# = NMatrix # # A linear algebra library for scientific computation in Ruby. # NMatrix is part of SciRuby. # # NMatrix was originally inspired by and derived from NArray, by # Masahiro Tanaka: http://narray.rubyforge.org # # == Copyright Information # # SciRuby is Copyright (c) 2010 - 2012, Ruby Science Foundation # NMatrix is Copyright (c) 2012, Ruby Science Foundation # # Please see LICENSE.txt for additional copyright notices. # # == Contributing # # By contributing source code to SciRuby, you agree to be bound by # our Contributor Agreement: # # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement # # == shortcuts.rb # # These are shortcuts for NMatrix and NVector creation, contributed by Daniel # Carrera (dcarrera@hush.com) and Carlos Agarie (carlos@onox.com.br). class NMatrix class << self # zeros() or zeroes() # # Creates a new matrix of zeros with the dimensions supplied as # parameters. Optional parameters include: # # * A storage type as the first parameter (default is :dense). # * A dtype as the last parameter (default is :float64). # # Examples: # # zeros(2) # => 0.0 0.0 # 0.0 0.0 # # zeros([2, 3], :int32) # => 0 0 0 # 0 0 0 # # zeros(:list, [1, 5], :int32) # => 0 0 0 0 0 # def zeros(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 stype = params.first.is_a?(Symbol) ? params.shift : :dense dim = params.first NMatrix.new(stype, dim, 0, dtype) end alias :zeroes :zeros # ones() # # Creates a :dense matrix of ones with the dimensions supplied # as parameters. Optionaly, one can specify a dtype as the last # parameter (default is :float64). # # Examples: # # ones([1, 3]) # => 1.0 1.0 1.0 # # ones([2, 3], :int32) # => 1 1 1 # 1 1 1 # def ones(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 dim = params.first NMatrix.new(dim, 1, dtype) end # identity() or eye() # # Creates an identity matrix (square matrix rank 2) of the size # supplied as a parameter. Optional parameters include: # # * A storage type as the first parameter (default is :dense). # * A dtype as the last parameter (default is :float64). # # Examples: # # eye(3) # => 1.0 0.0 0.0 # 0.0 1.0 0.0 # 0.0 0.0 1.0 # # eye(3, :int32) # => 1 0 0 # 0 1 0 # 0 0 1 # # eye(:yale, 2, :int32) # => 1 0 # 0 1 # def eye(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 stype = params.first.is_a?(Symbol) ? params.shift : :dense dim = params.first # Fill the diagonal with 1's. m = NMatrix.zeros(stype, dim, dtype) (0 .. (dim - 1)).each do |i| m[i, i] = 1 end m end alias :identity :eye # random() # # Creates a :dense NMatrix with random numbers between 0 and 1 generated # by Random::rand. The parameter is the dimension of the matrix. # # Examples: # # rand([2, 2]) # => 0.4859439730644226 0.1783195585012436 # 0.23193766176700592 0.4503345191478729 # def random(*params) dim = params.first rng = Random.new # Must provide the dimension as an Integer for a square matrix or as an # array, e.g. [2, 4, 7]. unless dim.is_a?(Integer) || dim.is_a?(Array) raise ArgumentError, "random() accepts only integers or arrays as \ dimension." end random_values = [] # Construct the values of the final matrix based on the dimension. if dim.is_a?(Integer) (dim * dim - 1).times { |i| random_values << rng.rand } else # Dimensions given by an array. Get the product of the array elements # and generate this number of random values. dim.reduce(1, :*).times { |i| random_values << rng.rand } end NMatrix.new(:dense, dim, random_values, :float64) end # seq() # # Creates a :dense NMatrix with a sequence of integers starting at # zero until the matrix is filled. The parameters to the method # are the dimensions of the matrix. Optionaly, one can specify a # dtype as the last parameter (default is :float64). # # Examples: # # seq(2) # => 0 1 # 2 3 # # seq([3, 3], :float32) # => 0.0 1.0 2.0 # 3.0 4.0 5.0 # 6.0 7.0 8.0 # def seq(*params) dtype = params.last.is_a?(Symbol) ? params.pop : nil dim = params.first # Must provide the dimension as an Integer for a square matrix or as an # 2 element array, e.g. [2,4]. unless dim.is_a?(Integer) || (dim.is_a?(Array) && dim.size < 3) raise ArgumentError, "seq() accepts only integers or 2-element arrays \ as dimension." end # Construct the values of the final matrix based on the dimension. if dim.is_a?(Integer) values = (0 .. (dim * dim - 1)).to_a else # Dimensions given by a 2 element array. values = (0 .. (dim.first * dim.last - 1)).to_a end # It'll produce :int32, except if a dtype is provided. NMatrix.new(:dense, dim, values, dtype) end ######################################### # FUNCTIONS FOR MATLAB AND IDL REFUGEES # ######################################### # # These are functions that replicate existing functionality, but # would probably be appreciated by MATLAB or IDL users. # # indgen() , findgen() , bindgen() , cindgen() # # These IDL functions are similar to seq() but less flexible. # They produce one-dimensional vectors: # # indgen -- Integer vector -- seq(n, :int32) # findgen -- Float vector -- seq(n, :float32) # bindgen -- Byte vector -- seq(n, :byte) # cindgen -- Complex vector -- seq(n, :complex64) # def indgen(n) NMatrix.seq(n, :int32) end def findgen(n) NMatrix.seq(n, :float32) end def bindgen(n) NMatrix.seq(n, :byte) end def cindgen(n) NMatrix.seq(n, :complex64) end end # # These shortcuts are to be called directly from a NMatrix object, i.e.: # # >> m = NMatrix.random(3) # >> m.column(2) # # column() # # Returns the column specified. The second parameter defaults to # :copy, which returns a copy of the selected column, but it can be # specified as :reference, which will return a reference to it. # # Examples: # # m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4 # 9 14 # # m.column(1) # => 4 # 14 # def column(column_number, get_by = :copy) unless [:copy, :reference].include?(get_by) raise ArgumentError, "column() 2nd parameter must be :copy or :reference" end if get_by == :copy self.slice(0 ... self.shape[0], column_number) else # by reference self[0 ... self.shape[0], column_number] end end end class NVector < NMatrix class << self # zeros() or zeroes() # # Creates a new matrix of zeros with the dimensions supplied as # parameters. Optional parameters include: # # * A storage type as the first parameter (default is :dense). # * A dtype as the last parameter (default is :float64). # # Examples: # # zeros(2) # => 0.0 0.0 # # zeros(3, :int32) # => 0 0 0 # def zeros(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 dim = params.first NVector.new(dim, 0, dtype) end alias :zeroes :zeros # ones() # # Creates a :dense matrix of ones with the dimensions supplied # as parameters. Optionaly, one can specify a dtype as the last # parameter (default is :float64). # # Examples: # # ones(3) # => 1.0 1.0 1.0 # # ones(2, :int32) # => 1 1 # def ones(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 dim = params.first NVector.new(dim, 1, dtype) end # random() # # Creates a :dense NMatrix with random numbers between 0 and 1 generated # by Random::rand. The parameter is the dimension of the matrix. # # Examples: # # rand(2) # => 0.4859439730644226 0.1783195585012436 # def random(*params) rng = Random.new dim = params.first random_values = [] dim.times { |i| random_values << rng.rand } NVector.new(dim, random_values, :float64) end # seq() # # Creates a :dense NMatrix with a sequence of integers starting at # zero until the matrix is filled. The parameters to the method # are the dimensions of the matrix. Optionaly, one can specify a # dtype as the last parameter (default is :float64). # # Examples: # # seq(2) # => 0 1 # # seq(3, :float32) # => 0.0 1.0 2.0 # def seq(*params) dtype = params.last.is_a?(Symbol) ? params.pop : nil dim = params.first unless dim.is_a?(Integer) raise ArgumentError, "NVector::seq() only accepts integers as \ dimension." end values = (0 .. (dim - 1)).to_a NVector.new(dim, values, dtype) end ######################################### # FUNCTIONS FOR MATLAB AND IDL REFUGEES # ######################################### # # These are functions that replicate existing functionality, but # would probably be appreciated by MATLAB or IDL users. # # indgen() , findgen() , bindgen() , cindgen() # # These IDL functions are similar to seq() but less flexible. # They produce one-dimensional vectors: # # indgen -- Integer vector -- seq(n, :int32) # findgen -- Float vector -- seq(n, :float32) # bindgen -- Byte vector -- seq(n, :byte) # cindgen -- Complex vector -- seq(n, :complex64) # def indgen(n) NVector.seq(n, :int32) end def findgen(n) NVector.seq(n, :float32) end def bindgen(n) NVector.seq(n, :byte) end def cindgen(n) NVector.seq(n, :complex64) end # linspace() # # This MATLAB function somewhat resembles seq(), but it differs # enough that is likely to be legitimately useful to non-MATLAB # refugees. This function takes three parameter, the last one # being an integer. # # linspace( a, b, n ) # # This returns a vector with n values equally spaced from a to b, # inclusive. # # Following the MATLAB implementation, if n isn't provided it's # assumed to be 100. # # Ex: x = linspace(0, pi, 1000) # y = sin(x) # def linspace(a, b, n = 100) # See: http://www.mathworks.com/help/matlab/ref/linspace.html # Formula: seq(n) * step + a # step = ((b - a) / (n - 1)) step = (b - a) * (1.0 / (n - 1)) # dtype = :float64 is used to prevent integer coercion. result = NVector.seq(n, :float64) * NVector.new(n, step, :float64) result += NVector.new(n, a, :float64) result end end end # NMatrix needs to have a succinct way to create a matrix by specifying # the components directly. This is very usefeul for using NMatrix as an # advanced calculator, it is useful for learning NMatrix and it is also # useful for testing language features or developing algorithms. # # The N[] function provides a way to create a matrix in a way that is # very short and very natural, simply by specifying the components in # the traditional Ruby array syntax. Optionally, one can specify a # dtype as the last parameter (default is :float64). # # a = N[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0 # # a = N[ 1,2,3,4, :int32 ] => 1 2 3 4 # # a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0 # 3.0 4.0 5.0 # # # SYNTAX COMPARISON: # # MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ] # IDL: a = [ [1,2,3] , [4,5,6] ] # NumPy: a = array( [1,2,3], [4,5,6] ) # # SciRuby: a = N[ [1,2,3], [4,5,6] ] # Ruby array: a = [ [1,2,3], [4,5,6] ] # class N class << self def [](*params) dtype = params.last.is_a?(Symbol) ? params.pop : nil # First find the dimensions of the array. i = 0 dim = [] foo = params while foo.is_a?(Array) dim[i] = foo.length foo = foo[0] i += 1 end # Then flatten the array. NMatrix.new(dim, params.flatten, dtype) end end end # TODO Make all the shortcuts available through modules, allowing someone # to include them to make "MATLAB-like" scripts. # # There are some questions to be answered before this can be done, tho.