/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "internal.h" #include "../bn/internal.h" #include "../../internal.h" int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, const BIGNUM *in) { // Scalars, which are often secret, must be reduced modulo the order. Those // that are not will be discarded, so leaking the result of the comparison is // safe. if (!bn_copy_words(out->words, group->order.N.width, in) || !constant_time_declassify_int(bn_less_than_words( out->words, group->order.N.d, group->order.N.width))) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_SCALAR); return 0; } return 1; } int ec_scalar_equal_vartime(const EC_GROUP *group, const EC_SCALAR *a, const EC_SCALAR *b) { return OPENSSL_memcmp(a->words, b->words, group->order.N.width * sizeof(BN_ULONG)) == 0; } int ec_scalar_is_zero(const EC_GROUP *group, const EC_SCALAR *a) { BN_ULONG mask = 0; for (int i = 0; i < group->order.N.width; i++) { mask |= a->words[i]; } return mask == 0; } int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out, const uint8_t additional_data[32]) { return bn_rand_range_words(out->words, 1, group->order.N.d, group->order.N.width, additional_data); } void ec_scalar_to_bytes(const EC_GROUP *group, uint8_t *out, size_t *out_len, const EC_SCALAR *in) { size_t len = BN_num_bytes(&group->order.N); bn_words_to_big_endian(out, len, in->words, group->order.N.width); *out_len = len; } int ec_scalar_from_bytes(const EC_GROUP *group, EC_SCALAR *out, const uint8_t *in, size_t len) { if (len != BN_num_bytes(&group->order.N)) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_SCALAR); return 0; } bn_big_endian_to_words(out->words, group->order.N.width, in, len); if (!bn_less_than_words(out->words, group->order.N.d, group->order.N.width)) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_SCALAR); return 0; } return 1; } void ec_scalar_reduce(const EC_GROUP *group, EC_SCALAR *out, const BN_ULONG *words, size_t num) { // Convert "from" Montgomery form so the value is reduced modulo the order. bn_from_montgomery_small(out->words, group->order.N.width, words, num, &group->order); // Convert "to" Montgomery form to remove the R^-1 factor added. ec_scalar_to_montgomery(group, out, out); } void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, const EC_SCALAR *b) { const BIGNUM *order = &group->order.N; BN_ULONG tmp[EC_MAX_WORDS]; bn_mod_add_words(r->words, a->words, b->words, order->d, tmp, order->width); OPENSSL_cleanse(tmp, sizeof(tmp)); } void ec_scalar_sub(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, const EC_SCALAR *b) { const BIGNUM *order = &group->order.N; BN_ULONG tmp[EC_MAX_WORDS]; bn_mod_sub_words(r->words, a->words, b->words, order->d, tmp, order->width); OPENSSL_cleanse(tmp, sizeof(tmp)); } void ec_scalar_neg(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { EC_SCALAR zero; OPENSSL_memset(&zero, 0, sizeof(EC_SCALAR)); ec_scalar_sub(group, r, &zero, a); } void ec_scalar_select(const EC_GROUP *group, EC_SCALAR *out, BN_ULONG mask, const EC_SCALAR *a, const EC_SCALAR *b) { const BIGNUM *order = &group->order.N; bn_select_words(out->words, mask, a->words, b->words, order->width); } void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { const BIGNUM *order = &group->order.N; bn_to_montgomery_small(r->words, a->words, order->width, &group->order); } void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { const BIGNUM *order = &group->order.N; bn_from_montgomery_small(r->words, order->width, a->words, order->width, &group->order); } void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, const EC_SCALAR *b) { const BIGNUM *order = &group->order.N; bn_mod_mul_montgomery_small(r->words, a->words, b->words, order->width, &group->order); } void ec_simple_scalar_inv0_montgomery(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { const BIGNUM *order = &group->order.N; bn_mod_inverse0_prime_mont_small(r->words, a->words, order->width, &group->order); } int ec_simple_scalar_to_montgomery_inv_vartime(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { if (ec_scalar_is_zero(group, a)) { return 0; } // This implementation (in fact) runs in constant time, // even though for this interface it is not mandatory. // r = a^-1 in the Montgomery domain. This is // |ec_scalar_to_montgomery| followed by |ec_scalar_inv0_montgomery|, but // |ec_scalar_inv0_montgomery| followed by |ec_scalar_from_montgomery| is // equivalent and slightly more efficient. ec_scalar_inv0_montgomery(group, r, a); ec_scalar_from_montgomery(group, r, r); return 1; } void ec_scalar_inv0_montgomery(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { group->meth->scalar_inv0_montgomery(group, r, a); } int ec_scalar_to_montgomery_inv_vartime(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a) { return group->meth->scalar_to_montgomery_inv_vartime(group, r, a); }