3.fromCartesian = function(cartesian, result) {
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }

        if (!defined(result)) {
            result = new EncodedCartesian3();
        }

        var high = result.high;
        var low = result.low;

        EncodedCartesian3.encode(cartesian.x, scratchEncode);
        high.x = scratchEncode.high;
        low.x = scratchEncode.low;

        EncodedCartesian3.encode(cartesian.y, scratchEncode);
        high.y = scratchEncode.high;
        low.y = scratchEncode.low;

        EncodedCartesian3.encode(cartesian.z, scratchEncode);
        high.z = scratchEncode.high;
        low.z = scratchEncode.low;

        return result;
    };

    var encodedP = new EncodedCartesian3();

    /**
     * Encodes the provided <code>cartesian</code>, and writes it to an array with <code>high</code>
     * components followed by <code>low</code> components, i.e. <code>[high.x, high.y, high.z, low.x, low.y, low.z]</code>.
     * <p>
     * This is used to create interleaved high-precision position vertex attributes.
     * </p>
     *
     * @param {Cartesian3} cartesian The cartesian to encode.
     * @param {Array} cartesianArray The array to write to.
     * @param {Number} index The index into the array to start writing.  Six elements will be written.
     *
     * @exception {DeveloperError} cartesian is required.
     * @exception {DeveloperError} cartesianArray is required.
     * @exception {DeveloperError} index must be a number greater than or equal to 0.
     *
     * @example
     * var positions = [
     *    new Cartesian3(),
     *    // ...
     * ];
     * var encodedPositions = new Float32Array(2 * 3 * positions.length);
     * var j = 0;
     * for (var i = 0; i < positions.length; ++i) {
     *   EncodedCartesian3.writeElement(positions[i], encodedPositions, j);
     *   j += 6;
     * }
     */
    EncodedCartesian3.writeElements = function(cartesian, cartesianArray, index) {
        if (!defined(cartesian)) {
            throw new DeveloperError('cartesian is required');
        }

        if (!defined(cartesianArray)) {
            throw new DeveloperError('cartesianArray is required');
        }

        if (typeof index !== 'number' || index < 0) {
            throw new DeveloperError('index must be a number greater than or equal to 0.');
        }

        EncodedCartesian3.fromCartesian(cartesian, encodedP);
        var high = encodedP.high;
        var low = encodedP.low;

        cartesianArray[index] = high.x;
        cartesianArray[index + 1] = high.y;
        cartesianArray[index + 2] = high.z;
        cartesianArray[index + 3] = low.x;
        cartesianArray[index + 4] = low.y;
        cartesianArray[index + 5] = low.z;
    };

    return EncodedCartesian3;
});

/*global define*/
define('Core/QuadraticRealPolynomial',[
        './DeveloperError',
        './Math'
    ],
    function(
        DeveloperError,
        CesiumMath) {
    "use strict";

    /**
     * Defines functions for 2nd order polynomial functions of one variable with only real coefficients.
     *
     * @exports QuadraticRealPolynomial
     */
    var QuadraticRealPolynomial = {};

    /**
     * Provides the discriminant of the quadratic equation from the supplied coefficients.
     * @memberof QuadraticRealPolynomial
     *
     * @param {Number} a The coefficient of the 2nd order monomial.
     * @param {Number} b The coefficient of the 1st order monomial.
     * @param {Number} c The coefficient of the 0th order monomial.
     * @returns {Number} The value of the discriminant.
     *
     * @exception {DeveloperError} a is a required number.
     * @exception {DeveloperError} b is a required number.
     * @exception {DeveloperError} c is a required number.
     */
    QuadraticRealPolynomial.discriminant = function(a, b, c) {
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }

        var discriminant = b * b - 4.0 * a * c;
        return discriminant;
    };

    function addWithCancellationCheck(left, right, tolerance) {
        var difference = left + right;
        if ((CesiumMath.sign(left) !== CesiumMath.sign(right)) &&
                Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) {
            return 0.0;
        }

        return difference;
    }

    /**
     * Provides the real valued roots of the quadratic polynomial with the provided coefficients.
     * @memberof QuadraticRealPolynomial
     *
     * @param {Number} a The coefficient of the 2nd order monomial.
     * @param {Number} b The coefficient of the 1st order monomial.
     * @param {Number} c The coefficient of the 0th order monomial.
     * @returns {Array} The real valued roots.
     *
     * @exception {DeveloperError} a is a required number.
     * @exception {DeveloperError} b is a required number.
     * @exception {DeveloperError} c is a required number.
     */
    QuadraticRealPolynomial.realRoots = function(a, b, c) {
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }

        var ratio;
        if (a === 0.0) {
            if (b === 0.0) {
                // Constant function: c = 0.
                return [];
            }

            // Linear function: b * x + c = 0.
            return [-c / b];
        } else if (b === 0.0) {
            if (c === 0.0) {
                // 2nd order monomial: a * x^2 = 0.
                return [0.0, 0.0];
            }

            var cMagnitude = Math.abs(c);
            var aMagnitude = Math.abs(a);

            if ((cMagnitude < aMagnitude) && (cMagnitude / aMagnitude < CesiumMath.EPSILON14)) { // c ~= 0.0.
                // 2nd order monomial: a * x^2 = 0.
                return [0.0, 0.0];
            } else if ((cMagnitude > aMagnitude) && (aMagnitude / cMagnitude < CesiumMath.EPSILON14)) { // a ~= 0.0.
                // Constant function: c = 0.
                return [];
            }

            // a * x^2 + c = 0
            ratio = -c / a;

            if (ratio < 0.0) {
                // Both roots are complex.
                return [];
            }

            // Both roots are real.
            var root = Math.sqrt(ratio);
            return [-root, root];
        } else if (c === 0.0) {
            // a * x^2 + b * x = 0
            ratio = -b / a;
            if (ratio < 0.0) {
                return [ratio, 0.0];
            }

            return [0.0, ratio];
        }

        // a * x^2 + b * x + c = 0
        var b2 = b * b;
        var four_ac = 4.0 * a * c;
        var radicand = addWithCancellationCheck(b2, -four_ac, CesiumMath.EPSILON14);

        if (radicand < 0.0) {
            // Both roots are complex.
            return [];
        }

        var q = -0.5 * addWithCancellationCheck(b, CesiumMath.sign(b) * Math.sqrt(radicand), CesiumMath.EPSILON14);
        if (b > 0.0) {
            return [q / a, c / q];
        }

        return [c / q, q / a];
    };

    return QuadraticRealPolynomial;
});
/*global define*/
define('Core/CubicRealPolynomial',[
        './DeveloperError',
        './QuadraticRealPolynomial'
    ], function(
        DeveloperError,
        QuadraticRealPolynomial) {
    "use strict";

    /**
     * Defines functions for 3rd order polynomial functions of one variable with only real coefficients.
     *
     * @exports CubicRealPolynomial
     */
    var CubicRealPolynomial = {};

    /**
     * Provides the discriminant of the cubic equation from the supplied coefficients.
     * @memberof CubicRealPolynomial
     *
     * @param {Number} a The coefficient of the 3rd order monomial.
     * @param {Number} b The coefficient of the 2nd order monomial.
     * @param {Number} c The coefficient of the 1st order monomial.
     * @param {Number} d The coefficient of the 0th order monomial.
     * @returns {Number} The value of the discriminant.
     *
     * @exception {DeveloperError} a is a required number.
     * @exception {DeveloperError} b is a required number.
     * @exception {DeveloperError} c is a required number.
     * @exception {DeveloperError} d is a required number.
     */
    CubicRealPolynomial.discriminant = function(a, b, c, d) {
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }
        if (typeof d !== 'number') {
            throw new DeveloperError('d is a required number.');
        }

        var a2 = a * a;
        var b2 = b * b;
        var c2 = c * c;
        var d2 = d * d;

        var discriminant = 18.0 * a * b * c * d + b2 * c2 - 27.0 * a2 * d2 - 4.0 * (a * c2 * c + b2 * b * d);
        return discriminant;
    };

    function computeRealRoots(a, b, c, d) {
        var A = a;
        var B = b / 3.0;
        var C = c / 3.0;
        var D = d;

        var AC = A * C;
        var BD = B * D;
        var B2 = B * B;
        var C2 = C * C;
        var delta1 = A * C - B2;
        var delta2 = A * D - B * C;
        var delta3 = B * D - C2;

        var discriminant = 4.0 * delta1 * delta3 - delta2 * delta2;
        var temp;
        var temp1;

        if (discriminant < 0.0) {
            var ABar;
            var CBar;
            var DBar;

            if (B2 * BD >= AC * C2) {
                ABar = A;
                CBar = delta1;
                DBar = -2.0 * B * delta1 + A * delta2;
            } else {
                ABar = D;
                CBar = delta3;
                DBar = -D * delta2 + 2.0 * C * delta3;
            }

            var s = (DBar < 0.0) ? -1.0 : 1.0; // This is not Math.Sign()!
            var temp0 = -s * Math.abs(ABar) * Math.sqrt(-discriminant);
            temp1 = -DBar + temp0;

            var x = temp1 / 2.0;
            var p = x < 0.0 ? -Math.pow(-x, 1.0 / 3.0) : Math.pow(x, 1.0 / 3.0);
            var q = (temp1 === temp0) ? -p : -CBar / p;

            temp = (CBar <= 0.0) ? p + q : -DBar / (p * p + q * q + CBar);

            if (B2 * BD >= AC * C2) {
                return [(temp - B) / A];
            }

            return [-D / (temp + C)];
        }

        var CBarA = delta1;
        var DBarA = -2.0 * B * delta1 + A * delta2;

        var CBarD = delta3;
        var DBarD = -D * delta2 + 2.0 * C * delta3;

        var squareRootOfDiscriminant = Math.sqrt(discriminant);
        var halfSquareRootOf3 = Math.sqrt(3.0) / 2.0;

        var theta = Math.abs(Math.atan2(A * squareRootOfDiscriminant, -DBarA) / 3.0);
        temp = 2.0 * Math.sqrt(-CBarA);
        var cosine = Math.cos(theta);
        temp1 = temp * cosine;
        var temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));

        var numeratorLarge = (temp1 + temp3 > 2.0 * B) ? temp1 - B : temp3 - B;
        var denominatorLarge = A;

        var root1 = numeratorLarge / denominatorLarge;

        theta = Math.abs(Math.atan2(D * squareRootOfDiscriminant, -DBarD) / 3.0);
        temp = 2.0 * Math.sqrt(-CBarD);
        cosine = Math.cos(theta);
        temp1 = temp * cosine;
        temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));

        var numeratorSmall = -D;
        var denominatorSmall = (temp1 + temp3 < 2.0 * C) ? temp1 + C : temp3 + C;

        var root3 = numeratorSmall / denominatorSmall;

        var E = denominatorLarge * denominatorSmall;
        var F = -numeratorLarge * denominatorSmall - denominatorLarge * numeratorSmall;
        var G = numeratorLarge * numeratorSmall;

        var root2 = (C * F - B * G) / (-B * F + C * E);

        if (root1 <= root2) {
            if (root1 <= root3) {
                if (root2 <= root3) {
                    return [root1, root2, root3];
                }
                return [root1, root3, root2];
            }
            return [root3, root1, root2];
        }
        if (root1 <= root3) {
            return [root2, root1, root3];
        }
        if (root2 <= root3) {
            return [root2, root3, root1];
        }
        return [root3, root2, root1];
    }

    /**
     * Provides the real valued roots of the cubic polynomial with the provided coefficients.
     * @memberof CubicRealPolynomial
     *
     * @param {Number} a The coefficient of the 3rd order monomial.
     * @param {Number} b The coefficient of the 2nd order monomial.
     * @param {Number} c The coefficient of the 1st order monomial.
     * @param {Number} d The coefficient of the 0th order monomial.
     * @returns {Array} The real valued roots.
     *
     * @exception {DeveloperError} a is a required number.
     * @exception {DeveloperError} b is a required number.
     * @exception {DeveloperError} c is a required number.
     * @exception {DeveloperError} d is a required number.
     */
    CubicRealPolynomial.realRoots = function(a, b, c, d) {
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }
        if (typeof d !== 'number') {
            throw new DeveloperError('d is a required number.');
        }

        var roots;
        var ratio;
        if (a === 0.0) {
            // Quadratic function: b * x^2 + c * x + d = 0.
            return QuadraticRealPolynomial.realRoots(b, c, d);
        } else if (b === 0.0) {
            if (c === 0.0) {
                if (d === 0.0) {
                    // 3rd order monomial: a * x^3 = 0.
                    return [0.0, 0.0, 0.0];
                }

                // a * x^3 + d = 0
                ratio = -d / a;
                var root = (ratio < 0.0) ? -Math.pow(-ratio, 1.0 / 3.0) : Math.pow(ratio, 1.0 / 3.0);
                return [root, root, root];
            } else if (d === 0.0) {
                // x * (a * x^2 + c) = 0.
                roots = QuadraticRealPolynomial.realRoots(a, 0, c);

                // Return the roots in ascending order.
                if (roots.Length === 0) {
                    return [0.0];
                }
                return [roots[0], 0.0, roots[1]];
            }

            // Deflated cubic polynomial: a * x^3 + c * x + d= 0.
            return computeRealRoots(a, 0, c, d);
        } else if (c === 0.0) {
            if (d === 0.0) {
                // x^2 * (a * x + b) = 0.
                ratio = -b / a;
                if (ratio < 0.0) {
                    return [ratio, 0.0, 0.0];
                }
                return [0.0, 0.0, ratio];
            }
            // a * x^3 + b * x^2 + d = 0.
            return computeRealRoots(a, b, 0, d);
        } else if (d === 0.0) {
            // x * (a * x^2 + b * x + c) = 0
            roots = QuadraticRealPolynomial.realRoots(a, b, c);

            // Return the roots in ascending order.
            if (roots.length === 0) {
                return [0.0];
            } else if (roots[1] <= 0.0) {
                return [roots[0], roots[1], 0.0];
            } else if (roots[0] >= 0.0) {
                return [0.0, roots[0], roots[1]];
            }
            return [roots[0], 0.0, roots[1]];
        }

        return computeRealRoots(a, b, c, d);
    };

    return CubicRealPolynomial;
});
/*global define*/
define('Core/QuarticRealPolynomial',[
        './DeveloperError',
        './Math',
        './CubicRealPolynomial',
        './QuadraticRealPolynomial'
    ],
    function(
        DeveloperError,
        CesiumMath,
        CubicRealPolynomial,
        QuadraticRealPolynomial) {
    "use strict";

    /**
     * Defines functions for 4th order polynomial functions of one variable with only real coefficients.
     *
     * @exports QuarticRealPolynomial
     */
    var QuarticRealPolynomial = {};

    /**
     * Provides the discriminant of the quartic equation from the supplied coefficients.
     * @memberof QuarticRealPolynomial
     *
     * @param {Number} a The coefficient of the 4th order monomial.
     * @param {Number} b The coefficient of the 3rd order monomial.
     * @param {Number} c The coefficient of the 2nd order monomial.
     * @param {Number} d The coefficient of the 1st order monomial.
     * @param {Number} e The coefficient of the 0th order monomial.
     * @returns {Number} The value of the discriminant.
     *
     * @exception {DeveloperError} a is a required number.
     * @exception {DeveloperError} b is a required number.
     * @exception {DeveloperError} c is a required number.
     * @exception {DeveloperError} d is a required number.
     * @exception {DeveloperError} e is a required number.
     */
    QuarticRealPolynomial.discriminant = function(a, b, c, d, e) {
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }
        if (typeof d !== 'number') {
            throw new DeveloperError('d is a required number.');
        }
        if (typeof e !== 'number') {
            throw new DeveloperError('e is a required number.');
        }

        var a2 = a * a;
        var a3 = a2 * a;
        var b2 = b * b;
        var b3 = b2 * b;
        var c2 = c * c;
        var c3 = c2 * c;
        var d2 = d * d;
        var d3 = d2 * d;
        var e2 = e * e;
        var e3 = e2 * e;

        var discriminant = (b2 * c2 * d2 - 4.0 * b3 * d3 - 4.0 * a * c3 * d2 + 18 * a * b * c * d3 - 27.0 * a2 * d2 * d2 + 256.0 * a3 * e3) +
            e * (18.0 * b3 * c * d - 4.0 * b2 * c3 + 16.0 * a * c2 * c2 - 80.0 * a * b * c2 * d - 6.0 * a * b2 * d2 + 144.0 * a2 * c * d2) +
            e2 * (144.0 * a * b2 * c - 27.0 * b2 * b2 - 128.0 * a2 * c2 - 192.0 * a2 * b * d);
        return discriminant;
    };

    function original(a3, a2, a1, a0) {
        var a3Squared = a3 * a3;

        var p = a2 - 3.0 * a3Squared / 8.0;
        var q = a1 - a2 * a3 / 2.0 + a3Squared * a3 / 8.0;
        var r = a0 - a1 * a3 / 4.0 + a2 * a3Squared / 16.0 - 3.0 * a3Squared * a3Squared / 256.0;

        // Find the roots of the cubic equations:  h^6 + 2 p h^4 + (p^2 - 4 r) h^2 - q^2 = 0.
        var cubicRoots = CubicRealPolynomial.realRoots(1.0, 2.0 * p, p * p - 4.0 * r, -q * q);

        if (cubicRoots.length > 0) {
            var temp = -a3 / 4.0;

            // Use the largest positive root.
            var hSquared = cubicRoots[cubicRoots.length - 1];

            if (Math.abs(hSquared) < CesiumMath.EPSILON14) {
                // y^4 + p y^2 + r = 0.
                var roots = QuadraticRealPolynomial.realRoots(1.0, p, r);

                if (roots.length === 2) {
                    var root0 = roots[0];
                    var root1 = roots[1];

                    var y;
                    if (root0 >= 0.0 && root1 >= 0.0) {
                        var y0 = Math.sqrt(root0);
                        var y1 = Math.sqrt(root1);

                        return [temp - y1, temp - y0, temp + y0, temp + y1];
                    } else if (root0 >= 0.0 && root1 < 0.0) {
                        y = Math.sqrt(root0);
                        return [temp - y, temp + y];
                    } else if (root0 < 0.0 && root1 >= 0.0) {
                        y = Math.sqrt(root1);
                        return [temp - y, temp + y];
                    }
                }
                return [];
            } else if (hSquared > 0.0) {
                var h = Math.sqrt(hSquared);

                var m = (p + hSquared - q / h) / 2.0;
                var n = (p + hSquared + q / h) / 2.0;

                // Now solve the two quadratic factors:  (y^2 + h y + m)(y^2 - h y + n);
                var roots1 = QuadraticRealPolynomial.realRoots(1.0, h, m);
                var roots2 = QuadraticRealPolynomial.realRoots(1.0, -h, n);

                if (roots1.length !== 0) {
                    roots1[0] += temp;
                    roots1[1] += temp;

                    if (roots2.length !== 0) {
                        roots2[0] += temp;
                        roots2[1] += temp;

                        if (roots1[1] <= roots2[0]) {
                            return [roots1[0], roots1[1], roots2[0], roots2[1]];
                        } else if (roots2[1] <= roots1[0]) {
                            return [roots2[0], roots2[1], roots1[0], roots1[1]];
                        } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
                            return [roots2[0], roots1[0], roots1[1], roots2[1]];
                        } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
                            return [roots1[0], roots2[0], roots2[1], roots1[1]];
                        } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
                            return [roots2[0], roots1[0], roots2[1], roots1[1]];
                        }
                        return [roots1[0], roots2[0], roots1[1], roots2[1]];
                    }
                    return roots1;
                }

                if (roots2.length !== 0) {
                    roots2[0] += temp;
                    roots2[1] += temp;

                    return roots2;
                }
                return [];
            }
        }
        return [];
    }

    function neumark(a3, a2, a1, a0) {
        var a1Squared = a1 * a1;
        var a2Squared = a2 * a2;
        var a3Squared = a3 * a3;

        var p = -2.0 * a2;
        var q = a1 * a3 + a2Squared - 4.0 * a0;
        var r = a3Squared * a0 - a1 * a2 * a3 + a1Squared;

        var cubicRoots = CubicRealPolynomial.realRoots(1.0, p, q, r);

        if (cubicRoots.length > 0) {
            // Use the most positive root
            var y = cubicRoots[0];

            var temp = (a2 - y);
            var tempSquared = temp * temp;

            var g1 = a3 / 2.0;
            var h1 = temp / 2.0;

            var m = tempSquared - 4.0 * a0;
            var mError = tempSquared + 4.0 * Math.abs(a0);

            var n = a3Squared - 4.0 * y;
            var nError = a3Squared + 4.0 * Math.abs(y);

            var g2;
            var h2;

            if (y < 0.0 || (m * nError < n * mError)) {
                var squareRootOfN = Math.sqrt(n);
                g2 = squareRootOfN / 2.0;
                h2 = squareRootOfN === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfN;
            } else {
                var squareRootOfM = Math.sqrt(m);
                g2 = squareRootOfM === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfM;
                h2 = squareRootOfM / 2.0;
            }

            var G;
            var g;
            if (g1 === 0.0 && g2 === 0.0) {
                G = 0.0;
                g = 0.0;
            } else if (CesiumMath.sign(g1) === CesiumMath.sign(g2)) {
                G = g1 + g2;
                g = y / G;
            } else {
                g = g1 - g2;
                G = y / g;
            }

            var H;
            var h;
            if (h1 === 0.0 && h2 === 0.0) {
                H = 0.0;
                h = 0.0;
            } else if (CesiumMath.sign(h1) === CesiumMath.sign(h2)) {
                H = h1 + h2;
                h = a0 / H;
            } else {
                h = h1 - h2;
                H = a0 / h;
            }

            // Now solve the two quadratic factors:  (y^2 + G y + H)(y^2 + g y + h);
            var roots1 = QuadraticRealPolynomial.realRoots(1.0, G, H);
            var roots2 = QuadraticRealPolynomial.realRoots(1.0, g, h);

            if (roots1.length !== 0) {
                if (roots2.length !== 0) {
                    if (roots1[1] <= roots2[0]) {
                        return [roots1[0], roots1[1], roots2[0], roots2[1]];
                    } else if (roots2[1] <= roots1[0]) {
                        return [roots2[0], roots2[1], roots1[0], roots1[1]];
                    } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
                        return [roots2[0], roots1[0], roots1[1], roots2[1]];
                    } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
                        return [roots1[0], roots2[0], roots2[1], roots1[1]];
                    } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
                        return [roots2[0], roots1[0], roots2[1], roots1[1]];
                    } else {
                        return [roots1[0], roots2[0], roots1[1], roots2[1]];
                    }
                }
                return roots1;
            }
            if (roots2.length !== 0) {
                return roots2;
            }
        }
        return [];
    }

    /**
     * Provides the real valued roots of the quartic polynomial with the provided coefficients.
     * @memberof QuarticRealPolynomial
     *
     * @param {Number} a The coefficient of the 4th order monomial.
     * @param {Number} b The coefficient of the 3rd order monomial.
     * @param {Number} c The coefficient of the 2nd order monomial.
     * @param {Number} d The coefficient of the 1st order monomial.
     * @param {Number} e The coefficient of the 0th order monomial.
     * @returns {Array} The real valued roots.
     *
     * @exception {DeveloperError} a is a required number.
     * @exception {DeveloperError} b is a required number.
     * @exception {DeveloperError} c is a required number.
     * @exception {DeveloperError} d is a required number.
     * @exception {DeveloperError} e is a required number.
     */
    QuarticRealPolynomial.realRoots = function(a, b, c, d, e) {
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }
        if (typeof d !== 'number') {
            throw new DeveloperError('d is a required number.');
        }
        if (typeof e !== 'number') {
            throw new DeveloperError('e is a required number.');
        }

        if (Math.abs(a) < CesiumMath.EPSILON15) {
            return CubicRealPolynomial.realRoots(b, c, d, e);
        }
        var a3 = b / a;
        var a2 = c / a;
        var a1 = d / a;
        var a0 = e / a;

        var k = (a3 < 0.0) ? 1 : 0;
        k += (a2 < 0.0) ? k + 1 : k;
        k += (a1 < 0.0) ? k + 1 : k;
        k += (a0 < 0.0) ? k + 1 : k;

        switch (k) {
        case 0:
            return original(a3, a2, a1, a0);
        case 1:
            return neumark(a3, a2, a1, a0);
        case 2:
            return neumark(a3, a2, a1, a0);
        case 3:
            return original(a3, a2, a1, a0);
        case 4:
            return original(a3, a2, a1, a0);
        case 5:
            return neumark(a3, a2, a1, a0);
        case 6:
            return original(a3, a2, a1, a0);
        case 7:
            return original(a3, a2, a1, a0);
        case 8:
            return neumark(a3, a2, a1, a0);
        case 9:
            return original(a3, a2, a1, a0);
        case 10:
            return original(a3, a2, a1, a0);
        case 11:
            return neumark(a3, a2, a1, a0);
        case 12:
            return original(a3, a2, a1, a0);
        case 13:
            return original(a3, a2, a1, a0);
        case 14:
            return original(a3, a2, a1, a0);
        case 15:
            return original(a3, a2, a1, a0);
        default:
            return undefined;
        }
    };

    return QuarticRealPolynomial;
});
/*global define*/
define('Core/IntersectionTests',[
        './defined',
        './DeveloperError',
        './Math',
        './Cartesian3',
        './Cartographic',
        './Matrix3',
        './QuadraticRealPolynomial',
        './QuarticRealPolynomial'
    ],
    function(
        defined,
        DeveloperError,
        CesiumMath,
        Cartesian3,
        Cartographic,
        Matrix3,
        QuadraticRealPolynomial,
        QuarticRealPolynomial) {
    "use strict";

    /**
     * DOC_TBA
     *
     * @exports IntersectionTests
     */
    var IntersectionTests = {};

    /**
     * Computes the intersection of a ray and a plane.
     * @memberof IntersectionTests
     *
     * @param {Ray} ray The ray.
     * @param {Plane} plane The plane.
     * @returns {Cartesian3} The intersection point or undefined if there is no intersections.
     *
     * @exception {DeveloperError} ray is required.
     * @exception {DeveloperError} plane is required.
     */
    IntersectionTests.rayPlane = function(ray, plane, result) {
        if (!defined(ray)) {
            throw new DeveloperError('ray is required.');
        }

        if (!defined(plane)) {
            throw new DeveloperError('plane is required.');
        }

        var origin = ray.origin;
        var direction = ray.direction;
        var normal = plane.normal;
        var denominator = Cartesian3.dot(normal, direction);

        if (Math.abs(denominator) < CesiumMath.EPSILON15) {
            // Ray is parallel to plane.  The ray may be in the polygon's plane.
            return undefined;
        }

        var t = (-plane.distance - Cartesian3.dot(normal, origin)) / denominator;

        if (t < 0) {
            return undefined;
        }

        result = Cartesian3.multiplyByScalar(direction, t, result);
        return Cartesian3.add(origin, result, result);
    };

    var scratchQ = new Cartesian3();
    var scratchW = new Cartesian3();

    /**
     * Computes the intersection points of a ray with an ellipsoid.
     * @memberof IntersectionTests
     *
     * @param {Ray} ray The ray.
     * @param {Ellipsoid} ellipsoid The ellipsoid.
     * @returns {Object} An object with the first (<code>start</code>) and the second (<code>stop</code>) intersection scalars for points along the ray or undefined if there are no intersections.
     *
     * @exception {DeveloperError} ray is required.
     * @exception {DeveloperError} ellipsoid is required.
     */
    IntersectionTests.rayEllipsoid = function(ray, ellipsoid) {
        if (!defined(ray)) {
            throw new DeveloperError('ray is required.');
        }

        if (!defined(ellipsoid)) {
            throw new DeveloperError('ellipsoid is required.');
        }

        var inverseRadii = ellipsoid.getOneOverRadii();
        var q = Cartesian3.multiplyComponents(inverseRadii, ray.origin, scratchQ);
        var w = Cartesian3.multiplyComponents(inverseRadii, ray.direction, scratchW);

        var q2 = Cartesian3.magnitudeSquared(q);
        var qw = Cartesian3.dot(q, w);

        var difference, w2, product, discriminant, temp;

        if (q2 > 1.0) {
            // Outside ellipsoid.
            if (qw >= 0.0) {
                // Looking outward or tangent (0 intersections).
                return undefined;
            }

            // qw < 0.0.
            var qw2 = qw * qw;
            difference = q2 - 1.0; // Positively valued.
            w2 = Cartesian3.magnitudeSquared(w);
            product = w2 * difference;

            if (qw2 < product) {
                // Imaginary roots (0 intersections).
                return undefined;
            } else if (qw2 > product) {
                // Distinct roots (2 intersections).
                discriminant = qw * qw - product;
                temp = -qw + Math.sqrt(discriminant); // Avoid cancellation.
                var root0 = temp / w2;
                var root1 = difference / temp;
                if (root0 < root1) {
                    return {
                        start : root0,
                        stop : root1
                    };
                }

                return {
                    start : root1,
                    stop : root0
                };
            } else {
                // qw2 == product.  Repeated roots (2 intersections).
                var root = Math.sqrt(difference / w2);
                return {
                    start : root,
                    stop : root
                };
            }
        } else if (q2 < 1.0) {
            // Inside ellipsoid (2 intersections).
            difference = q2 - 1.0; // Negatively valued.
            w2 = Cartesian3.magnitudeSquared(w);
            product = w2 * difference; // Negatively valued.

            discriminant = qw * qw - product;
            temp = -qw + Math.sqrt(discriminant); // Positively valued.
            return {
                start : 0.0,
                stop : temp / w2
            };
        } else {
            // q2 == 1.0. On ellipsoid.
            if (qw < 0.0) {
                // Looking inward.
                w2 = Cartesian3.magnitudeSquared(w);
                return {
                    start : 0.0,
                    stop : -qw / w2
                };
            }

            // qw >= 0.0.  Looking outward or tangent.
            return undefined;
        }
    };

    function addWithCancellationCheck(left, right, tolerance) {
        var difference = left + right;
        if ((CesiumMath.sign(left) !== CesiumMath.sign(right)) &&
                Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) {
            return 0.0;
        }

        return difference;
    }

    function quadraticVectorExpression(A, b, c, x, w) {
        var xSquared = x * x;
        var wSquared = w * w;

        var l2 = (A[Matrix3.COLUMN1ROW1] - A[Matrix3.COLUMN2ROW2]) * wSquared;
        var l1 = w * (x * addWithCancellationCheck(A[Matrix3.COLUMN1ROW0], A[Matrix3.COLUMN0ROW1], CesiumMath.EPSILON15) + b.y);
        var l0 = (A[Matrix3.COLUMN0ROW0] * xSquared + A[Matrix3.COLUMN2ROW2] * wSquared) + x * b.x + c;

        var r1 = wSquared * addWithCancellationCheck(A[Matrix3.COLUMN2ROW1], A[Matrix3.COLUMN1ROW2], CesiumMath.EPSILON15);
        var r0 = w * (x * addWithCancellationCheck(A[Matrix3.COLUMN2ROW0], A[Matrix3.COLUMN0ROW2]) + b.z);

        var cosines;
        var solutions = [];
        if (r0 === 0.0 && r1 === 0.0) {
            cosines = QuadraticRealPolynomial.realRoots(l2, l1, l0);
            if (cosines.length === 0) {
                return solutions;
            }

            var cosine0 = cosines[0];
            var sine0 = Math.sqrt(Math.max(1.0 - cosine0 * cosine0, 0.0));
            solutions.push(new Cartesian3(x, w * cosine0, w * -sine0));
            solutions.push(new Cartesian3(x, w * cosine0, w * sine0));

            if (cosines.length === 2) {
                var cosine1 = cosines[1];
                var sine1 = Math.sqrt(Math.max(1.0 - cosine1 * cosine1, 0.0));
                solutions.push(new Cartesian3(x, w * cosine1, w * -sine1));
                solutions.push(new Cartesian3(x, w * cosine1, w * sine1));
            }

            return solutions;
        }

        var r0Squared = r0 * r0;
        var r1Squared = r1 * r1;
        var l2Squared = l2 * l2;
        var r0r1 = r0 * r1;

        var c4 = l2Squared + r1Squared;
        var c3 = 2.0 * (l1 * l2 + r0r1);
        var c2 = 2.0 * l0 * l2 + l1 * l1 - r1Squared + r0Squared;
        var c1 = 2.0 * (l0 * l1 - r0r1);
        var c0 = l0 * l0 - r0Squared;

        if (c4 === 0.0 && c3 === 0.0 && c2 === 0.0 && c1 === 0.0) {
            return solutions;
        }

        cosines = QuarticRealPolynomial.realRoots(c4, c3, c2, c1, c0);
        var length = cosines.length;
        if (length === 0) {
            return solutions;
        }

        for ( var i = 0; i < length; ++i) {
            var cosine = cosines[i];
            var cosineSquared = cosine * cosine;
            var sineSquared = Math.max(1.0 - cosineSquared, 0.0);
            var sine = Math.sqrt(sineSquared);

            //var left = l2 * cosineSquared + l1 * cosine + l0;
            var left;
            if (CesiumMath.sign(l2) === CesiumMath.sign(l0)) {
                left = addWithCancellationCheck(l2 * cosineSquared + l0, l1 * cosine, CesiumMath.EPSILON12);
            } else if (CesiumMath.sign(l0) === CesiumMath.sign(l1 * cosine)) {
                left = addWithCancellationCheck(l2 * cosineSquared, l1 * cosine + l0, CesiumMath.EPSILON12);
            } else {
                left = addWithCancellationCheck(l2 * cosineSquared + l1 * cosine, l0, CesiumMath.EPSILON12);
            }

            var right = addWithCancellationCheck(r1 * cosine, r0, CesiumMath.EPSILON15);
            var product = left * right;

            if (product < 0.0) {
                solutions.push(new Cartesian3(x, w * cosine, w * sine));
            } else if (product > 0.0) {
                solutions.push(new Cartesian3(x, w * cosine, w * -sine));
            } else if (sine !== 0.0) {
                solutions.push(new Cartesian3(x, w * cosine, w * -sine));
                solutions.push(new Cartesian3(x, w * cosine, w * sine));
                ++i;
            } else {
                solutions.push(new Cartesian3(x, w * cosine, w * sine));
            }
        }

        return solutions;
    }

    /**
     * Provides the point along the ray which is nearest to the ellipsoid.
     * @memberof IntersectionTests
     *
     * @param {Ray} ray The ray.
     * @param {Ellipsoid} ellipsoid The ellipsoid.
     * @returns {Cartesian} The nearest planetodetic point on the ray.
     *
     * @exception {DeveloperError} ray is required.
     * @exception {DeveloperError} ellipsoid is required.
     */
    IntersectionTests.grazingAltitudeLocation = function(ray, ellipsoid) {
        if (!defined(ray)) {
            throw new DeveloperError('ray is required.');
        }

        if (!defined(ellipsoid)) {
            throw new DeveloperError('ellipsoid is required.');
        }

        var position = ray.origin;
        var direction = ray.direction;

        var normal = ellipsoid.geodeticSurfaceNormal(position);

        if (Cartesian3.dot(direction, normal) >= 0.0) { // The location provided is the closest point in altitude
            return position;
        }

        var intersects = defined(this.rayEllipsoid(ray, ellipsoid));

        // Compute the scaled direction vector.
        var f = ellipsoid.transformPositionToScaledSpace(direction);

        // Constructs a basis from the unit scaled direction vector. Construct its rotation and transpose.
        var firstAxis = Cartesian3.normalize(f);
        var reference = Cartesian3.mostOrthogonalAxis(f);
        var secondAxis = Cartesian3.normalize(Cartesian3.cross(reference, firstAxis));
        var thirdAxis  = Cartesian3.normalize(Cartesian3.cross(firstAxis, secondAxis));
        var B = new Matrix3(firstAxis.x, secondAxis.x, thirdAxis.x,
                            firstAxis.y, secondAxis.y, thirdAxis.y,
                            firstAxis.z, secondAxis.z, thirdAxis.z);
        var B_T = Matrix3.transpose(B);

        // Get the scaling matrix and its inverse.
        var D_I = Matrix3.fromScale(ellipsoid.getRadii());
        var D = Matrix3.fromScale(ellipsoid.getOneOverRadii());

        var C = new Matrix3(0.0, direction.z, -direction.y,
                            -direction.z, 0.0, direction.x,
                            direction.y, -direction.x, 0.0);

        var temp = Matrix3.multiply(Matrix3.multiply(B_T, D), C);
        var A = Matrix3.multiply(Matrix3.multiply(temp, D_I), B);
        var b = Matrix3.multiplyByVector(temp, position);

        // Solve for the solutions to the expression in standard form:
        var solutions = quadraticVectorExpression(A, Cartesian3.negate(b), 0.0, 0.0, 1.0);

        var s;
        var altitude;
        var length = solutions.length;
        if (length > 0) {
            var closest = Cartesian3.ZERO;
            var maximumValue = Number.NEGATIVE_INFINITY;

            for ( var i = 0; i < length; ++i) {
                s = Matrix3.multiplyByVector(D_I, Matrix3.multiplyByVector(B, solutions[i]));
                var v = Cartesian3.normalize(Cartesian3.subtract(s, position));
                var dotProduct = Cartesian3.dot(v, direction);

                if (dotProduct > maximumValue) {
                    maximumValue = dotProduct;
                    closest = s;
                }
            }

            var surfacePoint = ellipsoid.cartesianToCartographic(closest);
            maximumValue = CesiumMath.clamp(maximumValue, 0.0, 1.0);
            altitude = Cartesian3.magnitude(Cartesian3.subtract(closest, position)) * Math.sqrt(1.0 - maximumValue * maximumValue);
            altitude = intersects ? -altitude : altitude;
            return ellipsoid.cartographicToCartesian(new Cartographic(surfacePoint.longitude, surfacePoint.latitude, altitude));
        }

        return undefined;
    };

    var lineSegmentPlaneDifference = new Cartesian3();

    /**
     * Computes the intersection of a line segment and a plane.
     * @memberof IntersectionTests
     *
     * @param {Cartesian3} endPoint0 An end point of the line segment.
     * @param {Cartesian3} endPoint1 The other end point of the line segment.
     * @param {Plane} plane The plane.
     * @param {Cartesian3} [result] The object onto which to store the result.
     * @returns {Cartesian3} The intersection point or undefined if there is no intersection.
     *
     * @exception {DeveloperError} endPoint0 is required.
     * @exception {DeveloperError} endPoint1 is required.
     * @exception {DeveloperError} plane is required.
     *
     * @example
     * var origin = ellipsoid.cartographicToCartesian(Cartographic.fromDegrees(-75.59777, 40.03883, 0.0));
     * var normal = ellipsoid.geodeticSurfaceNormal(origin);
     * var plane = Plane.fromPointNormal(origin, normal);
     *
     * var p0 = new Cartesian3(...);
     * var p1 = new Cartesian3(...);
     *
     * // find the intersection of the line segment from p0 to p1 and the tangent plane at origin.
     * var intersection = IntersectionTests.lineSegmentPlane(p0, p1, plane);
     */
    IntersectionTests.lineSegmentPlane = function(endPoint0, endPoint1, plane, result) {
        if (!defined(endPoint0)) {
            throw new DeveloperError('endPoint0 is required.');
        }

        if (!defined(endPoint1)) {
            throw new DeveloperError('endPoint1 is required.');
        }

        if (!defined(plane)) {
            throw new DeveloperError('plane is required.');
        }

        var difference = Cartesian3.subtract(endPoint1, endPoint0, lineSegmentPlaneDifference);
        var normal = plane.normal;
        var nDotDiff = Cartesian3.dot(normal, difference);

        // check if the segment and plane are parallel
        if (Math.abs(nDotDiff) < CesiumMath.EPSILON6) {
            return undefined;
        }

        var nDotP0 = Cartesian3.dot(normal, endPoint0);
        var t = -(plane.distance + nDotP0) / nDotDiff;

        // intersection only if t is in [0, 1]
        if (t < 0.0 || t > 1.0) {
            return undefined;
        }

        // intersection is endPoint0 + t * (endPoint1 - endPoint0)
        if (!defined(result)) {
            result = new Cartesian3();
        }
        Cartesian3.multiplyByScalar(difference, t, result);
        Cartesian3.add(endPoint0, result, result);
        return result;
    };

    /**
     * Computes the intersection of a triangle and a plane
     * @memberof IntersectionTests
     *
     * @param {Cartesian3} p0 First point of the triangle
     * @param {Cartesian3} p1 Second point of the triangle
     * @param {Cartesian3} p2 Third point of the triangle
     * @param {Plane} plane Intersection plane
     *
     * @returns {Object} An object with properties <code>positions</code> and <code>indices</code>, which are arrays that represent three triangles that do not cross the plane. (Undefined if no intersection exists)
     *
     * @exception {DeveloperError} p0, p1, p2, and plane are required.
     *
     * @example
     * var origin = ellipsoid.cartographicToCartesian(Cartographic.fromDegrees(-75.59777, 40.03883, 0.0));
     * var normal = ellipsoid.geodeticSurfaceNormal(origin);
     * var plane = Plane.fromPointNormal(origin, normal);
     *
     * var p0 = new Cartesian3(...);
     * var p1 = new Cartesian3(...);
     * var p2 = new Cartesian3(...);
     *
     * // convert the triangle composed of points (p0, p1, p2) to three triangles that don't cross the plane
     * var triangles = IntersectionTests.lineSegmentPlane(p0, p1, p2, plane);
     *
     */
    IntersectionTests.trianglePlaneIntersection = function(p0, p1, p2, plane) {
        if ((!defined(p0)) ||
            (!defined(p1)) ||
            (!defined(p2)) ||
            (!defined(plane))) {
            throw new DeveloperError('p0, p1, p2, and plane are required.');
        }

        var planeNormal = plane.normal;
        var planeD = plane.distance;
        var p0Behind = (Cartesian3.dot(planeNormal, p0) + planeD) < 0.0;
        var p1Behind = (Cartesian3.dot(planeNormal, p1) + planeD) < 0.0;
        var p2Behind = (Cartesian3.dot(planeNormal, p2) + planeD) < 0.0;
        // Given these dots products, the calls to lineSegmentPlaneIntersection
        // always have defined results.

        var numBehind = 0;
        numBehind += p0Behind ? 1 : 0;
        numBehind += p1Behind ? 1 : 0;
        numBehind += p2Behind ? 1 : 0;

        var u1, u2;
        if (numBehind === 1 || numBehind === 2) {
            u1 = new Cartesian3();
            u2 = new Cartesian3();
        }

        if (numBehind === 1) {
            if (p0Behind) {
                IntersectionTests.lineSegmentPlane(p0, p1, plane, u1);
                IntersectionTests.lineSegmentPlane(p0, p2, plane, u2);

                return {
                    positions : [p0, p1, p2, u1, u2 ],
                    indices : [
                        // Behind
                        0, 3, 4,

                        // In front
                        1, 2, 4,
                        1, 4, 3
                    ]
                };
            } else if (p1Behind) {
                IntersectionTests.lineSegmentPlane(p1, p2, plane, u1);
                IntersectionTests.lineSegmentPlane(p1, p0, plane, u2);

                return {
                    positions : [p0, p1, p2, u1, u2 ],
                    indices : [
                        // Behind
                        1, 3, 4,

                        // In front
                        2, 0, 4,
                        2, 4, 3
                    ]
                };
            } else if (p2Behind) {
                IntersectionTests.lineSegmentPlane(p2, p0, plane, u1);
                IntersectionTests.lineSegmentPlane(p2, p1, plane, u2);

                return {
                    positions : [p0, p1, p2, u1, u2 ],
                    indices : [
                        // Behind
                        2, 3, 4,

                        // In front
                        0, 1, 4,
                        0, 4, 3
                    ]
                };
            }
        } else if (numBehind === 2) {
            if (!p0Behind) {
                IntersectionTests.lineSegmentPlane(p1, p0, plane, u1);
                IntersectionTests.lineSegmentPlane(p2, p0, plane, u2);

                return {
                    positions : [p0, p1, p2, u1, u2 ],
                    indices : [
                        // Behind
                        1, 2, 4,
                        1, 4, 3,

                        // In front
                        0, 3, 4
                    ]
                };
            } else if (!p1Behind) {
                IntersectionTests.lineSegmentPlane(p2, p1, plane, u1);
                IntersectionTests.lineSegmentPlane(p0, p1, plane, u2);

                return {
                    positions : [p0, p1, p2, u1, u2 ],
                    indices : [
                        // Behind
                        2, 0, 4,
                        2, 4, 3,

                        // In front
                        1, 3, 4
                    ]
                };
            } else if (!p2Behind) {
                IntersectionTests.lineSegmentPlane(p0, p2, plane, u1);
                IntersectionTests.lineSegmentPlane(p1, p2, plane, u2);

                return {
                    positions : [p0, p1, p2, u1, u2 ],
                    indices : [
                        // Behind
                        0, 1, 4,
                        0, 4, 3,

                        // In front
                        2, 3, 4
                    ]
                };
            }
        }

        // if numBehind is 3, the triangle is completely behind the plane;
        // otherwise, it is completely in front (numBehind is 0).
        return undefined;
    };

    return IntersectionTests;
});

/*global define*/
define('Core/Plane',[
        './Cartesian3',
        './defined',
        './DeveloperError'
    ], function(
        Cartesian3,
        defined,
        DeveloperError) {
    "use strict";

    /**
     * A plane in Hessian Normal Form defined by
     * <pre>
     * ax + by + cz + d = 0
     * </pre>
     * where (a, b, c) is the plane's <code>normal</code>, d is the signed
     * <code>distance</code> to the plane, and (x, y, z) is any point on
     * the plane.
     *
     * @alias Plane
     * @constructor
     *
     * @param {Cartesian3} normal The plane's normal (normalized).
     * @param {Number} distance The shortest distance from the origin to the plane.  The sign of
     * <code>distance</code> determines which side of the plane the origin
     * is on.  If <code>distance</code> is positive, the origin is in the half-space
     * in the direction of the normal; if negative, the origin is in the half-space
     * opposite to the normal; if zero, the plane passes through the origin.
     *
     * @exception {DeveloperError} normal is required.
     * @exception {DeveloperError} distance is required.
     *
     * @example
     * // The plane x=0
     * var plane = new Plane(Cartesian3.UNIT_X, 0.0);
     */
    var Plane = function(normal, distance) {
        if (!defined(normal))  {
            throw new DeveloperError('normal is required.');
        }

        if (!defined(distance)) {
            throw new DeveloperError('distance is required.');
        }

        /**
         * The plane's normal.
         *
         * @type {Cartesian3}
         */
        this.normal = Cartesian3.clone(normal);

        /**
         * The shortest distance from the origin to the plane.  The sign of
         * <code>distance</code> determines which side of the plane the origin
         * is on.  If <code>distance</code> is positive, the origin is in the half-space
         * in the direction of the normal; if negative, the origin is in the half-space
         * opposite to the normal; if zero, the plane passes through the origin.
         *
         * @type {Number}
         */
        this.distance = distance;
    };

    /**
     * Creates a plane from a normal and a point on the plane.
     * @memberof Plane
     *
     * @param {Cartesian3} point The point on the plane.
     * @param {Cartesian3} normal The plane's normal (normalized).
     * @param {Plane} [result] The object onto which to store the result.
     * @returns {Plane} A new plane instance or the modified result parameter.
     *
     * @exception {DeveloperError} point is required.
     * @exception {DeveloperError} normal is required.
     *
     * @example
     * var point = ellipsoid.cartographicToCartesian(Cartographic.fromDegrees(-72.0, 40.0));
     * var normal = ellipsoid.geodeticSurfaceNormal(point);
     * var tangentPlane = Plane.fromPointNormal(point, normal);
     */
    Plane.fromPointNormal = function(point, normal, result) {
        if (!defined(point)) {
            throw new DeveloperError('point is required.');
        }

        if (!defined(normal)) {
            throw new DeveloperError('normal is required.');
        }

        var distance = -Cartesian3.dot(normal, point);

        if (!defined(result)) {
            return new Plane(normal, distance);
        }

        Cartesian3.clone(normal, result.normal);
        result.distance = distance;
        return result;
    };

    /**
     * Computes the signed shortest distance of a point to a plane.
     * The sign of the distance determines which side of the plane the point
     * is on.  If the distance is positive, the point is in the half-space
     * in the direction of the normal; if negative, the point is in the half-space
     * opposite to the normal; if zero, the plane passes through the point.
     * @memberof Plane
     *
     * @param {Plane} plane The plane.
     * @param {Cartesian3} point The point.
     * @returns {Number} The signed shortest distance of the point to the plane.
     *
     * @exception {DeveloperError} plane is required.
     * @exception {DeveloperError} point is required.
     */
    Plane.getPointDistance = function(plane, point) {
        if (!defined(plane)) {
            throw new DeveloperError('plane is required.');
        }

        if (!defined(point)) {
            throw new DeveloperError('point is required.');
        }

        return Cartesian3.dot(plane.normal, point) + plane.distance;
    };


    /**
     * Computes the signed shortest distance of a point to this plane.
     * The sign of the distance determines which side of this plane the point
     * is on.  If the distance is positive, the point is in the half-space
     * in the direction of the normal; if negative, the point is in the half-space
     * opposite to the normal; if zero, this plane passes through the point.
     * @memberof Plane
     *
     * @param {Cartesian3} point The point.
     * @returns {Number} The signed shortest distance of the point to this plane.
     *
     * @exception {DeveloperError} point is required.
     */
    Plane.prototype.getPointDistance = function(point) {
        return Plane.getPointDistance(this, point);
    };

    return Plane;
});

/*global define*/
define('Core/Tipsify',[
        './defaultValue',
        './defined',
        './DeveloperError'
    ], function(
        defaultValue,
        defined,
        DeveloperError) {
    "use strict";

    /**
     * Encapsulates an algorithm to optimize triangles for the post
     * vertex-shader cache.  This is based on the 2007 SIGGRAPH paper
     * 'Fast Triangle Reordering for Vertex Locality and Reduced Overdraw.'
     * The runtime is linear but several passes are made.
     *
     * @exports Tipsify
     *
     * @see <a href='http://gfx.cs.princeton.edu/pubs/Sander_2007_%3ETR/tipsy.pdf'>
     * Fast Triangle Reordering for Vertex Locality and Reduced Overdraw</a>
     * by Sander, Nehab, and Barczak
     */
    var Tipsify = {};

    /**
     * Calculates the average cache miss ratio (ACMR) for a given set of indices.
     *
     * @param {Array} description.indices Lists triads of numbers corresponding to the indices of the vertices
     *                        in the vertex buffer that define the geometry's triangles.
     * @param {Number} [description.maximumIndex] The maximum value of the elements in <code>args.indices</code>.
     *                                     If not supplied, this value will be computed.
     * @param {Number} [description.cacheSize=24] The number of vertices that can be stored in the cache at any one time.
     *
     * @exception {DeveloperError} indices is required.
     * @exception {DeveloperError} indices length must be a multiple of three.
     * @exception {DeveloperError} cacheSize must be greater than two.
     *
     * @returns {Number} The average cache miss ratio (ACMR).
     *
     * @example
     * var indices = [0, 1, 2, 3, 4, 5];
     * var maxIndex = 5;
     * var cacheSize = 3;
     * var acmr = Tipsify.calculateACMR({indices : indices, maxIndex : maxIndex, cacheSize : cacheSize});
     */
    Tipsify.calculateACMR = function(description) {
        description = defaultValue(description, defaultValue.EMPTY_OBJECT);
        var indices = description.indices;
        var maximumIndex = description.maximumIndex;
        var cacheSize = defaultValue(description.cacheSize, 24);

        if (!defined(indices)) {
            throw new DeveloperError('indices is required.');
        }

        var numIndices = indices.length;

        if (numIndices < 3 || numIndices % 3 !== 0) {
            throw new DeveloperError('indices length must be a multiple of three.');
        }
        if (maximumIndex <= 0) {
            throw new DeveloperError('maximumIndex must be greater than zero.');
        }
        if (cacheSize < 3) {
            throw new DeveloperError('cacheSize must be greater than two.');
        }

        // Compute the maximumIndex if not given
        if (!defined(maximumIndex)) {
            maximumIndex = 0;
            var currentIndex = 0;
            var intoIndices = indices[currentIndex];
            while (currentIndex < numIndices) {
                if (intoIndices > maximumIndex) {
                    maximumIndex = intoIndices;
                }
                ++currentIndex;
                intoIndices = indices[currentIndex];
            }
        }

        // Vertex time stamps
        var vertexTimeStamps = [];
        for ( var i = 0; i < maximumIndex + 1; i++) {
            vertexTimeStamps[i] = 0;
        }

        // Cache processing
        var s = cacheSize + 1;
        for ( var j = 0; j < numIndices; ++j) {
            if ((s - vertexTimeStamps[indices[j]]) > cacheSize) {
                vertexTimeStamps[indices[j]] = s;
                ++s;
            }
        }

        return (s - cacheSize + 1) / (numIndices / 3);
    };

    /**
     * Optimizes triangles for the post-vertex shader cache.
     *
     * @param {Array} description.indices Lists triads of numbers corresponding to the indices of the vertices
     *                        in the vertex buffer that define the geometry's triangles.
     * @param {Number} [description.maximumIndex] The maximum value of the elements in <code>args.indices</code>.
     *                                     If not supplied, this value will be computed.
     * @param {Number} [description.cacheSize=24] The number of vertices that can be stored in the cache at any one time.
     *
     * @exception {DeveloperError} indices is required.
     * @exception {DeveloperError} indices length must be a multiple of three.
     * @exception {DeveloperError} cacheSize must be greater than two.
     *
     * @returns {Array} A list of the input indices in an optimized order.
     *
     * @example
     * var indices = [0, 1, 2, 3, 4, 5];
     * var maxIndex = 5;
     * var cacheSize = 3;
     * var reorderedIndices = Tipsify.tipsify({indices : indices, maxIndex : maxIndex, cacheSize : cacheSize});
     */
    Tipsify.tipsify = function(description) {
        description = defaultValue(description, defaultValue.EMPTY_OBJECT);
        var indices = description.indices;
        var maximumIndex = description.maximumIndex;
        var cacheSize = defaultValue(description.cacheSize, 24);

        var cursor;

        function skipDeadEnd(vertices, deadEnd, indices, maximumIndexPlusOne) {
            while (deadEnd.length >= 1) {
                // while the stack is not empty
                var d = deadEnd[deadEnd.length - 1]; // top of the stack
                deadEnd.splice(deadEnd.length - 1, 1); // pop the stack

                if (vertices[d].numLiveTriangles > 0) {
                    return d;
                }
            }

            while (cursor < maximumIndexPlusOne) {
                if (vertices[cursor].numLiveTriangles > 0) {
                    ++cursor;
                    return cursor - 1;
                }
                ++cursor;
            }
            return -1;
        }

        function getNextVertex(indices, cacheSize, oneRing, vertices, s, deadEnd, maximumIndexPlusOne) {
            var n = -1;
            var p;
            var m = -1;
            var itOneRing = 0;
            while (itOneRing < oneRing.length) {
                var index = oneRing[itOneRing];
                if (vertices[index].numLiveTriangles) {
                    p = 0;
                    if ((s - vertices[index].timeStamp + (2 * vertices[index].numLiveTriangles)) <= cacheSize) {
                        p = s - vertices[index].timeStamp;
                    }
                    if ((p > m) || (m === -1)) {
                        m = p;
                        n = index;
                    }
                }
                ++itOneRing;
            }
            if (n === -1) {
                return skipDeadEnd(vertices, deadEnd, indices, maximumIndexPlusOne);
            }
            return n;
        }

        if (!defined(indices)) {
            throw new DeveloperError('indices is required.');
        }
        var numIndices = indices.length;

        if (numIndices < 3 || numIndices % 3 !== 0) {
            throw new DeveloperError('indices length must be a multiple of three.');
        }
        if (maximumIndex <= 0) {
            throw new DeveloperError('maximumIndex must be greater than zero.');
        }
        if (cacheSize < 3) {
            throw new DeveloperError('cacheSize must be greater than two.');
        }

        // Determine maximum index
        var maximumIndexPlusOne = 0;
        var currentIndex = 0;
        var intoIndices = indices[currentIndex];
        var endIndex = numIndices;
        if (defined(maximumIndex)) {
            maximumIndexPlusOne = maximumIndex + 1;
        } else {
            while (currentIndex < endIndex) {
                if (intoIndices > maximumIndexPlusOne) {
                    maximumIndexPlusOne = intoIndices;
                }
                ++currentIndex;
                intoIndices = indices[currentIndex];
            }
            if (maximumIndexPlusOne === -1) {
                return 0;
            }
            ++maximumIndexPlusOne;
        }

        // Vertices
        var vertices = [];
        for ( var i = 0; i < maximumIndexPlusOne; i++) {
            vertices[i] = {
                numLiveTriangles : 0,
                timeStamp : 0,
                vertexTriangles : []
            };
        }
        currentIndex = 0;
        var triangle = 0;
        while (currentIndex < endIndex) {
            vertices[indices[currentIndex]].vertexTriangles.push(triangle);
            ++(vertices[indices[currentIndex]]).numLiveTriangles;
            vertices[indices[currentIndex + 1]].vertexTriangles.push(triangle);
            ++(vertices[indices[currentIndex + 1]]).numLiveTriangles;
            vertices[indices[currentIndex + 2]].vertexTriangles.push(triangle);
            ++(vertices[indices[currentIndex + 2]]).numLiveTriangles;
            ++triangle;
            currentIndex += 3;
        }

        // Starting index
        var f = 0;

        // Time Stamp
        var s = cacheSize + 1;
        cursor = 1;

        // Process
        var oneRing = [];
        var deadEnd = []; //Stack
        var vertex;
        var intoVertices;
        var currentOutputIndex = 0;
        var outputIndices = [];
        var numTriangles = numIndices / 3;
        var triangleEmitted = [];
        for (i = 0; i < numTriangles; i++) {
            triangleEmitted[i] = false;
        }
        var index;
        var limit;
        while (f !== -1) {
            oneRing = [];
            intoVertices = vertices[f];
            limit = intoVertices.vertexTriangles.length;
            for ( var k = 0; k < limit; ++k) {
                triangle = intoVertices.vertexTriangles[k];
                if (!triangleEmitted[triangle]) {
                    triangleEmitted[triangle] = true;
                    currentIndex = triangle + triangle + triangle;
                    for ( var j = 0; j < 3; ++j) {
                        // Set this index as a possible next index
                        index = indices[currentIndex];
                        oneRing.push(index);
                        deadEnd.push(index);

                        // Output index
                        outputIndices[currentOutputIndex] = index;
                        ++currentOutputIndex;

                        // Cache processing
                        vertex = vertices[index];
                        --vertex.numLiveTriangles;
                        if ((s - vertex.timeStamp) > cacheSize) {
                            vertex.timeStamp = s;
                            ++s;
                        }
                        ++currentIndex;
                    }
                }
            }
            f = getNextVertex(indices, cacheSize, oneRing, vertices, s, deadEnd, maximumIndexPlusOne);
        }

        return outputIndices;
    };

    return Tipsify;
});

/*global define*/
define('Core/GeometryPipeline',[
        './barycentricCoordinates',
        './defaultValue',
        './defined',
        './DeveloperError',
        './Cartesian2',
        './Cartesian3',
        './Cartesian4',
        './Cartographic',
        './EncodedCartesian3',
        './Intersect',
        './IntersectionTests',
        './Math',
        './Matrix3',
        './Matrix4',
        './Plane',
        './GeographicProjection',
        './ComponentDatatype',
        './IndexDatatype',
        './PrimitiveType',
        './Tipsify',
        './BoundingSphere',
        './Geometry',
        './GeometryAttribute'
    ], function(
        barycentricCoordinates,
        defaultValue,
        defined,
        DeveloperError,
        Cartesian2,
        Cartesian3,
        Cartesian4,
        Cartographic,
        EncodedCartesian3,
        Intersect,
        IntersectionTests,
        CesiumMath,
        Matrix3,
        Matrix4,
        Plane,
        GeographicProjection,
        ComponentDatatype,
        IndexDatatype,
        PrimitiveType,
        Tipsify,
        BoundingSphere,
        Geometry,
        GeometryAttribute) {
    "use strict";

    /**
     * Content pipeline functions for geometries.
     *
     * @exports GeometryPipeline
     *
     * @see Geometry
     * @see Context#createVertexArrayFromGeometry
     */
    var GeometryPipeline = {};

    function addTriangle(lines, index, i0, i1, i2) {
        lines[index++] = i0;
        lines[index++] = i1;

        lines[index++] = i1;
        lines[index++] = i2;

        lines[index++] = i2;
        lines[index] = i0;
    }

    function trianglesToLines(triangles) {
        var count = triangles.length;
        var size = (count / 3) * 6;
        var lines = IndexDatatype.createTypedArray(count, size);

        var index = 0;
        for ( var i = 0; i < count; i += 3, index += 6) {
            addTriangle(lines, index, triangles[i], triangles[i + 1], triangles[i + 2]);
        }

        return lines;
    }

    function triangleStripToLines(triangles) {
        var count = triangles.length;
        if (count >= 3) {
            var size = (count - 2) * 6;
            var lines = IndexDatatype.createTypedArray(count, size);

            addTriangle(lines, 0, triangles[0], triangles[1], triangles[2]);
            var index = 6;

            for ( var i = 3; i < count; ++i, index += 6) {
                addTriangle(lines, index, triangles[i - 1], triangles[i], triangles[i - 2]);
            }

            return lines;
        }

        return new Uint16Array();
    }

    function triangleFanToLines(triangles) {
        if (triangles.length > 0) {
            var count = triangles.length - 1;
            var size = (count - 1) * 6;
            var lines = IndexDatatype.createTypedArray(count, size);

            var base = triangles[0];
            var index = 0;
            for ( var i = 1; i < count; ++i, index += 6) {
                addTriangle(lines, index, base, triangles[i], triangles[i + 1]);
            }

            return lines;
        }

        return new Uint16Array();
    }

    /**
     * Converts a geometry's triangle indices to line indices.  If the geometry has an <code>indices</code>
     * and its <code>primitiveType</code> is <code>TRIANGLES</code>, <code>TRIANGLE_STRIP</code>,
     * <code>TRIANGLE_FAN</code>, it is converted to <code>LINES</code>; otherwise, the geometry is not changed.
     * <p>
     * This is commonly used to create a wireframe geometry for visual debugging.
     * </p>
     *
     * @param {Geometry} geometry The geometry to modify.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument, with its triangle indices converted to lines.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN.
     *
     * @example
     * geometry = GeometryPipeline.toWireframe(geometry);
     */
    GeometryPipeline.toWireframe = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var indices = geometry.indices;
        if (defined(indices)) {
            switch (geometry.primitiveType) {
                case PrimitiveType.TRIANGLES:
                    geometry.indices = trianglesToLines(indices);
                    break;
                case PrimitiveType.TRIANGLE_STRIP:
                    geometry.indices = triangleStripToLines(indices);
                    break;
                case PrimitiveType.TRIANGLE_FAN:
                    geometry.indices = triangleFanToLines(indices);
                    break;
                default:
                    throw new DeveloperError('geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN.');
            }

            geometry.primitiveType = PrimitiveType.LINES;
        }

        return geometry;
    };

    /**
     * Creates a new {@link Geometry} with <code>LINES</code> representing the provided
     * attribute (<code>attributeName</code>) for the provided geometry.  This is used to
     * visualize vector attributes like normals, binormals, and tangents.
     *
     * @param {Geometry} geometry The <code>Geometry</code> instance with the attribute.
     * @param {String} [attributeName='normal'] The name of the attribute.
     * @param {Number} [length=10000.0] The length of each line segment in meters.  This can be negative to point the vector in the opposite direction.
     *
     * @returns {Geometry} A new <code>Geometry<code> instance with line segments for the vector.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} geometry.attributes.position is required.
     * @exception {DeveloperError} geometry.attributes must have an attribute with the same name as the attributeName parameter.
     *
     * @example
     * var geometry = GeometryPipeline.createLineSegmentsForVectors(instance.geometry, 'binormal', 100000.0),
     */
    GeometryPipeline.createLineSegmentsForVectors = function(geometry, attributeName, length) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        if (!defined(geometry.attributes.position)) {
            throw new DeveloperError('geometry.attributes.position is required.');
        }

        attributeName = defaultValue(attributeName, 'normal');

        if (!defined(geometry.attributes[attributeName])) {
            throw new DeveloperError('geometry.attributes must have an attribute with the same name as the attributeName parameter, ' + attributeName + '.');
        }

        length = defaultValue(length, 10000.0);

        var positions = geometry.attributes.position.values;
        var vectors = geometry.attributes[attributeName].values;
        var positionsLength = positions.length;

        var newPositions = new Float64Array(2 * positionsLength);

        var j = 0;
        for (var i = 0; i < positionsLength; i += 3) {
            newPositions[j++] = positions[i];
            newPositions[j++] = positions[i + 1];
            newPositions[j++] = positions[i + 2];

            newPositions[j++] = positions[i] + (vectors[i] * length);
            newPositions[j++] = positions[i + 1] + (vectors[i + 1] * length);
            newPositions[j++] = positions[i + 2] + (vectors[i + 2] * length);
        }

        var newBoundingSphere;
        var bs = geometry.boundingSphere;
        if (defined(bs)) {
            newBoundingSphere = new BoundingSphere(bs.center, bs.radius + length);
        }

        return new Geometry({
            attributes : {
                position : new GeometryAttribute({
                    componentDatatype : ComponentDatatype.DOUBLE,
                    componentsPerAttribute : 3,
                    values : newPositions
                })
            },
            primitiveType : PrimitiveType.LINES,
            boundingSphere : newBoundingSphere
        });
    };

    /**
     * Creates an object that maps attribute names to unique indices for matching
     * vertex attributes and shader programs.
     *
     * @param {Geometry} geometry The geometry, which is not modified, to create the object for.
     *
     * @returns {Object} An object with attribute name / index pairs.
     *
     * @exception {DeveloperError} geometry is required.
     *
     * @example
     * var attributeIndices = GeometryPipeline.createAttributeIndices(geometry);
     * // Example output
     * // {
     * //   'position' : 0,
     * //   'normal' : 1
     * // }
     *
     * @see Context#createVertexArrayFromGeometry
     * @see ShaderCache
     */
    GeometryPipeline.createAttributeIndices = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        // There can be a WebGL performance hit when attribute 0 is disabled, so
        // assign attribute locations to well-known attributes.
        var semantics = [
            'position',
            'positionHigh',
            'positionLow',

            // From VertexFormat.position - after 2D projection and high-precision encoding
            'position3DHigh',
            'position3DLow',
            'position2DHigh',
            'position2DLow',

            // From Primitive
            'pickColor',

            // From VertexFormat
            'normal',
            'st',
            'binormal',
            'tangent'
        ];

        var attributes = geometry.attributes;
        var indices = {};
        var j = 0;
        var i;
        var len = semantics.length;

        // Attribute locations for well-known attributes
        for (i = 0; i < len; ++i) {
            var semantic = semantics[i];

            if (defined(attributes[semantic])) {
                indices[semantic] = j++;
            }
        }

        // Locations for custom attributes
        for (var name in attributes) {
            if (attributes.hasOwnProperty(name) && (!defined(indices[name]))) {
                indices[name] = j++;
            }
        }

        return indices;
    };

    /**
     * Reorders a geometry's attributes and <code>indices</code> to achieve better performance from the GPU's pre-vertex-shader cache.
     *
     * @param {Geometry} geometry The geometry to modify.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument, with its attributes and indices reordered for the GPU's pre-vertex-shader cache.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} Each attribute array in geometry.attributes must have the same number of attributes.
     *
     * @example
     * geometry = GeometryPipeline.reorderForPreVertexCache(geometry);
     *
     * @see GeometryPipeline.reorderForPostVertexCache
     */
    GeometryPipeline.reorderForPreVertexCache = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var numVertices = Geometry.computeNumberOfVertices(geometry);

        var indices = geometry.indices;
        if (defined(indices)) {
            var indexCrossReferenceOldToNew = new Int32Array(numVertices);
            for ( var i = 0; i < numVertices; i++) {
                indexCrossReferenceOldToNew[i] = -1;
            }

            // Construct cross reference and reorder indices
            var indicesIn = indices;
            var numIndices = indicesIn.length;
            var indicesOut = IndexDatatype.createTypedArray(numVertices, numIndices);

            var intoIndicesIn = 0;
            var intoIndicesOut = 0;
            var nextIndex = 0;
            var tempIndex;
            while (intoIndicesIn < numIndices) {
                tempIndex = indexCrossReferenceOldToNew[indicesIn[intoIndicesIn]];
                if (tempIndex !== -1) {
                    indicesOut[intoIndicesOut] = tempIndex;
                } else {
                    tempIndex = indicesIn[intoIndicesIn];
                    indexCrossReferenceOldToNew[tempIndex] = nextIndex;

                    indicesOut[intoIndicesOut] = nextIndex;
                    ++nextIndex;
                }
                ++intoIndicesIn;
                ++intoIndicesOut;
            }
            geometry.indices = indicesOut;

            // Reorder attributes
            var attributes = geometry.attributes;
            for ( var property in attributes) {
                if (attributes.hasOwnProperty(property) &&
                        defined(attributes[property]) &&
                        defined(attributes[property].values)) {

                    var attribute = attributes[property];
                    var elementsIn = attribute.values;
                    var intoElementsIn = 0;
                    var numComponents = attribute.componentsPerAttribute;
                    var elementsOut = ComponentDatatype.createTypedArray(attribute.componentDatatype, nextIndex * numComponents);
                    while (intoElementsIn < numVertices) {
                        var temp = indexCrossReferenceOldToNew[intoElementsIn];
                        if (temp !== -1) {
                            for (i = 0; i < numComponents; i++) {
                                elementsOut[numComponents * temp + i] = elementsIn[numComponents * intoElementsIn + i];
                            }
                        }
                        ++intoElementsIn;
                    }
                    attribute.values = elementsOut;
                }
            }
        }

        return geometry;
    };

    /**
     * Reorders a geometry's <code>indices</code> to achieve better performance from the GPU's
     * post vertex-shader cache by using the Tipsify algorithm.  If the geometry <code>primitiveType</code>
     * is not <code>TRIANGLES</code> or the geometry does not have an <code>indices</code>, this function has no effect.
     *
     * @param {Geometry} geometry The geometry to modify.
     * @param {Number} [cacheCapacity=24] The number of vertices that can be held in the GPU's vertex cache.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument, with its indices reordered for the post-vertex-shader cache.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} cacheCapacity must be greater than two.
     *
     * @example
     * geometry = GeometryPipeline.reorderForPostVertexCache(geometry);
     *
     * @see GeometryPipeline.reorderForPreVertexCache
     * @see <a href='http://gfx.cs.princeton.edu/pubs/Sander_2007_%3ETR/tipsy.pdf'>
     * Fast Triangle Reordering for Vertex Locality and Reduced Overdraw</a>
     * by Sander, Nehab, and Barczak
     */
    GeometryPipeline.reorderForPostVertexCache = function(geometry, cacheCapacity) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var indices = geometry.indices;
        if ((geometry.primitiveType === PrimitiveType.TRIANGLES) && (defined(indices))) {
            var numIndices = indices.length;
            var maximumIndex = 0;
            for ( var j = 0; j < numIndices; j++) {
                if (indices[j] > maximumIndex) {
                    maximumIndex = indices[j];
                }
            }
            geometry.indices = Tipsify.tipsify({
                indices : indices,
                maximumIndex : maximumIndex,
                cacheSize : cacheCapacity
            });
        }

        return geometry;
    };

    function copyAttributesDescriptions(attributes) {
        var newAttributes = {};

        for ( var attribute in attributes) {
            if (attributes.hasOwnProperty(attribute) &&
                    defined(attributes[attribute]) &&
                    defined(attributes[attribute].values)) {

                var attr = attributes[attribute];
                newAttributes[attribute] = new GeometryAttribute({
                    componentDatatype : attr.componentDatatype,
                    componentsPerAttribute : attr.componentsPerAttribute,
                    normalize : attr.normalize,
                    values : []
                });
            }
        }

        return newAttributes;
    }

    function copyVertex(destinationAttributes, sourceAttributes, index) {
        for ( var attribute in sourceAttributes) {
            if (sourceAttributes.hasOwnProperty(attribute) &&
                    defined(sourceAttributes[attribute]) &&
                    defined(sourceAttributes[attribute].values)) {

                var attr = sourceAttributes[attribute];

                for ( var k = 0; k < attr.componentsPerAttribute; ++k) {
                    destinationAttributes[attribute].values.push(attr.values[(index * attr.componentsPerAttribute) + k]);
                }
            }
        }
    }

    /**
     * Splits a geometry into multiple geometries, if necessary, to ensure that indices in the
     * <code>indices</code> fit into unsigned shorts.  This is used to meet the WebGL requirements
     * when {@link Context#getElementIndexUint} is <code>false</code>.
     * <p>
     * If the geometry does not have any <code>indices</code>, this function has no effect.
     * </p>
     *
     * @param {Geometry} geometry The geometry to be split into multiple geometries.
     *
     * @returns {Array} An array of geometries, each with indices that fit into unsigned shorts.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS
     * @exception {DeveloperError} All geometry attribute lists must have the same number of attributes.
     *
     * @example
     * var geometries = GeometryPipeline.fitToUnsignedShortIndices(geometry);
     */
    GeometryPipeline.fitToUnsignedShortIndices = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        if ((defined(geometry.indices)) &&
            ((geometry.primitiveType !== PrimitiveType.TRIANGLES) &&
             (geometry.primitiveType !== PrimitiveType.LINES) &&
             (geometry.primitiveType !== PrimitiveType.POINTS))) {
            throw new DeveloperError('geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS.');
        }

        var geometries = [];

        // If there's an index list and more than 64K attributes, it is possible that
        // some indices are outside the range of unsigned short [0, 64K - 1]
        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (defined(geometry.indices) && (numberOfVertices > CesiumMath.SIXTY_FOUR_KILOBYTES)) {
            var oldToNewIndex = [];
            var newIndices = [];
            var currentIndex = 0;
            var newAttributes = copyAttributesDescriptions(geometry.attributes);

            var originalIndices = geometry.indices;
            var numberOfIndices = originalIndices.length;

            var indicesPerPrimitive;

            if (geometry.primitiveType === PrimitiveType.TRIANGLES) {
                indicesPerPrimitive = 3;
            } else if (geometry.primitiveType === PrimitiveType.LINES) {
                indicesPerPrimitive = 2;
            } else if (geometry.primitiveType === PrimitiveType.POINTS) {
                indicesPerPrimitive = 1;
            }

            for ( var j = 0; j < numberOfIndices; j += indicesPerPrimitive) {
                for (var k = 0; k < indicesPerPrimitive; ++k) {
                    var x = originalIndices[j + k];
                    var i = oldToNewIndex[x];
                    if (!defined(i)) {
                        i = currentIndex++;
                        oldToNewIndex[x] = i;
                        copyVertex(newAttributes, geometry.attributes, x);
                    }
                    newIndices.push(i);
                }

                if (currentIndex + indicesPerPrimitive > CesiumMath.SIXTY_FOUR_KILOBYTES) {
                    geometries.push(new Geometry({
                        attributes : newAttributes,
                        indices : newIndices,
                        primitiveType : geometry.primitiveType,
                        boundingSphere : geometry.boundingSphere
                    }));

                    // Reset for next vertex-array
                    oldToNewIndex = [];
                    newIndices = [];
                    currentIndex = 0;
                    newAttributes = copyAttributesDescriptions(geometry.attributes);
                }
            }

            if (newIndices.length !== 0) {
                geometries.push(new Geometry({
                    attributes : newAttributes,
                    indices : newIndices,
                    primitiveType : geometry.primitiveType,
                    boundingSphere : geometry.boundingSphere
                }));
            }
        } else {
            // No need to split into multiple geometries
            geometries.push(geometry);
        }

        return geometries;
    };

    var scratchProjectTo2DCartesian3 = new Cartesian3();
    var scratchProjectTo2DCartographic = new Cartographic();

    /**
     * Projects a geometry's 3D <code>position</code> attribute to 2D, replacing the <code>position</code>
     * attribute with separate <code>position3D</code> and <code>position2D</code> attributes.
     * <p>
     * If the geometry does not have a <code>position</code>, this function has no effect.
     * </p>
     *
     * @param {Geometry} geometry The geometry to modify.
     * @param {String} attributeName The name of the attribute.
     * @param {String} attributeName3D The name of the attribute in 3D.
     * @param {String} attributeName2D The name of the attribute in 2D.
     * @param {Object} [projection=new GeographicProjection()] The projection to use.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument with <code>position3D</code> and <code>position2D</code> attributes.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} attributeName is required.
     * @exception {DeveloperError} attributeName3D is required.
     * @exception {DeveloperError} attributeName2D is required.
     * @exception {DeveloperError} geometry must have attribute matching the attributeName argument.
     * @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE.
     * @exception {DeveloperError} Could not project a point to 2D.
     *
     * @example
     * geometry = GeometryPipeline.projectTo2D(geometry, 'position', 'position3D', 'position2D');
     */
    GeometryPipeline.projectTo2D = function(geometry, attributeName, attributeName3D, attributeName2D, projection) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        if (!defined(attributeName)) {
            throw new DeveloperError('attributeName is required.');
        }

        if (!defined(attributeName3D)) {
            throw new DeveloperError('attributeName3D is required.');
        }

        if (!defined(attributeName2D)) {
            throw new DeveloperError('attributeName2D is required.');
        }

        var attribute = geometry.attributes[attributeName];
        if (!defined(attribute)) {
            throw new DeveloperError('geometry must have attribute matching the attributeName argument: ' + attributeName + '.');
        }

        if (attribute.componentDatatype.value !== ComponentDatatype.DOUBLE.value) {
            throw new DeveloperError('The attribute componentDatatype must be ComponentDatatype.DOUBLE.');
        }

        projection = (defined(projection)) ? projection : new GeographicProjection();
        var ellipsoid = projection.getEllipsoid();

        // Project original values to 2D.
        var values3D = attribute.values;
        var projectedValues = new Float64Array(values3D.length);
        var index = 0;

        for ( var i = 0; i < values3D.length; i += 3) {
            var value = Cartesian3.fromArray(values3D, i, scratchProjectTo2DCartesian3);

            var lonLat = ellipsoid.cartesianToCartographic(value, scratchProjectTo2DCartographic);
            if (!defined(lonLat)) {
                throw new DeveloperError('Could not project point (' + value.x + ', ' + value.y + ', ' + value.z + ') to 2D.');
            }

            var projectedLonLat = projection.project(lonLat, scratchProjectTo2DCartesian3);

            projectedValues[index++] = projectedLonLat.x;
            projectedValues[index++] = projectedLonLat.y;
            projectedValues[index++] = projectedLonLat.z;
        }

        // Rename original cartesians to WGS84 cartesians.
        geometry.attributes[attributeName3D] = attribute;

        // Replace original cartesians with 2D projected cartesians
        geometry.attributes[attributeName2D] = new GeometryAttribute({
            componentDatatype : ComponentDatatype.DOUBLE,
            componentsPerAttribute : 3,
            values : projectedValues
        });
        delete geometry.attributes[attributeName];

        return geometry;
    };

    var encodedResult = {
        high : 0.0,
        low : 0.0
    };

    /**
     * Encodes floating-point geometry attribute values as two separate attributes to improve
     * rendering precision using the same encoding as {@link EncodedCartesian3}.
     * <p>
     * This is commonly used to create high-precision position vertex attributes.
     * </p>
     *
     * @param {Geometry} geometry The geometry to modify.
     * @param {String} attributeName The name of the attribute.
     * @param {String} attributeHighName The name of the attribute for the encoded high bits.
     * @param {String} attributeLowName The name of the attribute for the encoded low bits.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument, with its encoded attribute.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} attributeName is required.
     * @exception {DeveloperError} attributeHighName is required.
     * @exception {DeveloperError} attributeLowName is required.
     * @exception {DeveloperError} geometry must have attribute matching the attributeName argument.
     * @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE.
     *
     * @example
     * geometry = GeometryPipeline.encodeAttribute(geometry, 'position3D', 'position3DHigh', 'position3DLow');
     *
     * @see EncodedCartesian3
     */
    GeometryPipeline.encodeAttribute = function(geometry, attributeName, attributeHighName, attributeLowName) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        if (!defined(attributeName)) {
            throw new DeveloperError('attributeName is required.');
        }

        if (!defined(attributeHighName)) {
            throw new DeveloperError('attributeHighName is required.');
        }

        if (!defined(attributeLowName)) {
            throw new DeveloperError('attributeLowName is required.');
        }

        var attribute = geometry.attributes[attributeName];

        if (!defined(attribute)) {
            throw new DeveloperError('geometry must have attribute matching the attributeName argument: ' + attributeName + '.');
        }

        if (attribute.componentDatatype.value !== ComponentDatatype.DOUBLE.value) {
            throw new DeveloperError('The attribute componentDatatype must be ComponentDatatype.DOUBLE.');
        }

        var values = attribute.values;
        var length = values.length;
        var highValues = new Float32Array(length);
        var lowValues = new Float32Array(length);

        for (var i = 0; i < length; ++i) {
            EncodedCartesian3.encode(values[i], encodedResult);
            highValues[i] = encodedResult.high;
            lowValues[i] = encodedResult.low;
        }

        var componentsPerAttribute = attribute.componentsPerAttribute;

        geometry.attributes[attributeHighName] = new GeometryAttribute({
            componentDatatype : ComponentDatatype.FLOAT,
            componentsPerAttribute : componentsPerAttribute,
            values : highValues
        });
        geometry.attributes[attributeLowName] = new GeometryAttribute({
            componentDatatype : ComponentDatatype.FLOAT,
            componentsPerAttribute : componentsPerAttribute,
            values : lowValues
        });
        delete geometry.attributes[attributeName];

        return geometry;
    };

    var scratchCartesian3 = new Cartesian3();

    function transformPoint(matrix, attribute) {
        if (defined(attribute)) {
            var values = attribute.values;
            var length = values.length;
            for (var i = 0; i < length; i += 3) {
                Cartesian3.unpack(values, i, scratchCartesian3);
                Matrix4.multiplyByPoint(matrix, scratchCartesian3, scratchCartesian3);
                Cartesian3.pack(scratchCartesian3, values, i);
            }
        }
    }

    function transformVector(matrix, attribute) {
        if (defined(attribute)) {
            var values = attribute.values;
            var length = values.length;
            for (var i = 0; i < length; i += 3) {
                Cartesian3.unpack(values, i, scratchCartesian3);
                Matrix3.multiplyByVector(matrix, scratchCartesian3, scratchCartesian3);
                scratchCartesian3 = Cartesian3.normalize(scratchCartesian3, scratchCartesian3);
                Cartesian3.pack(scratchCartesian3, values, i);
            }
        }
    }

    var inverseTranspose = new Matrix4();
    var normalMatrix = new Matrix3();

    /**
     * Transforms a geometry instance to world coordinates.  This is used as a prerequisite
     * to batch together several instances with {@link GeometryPipeline.combine}.  This changes
     * the instance's <code>modelMatrix</code> to {@see Matrix4.IDENTITY} and transforms the
     * following attributes if they are present: <code>position</code>, <code>normal</code>,
     * <code>binormal</code>, and <code>tangent</code>.
     *
     * @param {GeometryInstance} instance The geometry instance to modify.
     *
     * @returns {GeometryInstance} The modified <code>instance</code> argument, with its attributes transforms to world coordinates.
     *
     * @exception {DeveloperError} instance is required.
     *
     * @example
     * for (var i = 0; i < instances.length; ++i) {
     *   GeometryPipeline.transformToWorldCoordinates(instances[i]);
     * }
     * var geometry = GeometryPipeline.combine(instances);
     *
     * @see GeometryPipeline.combine
     */
    GeometryPipeline.transformToWorldCoordinates = function(instance) {
        if (!defined(instance)) {
            throw new DeveloperError('instance is required.');
        }

        var modelMatrix = instance.modelMatrix;

        if (Matrix4.equals(modelMatrix, Matrix4.IDENTITY)) {
            // Already in world coordinates
            return instance;
        }

        var attributes = instance.geometry.attributes;

        // Transform attributes in known vertex formats
        transformPoint(modelMatrix, attributes.position);
        transformPoint(modelMatrix, attributes.prevPosition);
        transformPoint(modelMatrix, attributes.nextPosition);

        if ((defined(attributes.normal)) ||
            (defined(attributes.binormal)) ||
            (defined(attributes.tangent))) {

            Matrix4.inverse(modelMatrix, inverseTranspose);
            Matrix4.transpose(inverseTranspose, inverseTranspose);
            Matrix4.getRotation(inverseTranspose, normalMatrix);

            transformVector(normalMatrix, attributes.normal);
            transformVector(normalMatrix, attributes.binormal);
            transformVector(normalMatrix, attributes.tangent);
        }

        var boundingSphere = instance.geometry.boundingSphere;

        if (defined(boundingSphere)) {
            instance.geometry.boundingSphere = BoundingSphere.transform(boundingSphere, modelMatrix, boundingSphere);
        }

        instance.modelMatrix = Matrix4.clone(Matrix4.IDENTITY);

        return instance;
    };

    function findAttributesInAllGeometries(instances) {
        var length = instances.length;

        var attributesInAllGeometries = {};

        var attributes0 = instances[0].geometry.attributes;
        var name;

        for (name in attributes0) {
            if (attributes0.hasOwnProperty(name) &&
                    defined(attributes0[name]) &&
                    defined(attributes0[name].values)) {

                var attribute = attributes0[name];
                var numberOfComponents = attribute.values.length;
                var inAllGeometries = true;

                // Does this same attribute exist in all geometries?
                for (var i = 1; i < length; ++i) {
                    var otherAttribute = instances[i].geometry.attributes[name];

                    if ((!defined(otherAttribute)) ||
                        (attribute.componentDatatype.value !== otherAttribute.componentDatatype.value) ||
                        (attribute.componentsPerAttribute !== otherAttribute.componentsPerAttribute) ||
                        (attribute.normalize !== otherAttribute.normalize)) {

                        inAllGeometries = false;
                        break;
                    }

                    numberOfComponents += otherAttribute.values.length;
                }

                if (inAllGeometries) {
                    attributesInAllGeometries[name] = new GeometryAttribute({
                        componentDatatype : attribute.componentDatatype,
                        componentsPerAttribute : attribute.componentsPerAttribute,
                        normalize : attribute.normalize,
                        values : ComponentDatatype.createTypedArray(attribute.componentDatatype, numberOfComponents)
                    });
                }
            }
        }

        return attributesInAllGeometries;
    }

    /**
     * Combines geometry from several {@link GeometryInstance} objects into one geometry.
     * This concatenates the attributes, concatenates and adjusts the indices, and creates
     * a bounding sphere encompassing all instances.
     * <p>
     * If the instances do not have the same attributes, a subset of attributes common
     * to all instances is used, and the others are ignored.
     * </p>
     * <p>
     * This is used by {@link Primitive} to efficiently render a large amount of static data.
     * </p>
     *
     * @param {Array} [instances] The array of {@link GeometryInstance} objects whose geometry will be combined.
     *
     * @returns {Geometry} A single geometry created from the provided geometry instances.
     *
     * @exception {DeveloperError} instances is required and must have length greater than zero.
     * @exception {DeveloperError} All instances must have the same modelMatrix.
     * @exception {DeveloperError} All instance geometries must have an indices or not have one.
     * @exception {DeveloperError} All instance geometries must have the same primitiveType.
     *
     * @example
     * for (var i = 0; i < instances.length; ++i) {
     *   GeometryPipeline.transformToWorldCoordinates(instances[i]);
     * }
     * var geometry = GeometryPipeline.combine(instances);
     *
     * @see GeometryPipeline.transformToWorldCoordinates
     */
    GeometryPipeline.combine = function(instances) {
        if ((!defined(instances)) || (instances.length < 1)) {
            throw new DeveloperError('instances is required and must have length greater than zero.');
        }

        var length = instances.length;

        var name;
        var i;
        var j;
        var k;

        var m = instances[0].modelMatrix;
        var haveIndices = (defined(instances[0].geometry.indices));
        var primitiveType = instances[0].geometry.primitiveType;

        for (i = 1; i < length; ++i) {
            if (!Matrix4.equals(instances[i].modelMatrix, m)) {
                throw new DeveloperError('All instances must have the same modelMatrix.');
            }

            if ((defined(instances[i].geometry.indices)) !== haveIndices) {
                throw new DeveloperError('All instance geometries must have an indices or not have one.');
            }

            if (instances[i].geometry.primitiveType !== primitiveType) {
                throw new DeveloperError('All instance geometries must have the same primitiveType.');
            }
        }

        // Find subset of attributes in all geometries
        var attributes = findAttributesInAllGeometries(instances);
        var values;
        var sourceValues;
        var sourceValuesLength;

        // Combine attributes from each geometry into a single typed array
        for (name in attributes) {
            if (attributes.hasOwnProperty(name)) {
                values = attributes[name].values;

                k = 0;
                for (i = 0; i < length; ++i) {
                    sourceValues = instances[i].geometry.attributes[name].values;
                    sourceValuesLength = sourceValues.length;

                    for (j = 0; j < sourceValuesLength; ++j) {
                        values[k++] = sourceValues[j];
                    }
                }
            }
        }

        // Combine index lists
        var indices;

        if (haveIndices) {
            var numberOfIndices = 0;
            for (i = 0; i < length; ++i) {
                numberOfIndices += instances[i].geometry.indices.length;
            }

            var numberOfVertices = Geometry.computeNumberOfVertices(new Geometry({
                attributes : attributes,
                primitiveType : PrimitiveType.POINTS
            }));
            var destIndices = IndexDatatype.createTypedArray(numberOfVertices, numberOfIndices);

            var destOffset = 0;
            var offset = 0;

            for (i = 0; i < length; ++i) {
                var sourceIndices = instances[i].geometry.indices;
                var sourceIndicesLen = sourceIndices.length;

                for (k = 0; k < sourceIndicesLen; ++k) {
                    destIndices[destOffset++] = offset + sourceIndices[k];
                }

                offset += Geometry.computeNumberOfVertices(instances[i].geometry);
            }

            indices = destIndices;
        }

        // Create bounding sphere that includes all instances
        var center = new Cartesian3();
        var radius = 0.0;
        var bs;

        for (i = 0; i < length; ++i) {
            bs = instances[i].geometry.boundingSphere;
            if (!defined(bs)) {
                // If any geometries have an undefined bounding sphere, then so does the combined geometry
                center = undefined;
                break;
            }

            Cartesian3.add(bs.center, center, center);
        }

        if (defined(center)) {
            Cartesian3.divideByScalar(center, length, center);

            for (i = 0; i < length; ++i) {
                bs = instances[i].geometry.boundingSphere;
                var tempRadius = Cartesian3.magnitude(Cartesian3.subtract(bs.center, center)) + bs.radius;

                if (tempRadius > radius) {
                    radius = tempRadius;
                }
            }
        }

        return new Geometry({
            attributes : attributes,
            indices : indices,
            primitiveType : primitiveType,
            boundingSphere : (defined(center)) ? new BoundingSphere(center, radius) : undefined
        });
    };

    var normal = new Cartesian3();
    var v0 = new Cartesian3();
    var v1 = new Cartesian3();
    var v2 = new Cartesian3();

    /**
     * Computes per-vertex normals for a geometry containing <code>TRIANGLES</code> by averaging the normals of
     * all triangles incident to the vertex.  The result is a new <code>normal</code> attribute added to the geometry.
     * This assumes a counter-clockwise winding order.
     *
     * @param {Geometry} geometry The geometry to modify.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument with the computed <code>normal</code> attribute.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} geometry.attributes.position.values is required.
     * @exception {DeveloperError} geometry.indices is required.
     * @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3.
     * @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}.
     *
     * @example
     * GeometryPipeline.computeNormal(geometry);
     */
    GeometryPipeline.computeNormal = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var attributes = geometry.attributes;
        var indices = geometry.indices;

        if (!defined(attributes.position) || !defined(attributes.position.values)) {
            throw new DeveloperError('geometry.attributes.position.values is required.');
        }

        if (!defined(indices)) {
            throw new DeveloperError('geometry.indices is required.');
        }

        if (indices.length < 2 || indices.length % 3 !== 0) {
            throw new DeveloperError('geometry.indices length must be greater than 0 and be a multiple of 3.');
        }

        if (geometry.primitiveType !== PrimitiveType.TRIANGLES) {
            throw new DeveloperError('geometry.primitiveType must be PrimitiveType.TRIANGLES.');
        }

        var vertices = geometry.attributes.position.values;
        var numVertices = geometry.attributes.position.values.length / 3;
        var numIndices = indices.length;
        var normalsPerVertex = new Array(numVertices);
        var normalsPerTriangle = new Array(numIndices / 3);
        var normalIndices = new Array(numIndices);

        for ( var i = 0; i < numVertices; i++) {
            normalsPerVertex[i] = {
                indexOffset : 0,
                count : 0,
                currentCount : 0
            };
        }

        var j = 0;
        for (i = 0; i < numIndices; i += 3) {
            var i0 = indices[i];
            var i1 = indices[i + 1];
            var i2 = indices[i + 2];
            var i03 = i0 * 3;
            var i13 = i1 * 3;
            var i23 = i2 * 3;

            v0.x = vertices[i03];
            v0.y = vertices[i03 + 1];
            v0.z = vertices[i03 + 2];
            v1.x = vertices[i13];
            v1.y = vertices[i13 + 1];
            v1.z = vertices[i13 + 2];
            v2.x = vertices[i23];
            v2.y = vertices[i23 + 1];
            v2.z = vertices[i23 + 2];

            normalsPerVertex[i0].count++;
            normalsPerVertex[i1].count++;
            normalsPerVertex[i2].count++;

            Cartesian3.subtract(v1, v0, v1);
            Cartesian3.subtract(v2, v0, v2);
            normalsPerTriangle[j] = Cartesian3.cross(v1, v2);
            j++;
        }

        var indexOffset = 0;
        for (i = 0; i < numVertices; i++) {
            normalsPerVertex[i].indexOffset += indexOffset;
            indexOffset += normalsPerVertex[i].count;
        }

        j = 0;
        var vertexNormalData;
        for (i = 0; i < numIndices; i += 3) {
            vertexNormalData = normalsPerVertex[indices[i]];
            var index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
            normalIndices[index] = j;
            vertexNormalData.currentCount++;

            vertexNormalData = normalsPerVertex[indices[i + 1]];
            index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
            normalIndices[index] = j;
            vertexNormalData.currentCount++;

            vertexNormalData = normalsPerVertex[indices[i + 2]];
            index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
            normalIndices[index] = j;
            vertexNormalData.currentCount++;

            j++;
        }

        var normalValues = new Float32Array(numVertices * 3);
        for (i = 0; i < numVertices; i++) {
            var i3 = i * 3;
            vertexNormalData = normalsPerVertex[i];
            if (vertexNormalData.count > 0) {
                Cartesian3.clone(Cartesian3.ZERO, normal);
                for (j = 0; j < vertexNormalData.count; j++) {
                    Cartesian3.add(normal, normalsPerTriangle[normalIndices[vertexNormalData.indexOffset + j]], normal);
                }
                Cartesian3.normalize(normal, normal);
                normalValues[i3] = normal.x;
                normalValues[i3 + 1] = normal.y;
                normalValues[i3 + 2] = normal.z;
            } else {
                normalValues[i3] = 0.0;
                normalValues[i3 + 1] = 0.0;
                normalValues[i3 + 2] = 1.0;
            }
        }

        geometry.attributes.normal = new GeometryAttribute({
            componentDatatype : ComponentDatatype.FLOAT,
            componentsPerAttribute : 3,
            values : normalValues
        });

        return geometry;
    };

    var normalScratch = new Cartesian3();
    var normalScale = new Cartesian3();
    var tScratch = new Cartesian3();

    /**
     * Computes per-vertex binormals and tangents for a geometry containing <code>TRIANGLES</code>.
     * The result is new <code>binormal</code> and <code>tangent</code> attributes added to the geometry.
     * This assumes a counter-clockwise winding order.
     * <p>
     * Based on <a href="http://www.terathon.com/code/tangent.html">Computing Tangent Space Basis Vectors
     * for an Arbitrary Mesh</a> by Eric Lengyel.
     * </p>
     *
     * @param {Geometry} geometry The geometry to modify.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument with the computed <code>binormal</code> and <code>tangent</code> attributes.
     *
     * @exception {DeveloperError} geometry is required.
     * @exception {DeveloperError} geometry.attributes.position.values is required.
     * @exception {DeveloperError} geometry.attributes.normal.values is required.
     * @exception {DeveloperError} geometry.attributes.st.values is required.
     * @exception {DeveloperError} geometry.indices is required.
     * @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3.
     * @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}.
     *
     * @example
     * GeometryPipeline.computeBinormalAndTangent(geometry);
     */
    GeometryPipeline.computeBinormalAndTangent = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var attributes = geometry.attributes;
        var indices = geometry.indices;

        if (!defined(attributes.position) || !defined(attributes.position.values)) {
            throw new DeveloperError('geometry.attributes.position.values is required.');
        }

        if (!defined(attributes.normal) || !defined(attributes.normal.values)) {
            throw new DeveloperError('geometry.attributes.normal.values is required.');
        }

        if (!defined(attributes.st) || !defined(attributes.st.values)) {
            throw new DeveloperError('geometry.attributes.st.values is required.');
        }

        if (!defined(indices)) {
            throw new DeveloperError('geometry.indices is required.');
        }

        if (indices.length < 2 || indices.length % 3 !== 0) {
            throw new DeveloperError('geometry.indices length must be greater than 0 and be a multiple of 3.');
        }

        if (geometry.primitiveType !== PrimitiveType.TRIANGLES) {
            throw new DeveloperError('geometry.primitiveType must be PrimitiveType.TRIANGLES.');
        }

        var vertices = geometry.attributes.position.values;
        var normals = geometry.attributes.normal.values;
        var st = geometry.attributes.st.values;

        var numVertices = geometry.attributes.position.values.length / 3;
        var numIndices = indices.length;
        var tan1 = new Array(numVertices * 3);

        for ( var i = 0; i < tan1.length; i++) {
            tan1[i] = 0;
        }

        var i03;
        var i13;
        var i23;
        for (i = 0; i < numIndices; i += 3) {
            var i0 = indices[i];
            var i1 = indices[i + 1];
            var i2 = indices[i + 2];
            i03 = i0 * 3;
            i13 = i1 * 3;
            i23 = i2 * 3;
            var i02 = i0 * 2;
            var i12 = i1 * 2;
            var i22 = i2 * 2;

            var ux = vertices[i03];
            var uy = vertices[i03 + 1];
            var uz = vertices[i03 + 2];

            var wx = st[i02];
            var wy = st[i02 + 1];
            var t1 = st[i12 + 1] - wy;
            var t2 = st[i22 + 1] - wy;

            var r = 1.0 / ((st[i12] - wx) * t2 - (st[i22] - wx) * t1);
            var sdirx = (t2 * (vertices[i13] - ux) - t1 * (vertices[i23] - ux)) * r;
            var sdiry = (t2 * (vertices[i13 + 1] - uy) - t1 * (vertices[i23 + 1] - uy)) * r;
            var sdirz = (t2 * (vertices[i13 + 2] - uz) - t1 * (vertices[i23 + 2] - uz)) * r;

            tan1[i03] += sdirx;
            tan1[i03 + 1] += sdiry;
            tan1[i03 + 2] += sdirz;

            tan1[i13] += sdirx;
            tan1[i13 + 1] += sdiry;
            tan1[i13 + 2] += sdirz;

            tan1[i23] += sdirx;
            tan1[i23 + 1] += sdiry;
            tan1[i23 + 2] += sdirz;
        }

        var binormalValues = new Float32Array(numVertices * 3);
        var tangentValues = new Float32Array(numVertices * 3);

        for (i = 0; i < numVertices; i++) {
            i03 = i * 3;
            i13 = i03 + 1;
            i23 = i03 + 2;

            var n = Cartesian3.fromArray(normals, i03, normalScratch);
            var t = Cartesian3.fromArray(tan1, i03, tScratch);
            var scalar = Cartesian3.dot(n, t);
            Cartesian3.multiplyByScalar(n, scalar, normalScale);
            Cartesian3.normalize(Cartesian3.subtract(t, normalScale, t), t);

            tangentValues[i03] = t.x;
            tangentValues[i13] = t.y;
            tangentValues[i23] = t.z;

            Cartesian3.normalize(Cartesian3.cross(n, t, t), t);

            binormalValues[i03] = t.x;
            binormalValues[i13] = t.y;
            binormalValues[i23] = t.z;
        }

        geometry.attributes.tangent = new GeometryAttribute({
            componentDatatype : ComponentDatatype.FLOAT,
            componentsPerAttribute : 3,
            values : tangentValues
        });

        geometry.attributes.binormal = new GeometryAttribute({
            componentDatatype : ComponentDatatype.FLOAT,
            componentsPerAttribute : 3,
            values : binormalValues
        });

        return geometry;
    };

    function indexTriangles(geometry) {
        if (defined(geometry.indices)) {
            return geometry;
        }

        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (numberOfVertices < 3) {
            throw new DeveloperError('The number of vertices must be at least three.');
        }

        if (numberOfVertices % 3 !== 0) {
            throw new DeveloperError('The number of vertices must be a multiple of three.');
        }

        var indices = IndexDatatype.createTypedArray(numberOfVertices, numberOfVertices);
        for (var i = 0; i < numberOfVertices; ++i) {
            indices[i] = i;
        }

        geometry.indices = indices;
        return geometry;
    }

    function indexTriangleFan(geometry) {
        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (numberOfVertices < 3) {
            throw new DeveloperError('The number of vertices must be at least three.');
        }

        var indices = IndexDatatype.createTypedArray(numberOfVertices, (numberOfVertices - 2) * 3);
        indices[0] = 1;
        indices[1] = 0;
        indices[2] = 2;

        var indicesIndex = 3;
        for (var i = 3; i < numberOfVertices; ++i) {
            indices[indicesIndex++] = i - 1;
            indices[indicesIndex++] = 0;
            indices[indicesIndex++] = i;
        }

        geometry.indices = indices;
        geometry.primitiveType = PrimitiveType.TRIANGLES;
        return geometry;
    }

    function indexTriangleStrip(geometry) {
        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (numberOfVertices < 3) {
            throw new DeveloperError('The number of vertices must be at least 3.');
        }

        var indices = IndexDatatype.createTypedArray(numberOfVertices, (numberOfVertices - 2) * 3);
        indices[0] = 0;
        indices[1] = 1;
        indices[2] = 2;

        if (numberOfVertices > 3) {
            indices[3] = 0;
            indices[4] = 2;
            indices[5] = 3;
        }

        var indicesIndex = 6;
        for (var i = 3; i < numberOfVertices - 1; i += 2) {
            indices[indicesIndex++] = i;
            indices[indicesIndex++] = i - 1;
            indices[indicesIndex++] = i + 1;

            if (i + 2 < numberOfVertices) {
                indices[indicesIndex++] = i;
                indices[indicesIndex++] = i + 1;
                indices[indicesIndex++] = i + 2;
            }
        }

        geometry.indices = indices;
        geometry.primitiveType = PrimitiveType.TRIANGLES;
        return geometry;
    }

    function indexLines(geometry) {
        if (defined(geometry.indices)) {
            return geometry;
        }

        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (numberOfVertices < 2) {
            throw new DeveloperError('The number of vertices must be at least two.');
        }

        if (numberOfVertices % 2 !== 0) {
            throw new DeveloperError('The number of vertices must be a multiple of 2.');
        }

        var indices = IndexDatatype.createTypedArray(numberOfVertices, numberOfVertices);
        for (var i = 0; i < numberOfVertices; ++i) {
            indices[i] = i;
        }

        geometry.indices = indices;
        return geometry;
    }

    function indexLineStrip(geometry) {
        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (numberOfVertices < 2) {
            throw new DeveloperError('The number of vertices must be at least two.');
        }
        var indices = IndexDatatype.createTypedArray(numberOfVertices, (numberOfVertices - 1) * 2);

        indices[0] = 0;
        indices[1] = 1;

        var indicesIndex = 2;
        for (var i = 2; i < numberOfVertices; ++i) {
            indices[indicesIndex++] = i - 1;
            indices[indicesIndex++] = i;
        }

        geometry.indices = indices;
        geometry.primitiveType = PrimitiveType.LINES;
        return geometry;
    }

    function indexLineLoop(geometry) {
        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        if (numberOfVertices < 2) {
            throw new DeveloperError('The number of vertices must be at least two.');
        }

        var indices = IndexDatatype.createTypedArray(numberOfVertices, numberOfVertices * 2);

        indices[0] = 0;
        indices[1] = 1;

        var indicesIndex = 2;
        for (var i = 2; i < numberOfVertices; ++i) {
            indices[indicesIndex++] = i - 1;
            indices[indicesIndex++] = i;
        }

        indices[indicesIndex++] = numberOfVertices - 1;
        indices[indicesIndex] = 0;

        geometry.indices = indices;
        geometry.primitiveType = PrimitiveType.LINES;
        return geometry;
    }

    function indexPrimitive(geometry) {
        switch (geometry.primitiveType) {
        case PrimitiveType.TRIANGLE_FAN:
            return indexTriangleFan(geometry);
        case PrimitiveType.TRIANGLE_STRIP:
            return indexTriangleStrip(geometry);
        case PrimitiveType.TRIANGLES:
            return indexTriangles(geometry);
        case PrimitiveType.LINE_STRIP:
            return indexLineStrip(geometry);
        case PrimitiveType.LINE_LOOP:
            return indexLineLoop(geometry);
        case PrimitiveType.LINES:
            return indexLines(geometry);
        }

        return geometry;
    }

    function offsetPointFromXZPlane(p, isBehind) {
        if (Math.abs(p.y) < CesiumMath.EPSILON11){
            if (isBehind) {
                p.y = -CesiumMath.EPSILON11;
            } else {
                p.y = CesiumMath.EPSILON11;
            }
        }
    }

    var c3 = new Cartesian3();
    function getXZIntersectionOffsetPoints(p, p1, u1, v1) {
        Cartesian3.add(p, Cartesian3.multiplyByScalar(Cartesian3.subtract(p1, p, c3), p.y/(p.y-p1.y), c3), u1);
        Cartesian3.clone(u1, v1);
        offsetPointFromXZPlane(u1, true);
        offsetPointFromXZPlane(v1, false);
    }

    var u1 = new Cartesian3();
    var u2 = new Cartesian3();
    var q1 = new Cartesian3();
    var q2 = new Cartesian3();

    var splitTriangleResult = {
        positions : new Array(7),
        indices : new Array(3 * 3)
    };

    function splitTriangle(p0, p1, p2) {
        // In WGS84 coordinates, for a triangle approximately on the
        // ellipsoid to cross the IDL, first it needs to be on the
        // negative side of the plane x = 0.
        if ((p0.x >= 0.0) || (p1.x >= 0.0) || (p2.x >= 0.0)) {
            return undefined;
        }

        var p0Behind = p0.y < 0.0;
        var p1Behind = p1.y < 0.0;
        var p2Behind = p2.y < 0.0;

        offsetPointFromXZPlane(p0, p0Behind);
        offsetPointFromXZPlane(p1, p1Behind);
        offsetPointFromXZPlane(p2, p2Behind);

        var numBehind = 0;
        numBehind += p0Behind ? 1 : 0;
        numBehind += p1Behind ? 1 : 0;
        numBehind += p2Behind ? 1 : 0;

        var indices = splitTriangleResult.indices;

        if (numBehind === 1) {
            indices[1] = 3;
            indices[2] = 4;
            indices[5] = 6;
            indices[7] = 6;
            indices[8] = 5;

            if (p0Behind) {
                getXZIntersectionOffsetPoints(p0, p1, u1, q1);
                getXZIntersectionOffsetPoints(p0, p2, u2, q2);

                indices[0] = 0;
                indices[3] = 1;
                indices[4] = 2;
                indices[6] = 1;
            } else if (p1Behind) {
                getXZIntersectionOffsetPoints(p1, p2, u1, q1);
                getXZIntersectionOffsetPoints(p1, p0, u2, q2);

                indices[0] = 1;
                indices[3] = 2;
                indices[4] = 0;
                indices[6] = 2;
            } else if (p2Behind) {
                getXZIntersectionOffsetPoints(p2, p0, u1, q1);
                getXZIntersectionOffsetPoints(p2, p1, u2, q2);

                indices[0] = 2;
                indices[3] = 0;
                indices[4] = 1;
                indices[6] = 0;
            }
        } else if (numBehind === 2) {
            indices[2] = 4;
            indices[4] = 4;
            indices[5] = 3;
            indices[7] = 5;
            indices[8] = 6;

            if (!p0Behind) {
                getXZIntersectionOffsetPoints(p0, p1, u1, q1);
                getXZIntersectionOffsetPoints(p0, p2, u2, q2);

                indices[0] = 1;
                indices[1] = 2;
                indices[3] = 1;
                indices[6] = 0;
            } else if (!p1Behind) {
                getXZIntersectionOffsetPoints(p1, p2, u1, q1);
                getXZIntersectionOffsetPoints(p1, p0, u2, q2);

                indices[0] = 2;
                indices[1] = 0;
                indices[3] = 2;
                indices[6] = 1;
            } else if (!p2Behind) {
                getXZIntersectionOffsetPoints(p2, p0, u1, q1);
                getXZIntersectionOffsetPoints(p2, p1, u2, q2);

                indices[0] = 0;
                indices[1] = 1;
                indices[3] = 0;
                indices[6] = 2;
            }
        }

        var positions = splitTriangleResult.positions;
        positions[0] = p0;
        positions[1] = p1;
        positions[2] = p2;
        splitTriangleResult.length = 3;

        if (numBehind === 1 || numBehind === 2) {
            positions[3] = u1;
            positions[4] = u2;
            positions[5] = q1;
            positions[6] = q2;
            splitTriangleResult.length = 7;
        }

        return splitTriangleResult;
    }

    function computeTriangleAttributes(i0, i1, i2, dividedTriangle, normals, binormals, tangents, texCoords) {
        if (!defined(normals) && !defined(binormals) && !defined(tangents) && !defined(texCoords)) {
            return;
        }

        var positions = dividedTriangle.positions;
        var p0 = positions[0];
        var p1 = positions[1];
        var p2 = positions[2];

        var n0, n1, n2;
        var b0, b1, b2;
        var t0, t1, t2;
        var s0, s1, s2;
        var v0, v1, v2;
        var u0, u1, u2;

        if (defined(normals)) {
            n0 = Cartesian3.fromArray(normals, i0 * 3);
            n1 = Cartesian3.fromArray(normals, i1 * 3);
            n2 = Cartesian3.fromArray(normals, i2 * 3);
        }

        if (defined(binormals)) {
            b0 = Cartesian3.fromArray(binormals, i0 * 3);
            b1 = Cartesian3.fromArray(binormals, i1 * 3);
            b2 = Cartesian3.fromArray(binormals, i2 * 3);
        }

        if (defined(tangents)) {
            t0 = Cartesian3.fromArray(tangents, i0 * 3);
            t1 = Cartesian3.fromArray(tangents, i1 * 3);
            t2 = Cartesian3.fromArray(tangents, i2 * 3);
        }

        if (defined(texCoords)) {
            s0 = Cartesian2.fromArray(texCoords, i0 * 2);
            s1 = Cartesian2.fromArray(texCoords, i1 * 2);
            s2 = Cartesian2.fromArray(texCoords, i2 * 2);
        }

        for (var i = 3; i < positions.length; ++i) {
            var point = positions[i];
            var coords = barycentricCoordinates(point, p0, p1, p2);

            if (defined(normals)) {
                v0 = Cartesian3.multiplyByScalar(n0, coords.x, v0);
                v1 = Cartesian3.multiplyByScalar(n1, coords.y, v1);
                v2 = Cartesian3.multiplyByScalar(n2, coords.z, v2);

                var normal = Cartesian3.add(v0, v1);
                Cartesian3.add(normal, v2, normal);
                Cartesian3.normalize(normal, normal);

                normals.push(normal.x, normal.y, normal.z);
            }

            if (defined(binormals)) {
                v0 = Cartesian3.multiplyByScalar(b0, coords.x, v0);
                v1 = Cartesian3.multiplyByScalar(b1, coords.y, v1);
                v2 = Cartesian3.multiplyByScalar(b2, coords.z, v2);

                var binormal = Cartesian3.add(v0, v1);
                Cartesian3.add(binormal, v2, binormal);
                Cartesian3.normalize(binormal, binormal);

                binormals.push(binormal.x, binormal.y, binormal.z);
            }

            if (defined(tangents)) {
                v0 = Cartesian3.multiplyByScalar(t0, coords.x, v0);
                v1 = Cartesian3.multiplyByScalar(t1, coords.y, v1);
                v2 = Cartesian3.multiplyByScalar(t2, coords.z, v2);

                var tangent = Cartesian3.add(v0, v1);
                Cartesian3.add(tangent, v2, tangent);
                Cartesian3.normalize(tangent, tangent);

                tangents.push(tangent.x, tangent.y, tangent.z);
            }

            if (defined(texCoords)) {
                u0 = Cartesian2.multiplyByScalar(s0, coords.x, u0);
                u1 = Cartesian2.multiplyByScalar(s1, coords.y, u1);
                u2 = Cartesian2.multiplyByScalar(s2, coords.z, u2);

                var texCoord = Cartesian2.add(u0, u1);
                Cartesian2.add(texCoord, u2, texCoord);

                texCoords.push(texCoord.x, texCoord.y);
            }
        }
    }

    function wrapLongitudeTriangles(geometry) {
        var attributes = geometry.attributes;
        var positions = attributes.position.values;
        var normals = (defined(attributes.normal)) ? attributes.normal.values : undefined;
        var binormals = (defined(attributes.binormal)) ? attributes.binormal.values : undefined;
        var tangents = (defined(attributes.tangent)) ? attributes.tangent.values : undefined;
        var texCoords = (defined(attributes.st)) ? attributes.st.values : undefined;
        var indices = geometry.indices;

        var newPositions = Array.prototype.slice.call(positions, 0);
        var newNormals = (defined(normals)) ? Array.prototype.slice.call(normals, 0) : undefined;
        var newBinormals = (defined(binormals)) ? Array.prototype.slice.call(binormals, 0) : undefined;
        var newTangents = (defined(tangents)) ? Array.prototype.slice.call(tangents, 0) : undefined;
        var newTexCoords = (defined(texCoords)) ? Array.prototype.slice.call(texCoords, 0) : undefined;
        var newIndices = [];

        var len = indices.length;
        for (var i = 0; i < len; i += 3) {
            var i0 = indices[i];
            var i1 = indices[i + 1];
            var i2 = indices[i + 2];

            var p0 = Cartesian3.fromArray(positions, i0 * 3);
            var p1 = Cartesian3.fromArray(positions, i1 * 3);
            var p2 = Cartesian3.fromArray(positions, i2 * 3);

            var result = splitTriangle(p0, p1, p2);
            if (defined(result)) {
                newPositions[i0 * 3 + 1] = result.positions[0].y;
                newPositions[i1 * 3 + 1] = result.positions[1].y;
                newPositions[i2 * 3 + 1] = result.positions[2].y;

                if (result.length > 3) {
                    var positionsLength = newPositions.length / 3;
                    for(var j = 0; j < result.indices.length; ++j) {
                        var index = result.indices[j];
                        if (index < 3) {
                            newIndices.push(indices[i + index]);
                        } else {
                            newIndices.push(index - 3 + positionsLength);
                        }
                    }

                    for (var k = 3; k < result.positions.length; ++k) {
                        var position = result.positions[k];
                        newPositions.push(position.x, position.y, position.z);
                    }
                    computeTriangleAttributes(i0, i1, i2, result, newNormals, newBinormals, newTangents, newTexCoords);
                } else {
                    newIndices.push(i0, i1, i2);
                }
            } else {
                newIndices.push(i0, i1, i2);
            }
        }

        geometry.attributes.position.values = new Float64Array(newPositions);

        if (defined(newNormals)) {
            attributes.normal.values = ComponentDatatype.createTypedArray(attributes.normal.componentDatatype, newNormals);
        }

        if (defined(newBinormals)) {
            attributes.binormal.values = ComponentDatatype.createTypedArray(attributes.binormal.componentDatatype, newBinormals);
        }

        if (defined(newTangents)) {
            attributes.tangent.values = ComponentDatatype.createTypedArray(attributes.tangent.componentDatatype, newTangents);
        }

        if (defined(newTexCoords)) {
            attributes.st.values = ComponentDatatype.createTypedArray(attributes.st.componentDatatype, newTexCoords);
        }

        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        geometry.indices = IndexDatatype.createTypedArray(numberOfVertices, newIndices);
    }

    function wrapLongitudeLines(geometry) {
        var attributes = geometry.attributes;
        var positions = attributes.position.values;
        var indices = geometry.indices;

        var newPositions = Array.prototype.slice.call(positions, 0);
        var newIndices = [];

        var xzPlane = Plane.fromPointNormal(Cartesian3.ZERO, Cartesian3.UNIT_Y);

        var length = indices.length;
        for ( var i = 0; i < length; i += 2) {
            var i0 = indices[i];
            var i1 = indices[i + 1];

            var prev = Cartesian3.fromArray(positions, i0 * 3);
            var cur = Cartesian3.fromArray(positions, i1 * 3);

            if (Math.abs(prev.y) < CesiumMath.EPSILON6){
                if (prev.y < 0.0) {
                    prev.y = -CesiumMath.EPSILON6;
                } else {
                    prev.y = CesiumMath.EPSILON6;
                }

                newPositions[i0 * 3 + 1] = prev.y;
            }

            if (Math.abs(cur.y) < CesiumMath.EPSILON6){
                if (cur.y < 0.0) {
                    cur.y = -CesiumMath.EPSILON6;
                } else {
                    cur.y = CesiumMath.EPSILON6;
                }

                newPositions[i1 * 3 + 1] = cur.y;
            }

            newIndices.push(i0);

            // intersects the IDL if either endpoint is on the negative side of the yz-plane
            if (prev.x < 0.0 || cur.x < 0.0) {
                // and intersects the xz-plane
                var intersection = IntersectionTests.lineSegmentPlane(prev, cur, xzPlane);
                if (defined(intersection)) {
                    // move point on the xz-plane slightly away from the plane
                    var offset = Cartesian3.multiplyByScalar(Cartesian3.UNIT_Y, 5.0 * CesiumMath.EPSILON9);
                    if (prev.y < 0.0) {
                        Cartesian3.negate(offset, offset);
                    }

                    var index = newPositions.length / 3;
                    newIndices.push(index, index + 1);

                    var offsetPoint = Cartesian3.add(intersection, offset);
                    newPositions.push(offsetPoint.x, offsetPoint.y, offsetPoint.z);

                    Cartesian3.negate(offset, offset);
                    Cartesian3.add(intersection, offset, offsetPoint);
                    newPositions.push(offsetPoint.x, offsetPoint.y, offsetPoint.z);
                }
            }

            newIndices.push(i1);
        }

        geometry.attributes.position.values = new Float64Array(newPositions);
        var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
        geometry.indices = IndexDatatype.createTypedArray(numberOfVertices, newIndices);
    }

    /**
     * Splits the geometry's primitives, by introducing new vertices and indices,that
     * intersect the International Date Line so that no primitives cross longitude
     * -180/180 degrees.  This is not required for 3D drawing, but is required for
     * correcting drawing in 2D and Columbus view.
     *
     * @param {Geometry} geometry The geometry to modify.
     *
     * @returns {Geometry} The modified <code>geometry</code> argument, with it's primitives split at the International Date Line.
     *
     * @exception {DeveloperError} geometry is required.
     *
     * @example
     * geometry = GeometryPipeline.wrapLongitude(geometry);
     */
    GeometryPipeline.wrapLongitude = function(geometry) {
        if (!defined(geometry)) {
            throw new DeveloperError('geometry is required.');
        }

        var boundingSphere = geometry.boundingSphere;
        if (defined(boundingSphere)) {
            var minX = boundingSphere.center.x - boundingSphere.radius;
            if (minX > 0 || BoundingSphere.intersect(boundingSphere, Cartesian4.UNIT_Y) !== Intersect.INTERSECTING) {
                return geometry;
            }
        }

        indexPrimitive(geometry);
        if (geometry.primitiveType === PrimitiveType.TRIANGLES) {
            wrapLongitudeTriangles(geometry);
        } else if (geometry.primitiveType === PrimitiveType.LINES) {
            wrapLongitudeLines(geometry);
        }

        return geometry;
    };

    return GeometryPipeline;
});

/*global define*/
define('Scene/PrimitivePipeline',[
        '../Core/defined',
        '../Core/defaultValue',
        '../Core/Color',
        '../Core/ComponentDatatype',
        '../Core/DeveloperError',
        '../Core/FeatureDetection',
        '../Core/Geometry',
        '../Core/GeometryAttribute',
        '../Core/GeometryPipeline',
        '../Core/Matrix4'
    ], function(
        defined,
        defaultValue,
        Color,
        ComponentDatatype,
        DeveloperError,
        FeatureDetection,
        Geometry,
        GeometryAttribute,
        GeometryPipeline,
        Matrix4) {
    "use strict";

    // Bail out if the browser doesn't support typed arrays, to prevent the setup function
    // from failing, since we won't be able to create a WebGL context anyway.
    if (!FeatureDetection.supportsTypedArrays()) {
        return {};
    }

    function transformToWorldCoordinates(instances, primitiveModelMatrix, allow3DOnly) {
        var toWorld = !allow3DOnly;
        var length = instances.length;
        var i;

        if (!toWorld && (length > 1)) {
            var modelMatrix = instances[0].modelMatrix;

            for (i = 1; i < length; ++i) {
                if (!Matrix4.equals(modelMatrix, instances[i].modelMatrix)) {
                    toWorld = true;
                    break;
                }
            }
        }

        if (toWorld) {
            for (i = 0; i < length; ++i) {
                GeometryPipeline.transformToWorldCoordinates(instances[i]);
            }
        } else {
            // Leave geometry in local coordinate system; auto update model-matrix.
            Matrix4.clone(instances[0].modelMatrix, primitiveModelMatrix);
        }
    }

    function addPickColorAttribute(instances, pickIds) {
        var length = instances.length;

        for (var i = 0; i < length; ++i) {
            var instance = instances[i];
            var geometry = instance.geometry;
            var attributes = geometry.attributes;
            var positionAttr = attributes.position;
            var numberOfComponents = 4 * (positionAttr.values.length / positionAttr.componentsPerAttribute);

            attributes.pickColor = new GeometryAttribute({
                componentDatatype : ComponentDatatype.UNSIGNED_BYTE,
                componentsPerAttribute : 4,
                normalize : true,
                values : new Uint8Array(numberOfComponents)
            });

            var pickColor = pickIds[i];
            var red = Color.floatToByte(pickColor.red);
            var green = Color.floatToByte(pickColor.green);
            var blue = Color.floatToByte(pickColor.blue);
            var alpha = Color.floatToByte(pickColor.alpha);
            var values = attributes.pickColor.values;

            for (var j = 0; j < numberOfComponents; j += 4) {
                values[j] = red;
                values[j + 1] = green;
                values[j + 2] = blue;
                values[j + 3] = alpha;
            }
        }
    }

    function getCommonPerInstanceAttributeNames(instances) {
        var length = instances.length;

        var attributesInAllInstances = [];
        var attributes0 = instances[0].attributes;
        var name;

        for (name in attributes0) {
            if (attributes0.hasOwnProperty(name)) {
                var attribute = attributes0[name];
                var inAllInstances = true;

                // Does this same attribute exist in all instances?
                for (var i = 1; i < length; ++i) {
                    var otherAttribute = instances[i].attributes[name];

                    if (!defined(otherAttribute) ||
                        (attribute.componentDatatype.value !== otherAttribute.componentDatatype.value) ||
                        (attribute.componentsPerAttribute !== otherAttribute.componentsPerAttribute) ||
                        (attribute.normalize !== otherAttribute.normalize)) {

                        inAllInstances = false;
                        break;
                    }
                }

                if (inAllInstances) {
                    attributesInAllInstances.push(name);
                }
            }
        }

        return attributesInAllInstances;
    }

    function addPerInstanceAttributes(instances, names) {
        var length = instances.length;
        for (var i = 0; i < length; ++i) {
            var instance = instances[i];
            var instanceAttributes = instance.attributes;
            var geometry = instance.geometry;
            var numberOfVertices = Geometry.computeNumberOfVertices(geometry);

            var namesLength = names.length;
            for (var j = 0; j < namesLength; ++j) {
                var name = names[j];
                var attribute = instanceAttributes[name];
                var componentDatatype = attribute.componentDatatype;
                var value = attribute.value;
                var componentsPerAttribute = value.length;

                var buffer = ComponentDatatype.createTypedArray(componentDatatype, numberOfVertices * componentsPerAttribute);
                for (var k = 0; k < numberOfVertices; ++k) {
                    buffer.set(value, k * componentsPerAttribute);
                }

                geometry.attributes[name] = new GeometryAttribute({
                    componentDatatype : componentDatatype,
                    componentsPerAttribute : componentsPerAttribute,
                    normalize : attribute.normalize,
                    values : buffer
                });
            }
        }
    }

    function geometryPipeline(parameters) {
        var instances = parameters.instances;
        var pickIds = parameters.pickIds;
        var projection = parameters.projection;
        var uintIndexSupport = parameters.elementIndexUintSupported;
        var allow3DOnly = parameters.allow3DOnly;
        var allowPicking = parameters.allowPicking;
        var vertexCacheOptimize = parameters.vertexCacheOptimize;
        var modelMatrix = parameters.modelMatrix;

        var i;
        var length = instances.length;
        var primitiveType = instances[0].geometry.primitiveType;
        for (i = 1; i < length; ++i) {
            if (instances[i].geometry.primitiveType !== primitiveType) {
                throw new DeveloperError('All instance geometries must have the same primitiveType.');
            }
        }

        // Unify to world coordinates before combining.
        transformToWorldCoordinates(instances, modelMatrix, allow3DOnly);

        // Clip to IDL
        if (!allow3DOnly) {
            for (i = 0; i < length; ++i) {
                GeometryPipeline.wrapLongitude(instances[i].geometry);
            }
        }

        // Add pickColor attribute for picking individual instances
        if (allowPicking) {
            addPickColorAttribute(instances, pickIds);
        }

        // add attributes to the geometry for each per-instance attribute
        var perInstanceAttributeNames = getCommonPerInstanceAttributeNames(instances);
        addPerInstanceAttributes(instances, perInstanceAttributeNames);

        // Optimize for vertex shader caches
        if (vertexCacheOptimize) {
            for (i = 0; i < length; ++i) {
                GeometryPipeline.reorderForPostVertexCache(instances[i].geometry);
                GeometryPipeline.reorderForPreVertexCache(instances[i].geometry);
            }
        }

        // Combine into single geometry for better rendering performance.
        var geometry = GeometryPipeline.combine(instances);

        // Split positions for GPU RTE
        var attributes = geometry.attributes;
        var name;
        if (!allow3DOnly) {
            for (name in attributes) {
                if (attributes.hasOwnProperty(name) && attributes[name].componentDatatype.value === ComponentDatatype.DOUBLE.value) {
                    var name3D = name + '3D';
                    var name2D = name + '2D';

                    // Compute 2D positions
                    GeometryPipeline.projectTo2D(geometry, name, name3D, name2D, projection);

                    GeometryPipeline.encodeAttribute(geometry, name3D, name3D + 'High', name3D + 'Low');
                    GeometryPipeline.encodeAttribute(geometry, name2D, name2D + 'High', name2D + 'Low');
                }
            }
        } else {
            for (name in attributes) {
                if (attributes.hasOwnProperty(name) && attributes[name].componentDatatype.value === ComponentDatatype.DOUBLE.value) {
                    GeometryPipeline.encodeAttribute(geometry, name, name + '3DHigh', name + '3DLow');
                }
            }
        }

        if (!uintIndexSupport) {
            // Break into multiple geometries to fit within unsigned short indices if needed
            return GeometryPipeline.fitToUnsignedShortIndices(geometry);
        }

        // Unsigned int indices are supported.  No need to break into multiple geometries.
        return [geometry];
    }

    function createPerInstanceVAAttributes(geometry, attributeIndices, names) {
        var vaAttributes = [];
        var attributes = geometry.attributes;

        var length = names.length;
        for (var i = 0; i < length; ++i) {
            var name = names[i];
            var attribute = attributes[name];

            var componentDatatype = attribute.componentDatatype;
            if (componentDatatype.value === ComponentDatatype.DOUBLE.value) {
                componentDatatype = ComponentDatatype.FLOAT;
            }

            var typedArray = ComponentDatatype.createTypedArray(componentDatatype, attribute.values);
            vaAttributes.push({
                index : attributeIndices[name],
                componentDatatype : componentDatatype,
                componentsPerAttribute : attribute.componentsPerAttribute,
                normalize : attribute.normalize,
                values : typedArray
            });

            delete attributes[name];
        }

        return vaAttributes;
    }

    function computePerInstanceAttributeIndices(instances, vertexArrays, attributeIndices) {
        var indices = [];

        var names = getCommonPerInstanceAttributeNames(instances);
        var length = instances.length;
        var offsets = {};
        var vaIndices = {};

        for (var i = 0; i < length; ++i) {
            var instance = instances[i];
            var numberOfVertices = Geometry.computeNumberOfVertices(instance.geometry);

            var namesLength = names.length;
            for (var j = 0; j < namesLength; ++j) {
                var name = names[j];
                var index = attributeIndices[name];

                var tempVertexCount = numberOfVertices;
                while (tempVertexCount > 0) {
                    var vaIndex = defaultValue(vaIndices[name], 0);
                    var va = vertexArrays[vaIndex];
                    var vaLength = va.length;

                    var attribute;
                    for (var k = 0; k < vaLength; ++k) {
                        attribute = va[k];
                        if (attribute.index === index) {
                            break;
                        }
                    }

                    if (!defined(indices[i])) {
                        indices[i] = {};
                    }

                    if (!defined(indices[i][name])) {
                        indices[i][name] = {
                            dirty : false,
                            value : instance.attributes[name].value,
                            indices : []
                        };
                    }

                    var size = attribute.values.length / attribute.componentsPerAttribute;
                    var offset = defaultValue(offsets[name], 0);

                    var count;
                    if (offset + tempVertexCount < size) {
                        count = tempVertexCount;
                        indices[i][name].indices.push({
                            attribute : attribute,
                            offset : offset,
                            count : count
                        });
                        offsets[name] = offset + tempVertexCount;
                    } else {
                        count = size - offset;
                        indices[i][name].indices.push({
                            attribute : attribute,
                            offset : offset,
                            count : count
                        });
                        offsets[name] = 0;
                        vaIndices[name] = vaIndex + 1;
                    }

                    tempVertexCount -= count;
                }
            }
        }

        return indices;
    }

    /**
     * @private
     */
    var PrimitivePipeline = {};

    /**
     * @private
     */
    PrimitivePipeline.combineGeometry = function(parameters) {
        var clonedParameters = {
            instances : parameters.instances,
            pickIds : parameters.pickIds,
            ellipsoid : parameters.ellipsoid,
            projection : parameters.projection,
            elementIndexUintSupported : parameters.elementIndexUintSupported,
            allow3DOnly : parameters.allow3DOnly,
            allowPicking : parameters.allowPicking,
            vertexCacheOptimize : parameters.vertexCacheOptimize,
            modelMatrix : Matrix4.clone(parameters.modelMatrix)
        };
        var geometries = geometryPipeline(clonedParameters);
        var attributeIndices = GeometryPipeline.createAttributeIndices(geometries[0]);

        var instances = clonedParameters.instances;
        var perInstanceAttributeNames = getCommonPerInstanceAttributeNames(instances);

        var perInstanceAttributes = [];
        var length = geometries.length;
        for (var i = 0; i < length; ++i) {
            var geometry = geometries[i];
            perInstanceAttributes.push(createPerInstanceVAAttributes(geometry, attributeIndices, perInstanceAttributeNames));
        }

        var indices = computePerInstanceAttributeIndices(instances, perInstanceAttributes, attributeIndices);

        return {
            geometries : geometries,
            modelMatrix : clonedParameters.modelMatrix,
            attributeIndices : attributeIndices,
            vaAttributes : perInstanceAttributes,
            vaAttributeIndices : indices
        };
    };

    /*
     * The below functions are needed when transferring typed arrays to/from web
     * workers. This is a workaround for:
     *
     * https://bugzilla.mozilla.org/show_bug.cgi?id=841904
     */

    function stupefyTypedArray(typedArray) {
        return {
            type : typedArray.constructor.name,
            buffer : typedArray.buffer
        };
    }

    var typedArrayMap = {
        Int8Array : Int8Array,
        Uint8Array : Uint8Array,
        Int16Array : Int16Array,
        Uint16Array : Uint16Array,
        Int32Array : Int32Array,
        Uint32Array : Uint32Array,
        Float32Array : Float32Array,
        Float64Array : Float64Array
    };

    function unStupefyTypedArray(typedArray) {
        return new typedArrayMap[typedArray.type](typedArray.buffer);
    }

    /**
     * @private
     */
    PrimitivePipeline.transferGeometry = function(geometry, transferableObjects) {
        var typedArray;
        var attributes = geometry.attributes;
        for (var name in attributes) {
            if (attributes.hasOwnProperty(name) &&
                    defined(attributes[name]) &&
                    defined(attributes[name].values)) {
                typedArray = attributes[name].values;

                if (transferableObjects.indexOf(attributes[name].values.buffer) < 0) {
                    transferableObjects.push(typedArray.buffer);
                }

                if (!defined(typedArray.type)) {
                    attributes[name].values = stupefyTypedArray(typedArray);
                }
            }
        }

        if (defined(geometry.indices)) {
            typedArray = geometry.indices;
            transferableObjects.push(typedArray.buffer);

            if (!defined(typedArray.type)) {
                geometry.indices = stupefyTypedArray(geometry.indices);
            }
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.transferGeometries = function(geometries, transferableObjects) {
        var length = geometries.length;
        for (var i = 0; i < length; ++i) {
            PrimitivePipeline.transferGeometry(geometries[i], transferableObjects);
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.transferPerInstanceAttributes = function(perInstanceAttributes, transferableObjects) {
        var length = perInstanceAttributes.length;
        for (var i = 0; i < length; ++i) {
            var vaAttributes = perInstanceAttributes[i];
            var vaLength = vaAttributes.length;
            for (var j = 0; j < vaLength; ++j) {
                var typedArray = vaAttributes[j].values;
                transferableObjects.push(typedArray.buffer);
                vaAttributes[j].values = stupefyTypedArray(typedArray);
            }
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.transferInstances = function(instances, transferableObjects) {
        var length = instances.length;
        for (var i = 0; i < length; ++i) {
            var instance = instances[i];
            PrimitivePipeline.transferGeometry(instance.geometry, transferableObjects);
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.receiveGeometry = function(geometry) {
        var attributes = geometry.attributes;
        for (var name in attributes) {
            if (attributes.hasOwnProperty(name) &&
                    defined(attributes[name]) &&
                    defined(attributes[name].values)) {
                attributes[name].values = unStupefyTypedArray(attributes[name].values);
            }
        }

        if (defined(geometry.indices)) {
            geometry.indices = unStupefyTypedArray(geometry.indices);
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.receiveGeometries = function(geometries) {
        var length = geometries.length;
        for (var i = 0; i < length; ++i) {
            PrimitivePipeline.receiveGeometry(geometries[i]);
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.receivePerInstanceAttributes = function(perInstanceAttributes) {
        var length = perInstanceAttributes.length;
        for (var i = 0; i < length; ++i) {
            var vaAttributes = perInstanceAttributes[i];
            var vaLength = vaAttributes.length;
            for (var j = 0; j < vaLength; ++j) {
                vaAttributes[j].values = unStupefyTypedArray(vaAttributes[j].values);
            }
        }
    };

    /**
     * @private
     */
    PrimitivePipeline.receiveInstances = function(instances) {
        var length = instances.length;
        for (var i = 0; i < length; ++i) {
            var instance = instances[i];
            PrimitivePipeline.receiveGeometry(instance.geometry);
        }
    };

    return PrimitivePipeline;
});

/*global define*/
define('Workers/createTaskProcessorWorker',[
        '../Core/defaultValue',
        '../Core/defined'
    ], function(
        defaultValue,
        defined) {
    "use strict";

    /**
     * Creates an adapter function to allow a calculation function to operate as a Web Worker,
     * paired with TaskProcessor, to receive tasks and return results.
     *
     * @exports createTaskProcessorWorker
     *
     * @param {Function} workerFunction A function that takes as input two arguments:
     * a parameters object, and an array into which transferable result objects can be pushed,
     * and returns as output a result object.
     * @returns {Function} An adapter function that handles the interaction with TaskProcessor,
     * specifically, task ID management and posting a response message containing the result.
     *
     * @example
     * function doCalculation(parameters, transferableObjects) {
     *   // calculate some result using the inputs in parameters
     *   return result;
     * }
     *
     * return createTaskProcessorWorker(doCalculation);
     * // the resulting function is compatible with TaskProcessor
     *
     * @see TaskProcessor
     * @see <a href='http://www.w3.org/TR/workers/'>Web Workers</a>
     * @see <a href='http://www.w3.org/TR/html5/common-dom-interfaces.html#transferable-objects'>Transferable objects</a>
     */
    var createTaskProcessorWorker = function(workerFunction) {
        var postMessage;
        var transferableObjects = [];
        var responseMessage = {
            id : undefined,
            result : undefined,
            error : undefined
        };

        return function(event) {
            /*global self*/
            var data = event.data;

            transferableObjects.length = 0;
            responseMessage.id = data.id;
            responseMessage.error = undefined;
            responseMessage.result = undefined;

            try {
                responseMessage.result = workerFunction(data.parameters, transferableObjects);
            } catch (e) {
                responseMessage.error = e;
            }

            if (!defined(postMessage)) {
                postMessage = defaultValue(self.webkitPostMessage, self.postMessage);
            }

            try {
                postMessage(responseMessage, transferableObjects);
            } catch (e) {
                // something went wrong trying to post the message, post a simpler
                // error that we can be sure will be cloneable
                responseMessage.result = undefined;
                responseMessage.error = 'postMessage failed with error: ' + e + '\n  with responseMessage: ' + JSON.stringify(responseMessage);
                postMessage(responseMessage);
            }
        };
    };

    return createTaskProcessorWorker;
});
/*global define*/
define('Workers/createExtentOutlineGeometry',[
        '../Core/ExtentOutlineGeometry',
        '../Core/Ellipsoid',
        '../Core/Extent',
        '../Scene/PrimitivePipeline',
        './createTaskProcessorWorker'
    ], function(
        ExtentOutlineGeometry,
        Ellipsoid,
        Extent,
        PrimitivePipeline,
        createTaskProcessorWorker) {
    "use strict";

    function createExtentOutlineGeometry(parameters, transferableObjects) {
        var extentGeometry = parameters.geometry;
        extentGeometry._ellipsoid = Ellipsoid.clone(extentGeometry._ellipsoid);
        extentGeometry._extent = Extent.clone(extentGeometry._extent);

        var geometry = ExtentOutlineGeometry.createGeometry(extentGeometry);
        PrimitivePipeline.transferGeometry(geometry, transferableObjects);

        return {
            geometry : geometry,
            index : parameters.index
        };
    }

    return createTaskProcessorWorker(createExtentOutlineGeometry);
});
}());