Sha256: 491a0d7ed198faee0266f1e4fc033024b94490eedb8ffd1289b40089a5b36171

Contents?: true

Size: 662 Bytes

Versions: 6

Compression:

Stored size: 662 Bytes

Contents

#!/usr/bin/ruby

require 'rubygems'
require 'lda-ruby'

# Load the Corpus.  The AP data from David Blei's website is in the "DataCorpus" format
corpus = Lda::DataCorpus.new("ap/ap.dat")

# Initialize the Lda instance with the corpus
lda = Lda::Lda.new(corpus)

# Run the EM algorithm using random starting points.  Fixed starting points will use the first n documents
# to initialize the topics, where n is the number of topics.
lda.em("random")              # run EM algorithm using random starting points

# Load the vocabulary file necessary with DataCorpus objects
lda.load_vocabulary("ap/vocab.txt")

# Print the top 20 words per topic
lda.print_topics(20)

Version data entries

6 entries across 6 versions & 1 rubygems

Version Path
lda-ruby-0.3.9 test/data/sample.rb
lda-ruby-0.3.8 test/data/sample.rb
lda-ruby-0.3.7 test/data/sample.rb
lda-ruby-0.3.6 test/data/sample.rb
lda-ruby-0.3.5 test/data/sample.rb
lda-ruby-0.3.4 test/data/sample.rb