Sha256: 4a557bfb0a2e0ccd0fc422e9a4c308c46560d268674353c22af97381d68395f4
Contents?: true
Size: 756 Bytes
Versions: 4
Compression:
Stored size: 756 Bytes
Contents
require 'rbbt/vector/model' class RFModel < VectorModel def initialize(dir) super(dir) @extract_features = Proc.new{|element| element } @train_model =<<-EOF rbbt.require("randomForest"); model = randomForest(as.factor(label) ~ ., data = features); EOF @eval_model =<<-EOF rbbt.require("randomForest"); pred = names(model$forest$xlevels) for (p in pred) { if (is.factor(features[[p]])) { features[[p]] = factor(features[[p]], levels=model$forest$xlevels[[p]]) } } label = predict(model, features); EOF end def importance TmpFile.with_file do |tmp| tsv = R.run <<-EOF load(file="#{@model_path}"); rbbt.tsv.write('#{tmp}', model$importance) EOF TSV.open(tmp) end end end
Version data entries
4 entries across 4 versions & 1 rubygems