module Distribution module Normal module Ruby_ class << self # random number within a gaussian distribution X ~ N(0,1) def rngu rng(0,1,nil) end # Return a proc which return a random number within a # gaussian distribution X ~ N(+mean+,+sigma+^2) # +seed+ feed the # == Reference: # * http://www.taygeta.com/random/gaussian.html def rng(mean=0,sigma=1,seed=nil) returned,y1,y2=0,0,0 lambda { if returned==0 begin x1 = 2.0 * rand - 1.0 x2 = 2.0 * rand - 1.0 w = x1 * x1 + x2 * x2 end while ( w >= 1.0 ) w = Math::sqrt( (-2.0 * Math::log( w ) ) / w ) y1 = x1 * w y2 = x2 * w returned=1 y1*sigma + mean else returned=0 y2 * sigma + mean end } end # Return the inverse CDF or P-value of the corresponding integral def p_value(qn) b = [1.570796288, 0.03706987906, -0.8364353589e-3, -0.2250947176e-3, 0.6841218299e-5, 0.5824238515e-5, -0.104527497e-5, 0.8360937017e-7, -0.3231081277e-8, 0.3657763036e-10, 0.6936233982e-12] if(qn < 0.0 || 1.0 < qn) $stderr.printf("Error : qn <= 0 or qn >= 1 in pnorm()!\n") return 0.0; end qn == 0.5 and return 0.0 w1 = qn qn > 0.5 and w1 = 1.0 - w1 w3 = -Math.log(4.0 * w1 * (1.0 - w1)) w1 = b[0] 1.upto 10 do |i| w1 += b[i] * w3**i; end qn > 0.5 and return Math.sqrt(w1 * w3) -Math.sqrt(w1 * w3) end # Normal cumulative distribution function (cdf). # # Returns the integral of normal distribution # over (-Infty, z]. # def cdf(z) return 0.0 if z < -12 return 1.0 if z > 12 return 0.5 if z == 0.0 if z > 0.0 e = true else e = false z = -z end z = z.to_f z2 = z * z t = q = z * Math.exp(-0.5 * z2) / SQ2PI 3.step(199, 2) do |i| prev = q t *= z2 / i q += t if q <= prev return(e ? 0.5 + q : 0.5 - q) end end e ? 1.0 : 0.0 end # Normal probability density function (pdf) # With x=0 and sigma=1 def pdf(x) (1.0 / SQ2PI)*Math::exp(-(x**2/2.0)) end end end end end