# WARNING ABOUT GENERATED CODE # # This file is generated. See the contributing guide for more information: # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md # # WARNING ABOUT GENERATED CODE require 'seahorse/client/plugins/content_length.rb' require 'aws-sdk-core/plugins/credentials_configuration.rb' require 'aws-sdk-core/plugins/logging.rb' require 'aws-sdk-core/plugins/param_converter.rb' require 'aws-sdk-core/plugins/param_validator.rb' require 'aws-sdk-core/plugins/user_agent.rb' require 'aws-sdk-core/plugins/helpful_socket_errors.rb' require 'aws-sdk-core/plugins/retry_errors.rb' require 'aws-sdk-core/plugins/global_configuration.rb' require 'aws-sdk-core/plugins/regional_endpoint.rb' require 'aws-sdk-core/plugins/endpoint_discovery.rb' require 'aws-sdk-core/plugins/endpoint_pattern.rb' require 'aws-sdk-core/plugins/response_paging.rb' require 'aws-sdk-core/plugins/stub_responses.rb' require 'aws-sdk-core/plugins/idempotency_token.rb' require 'aws-sdk-core/plugins/jsonvalue_converter.rb' require 'aws-sdk-core/plugins/client_metrics_plugin.rb' require 'aws-sdk-core/plugins/client_metrics_send_plugin.rb' require 'aws-sdk-core/plugins/transfer_encoding.rb' require 'aws-sdk-core/plugins/signature_v4.rb' require 'aws-sdk-core/plugins/protocols/json_rpc.rb' Aws::Plugins::GlobalConfiguration.add_identifier(:forecastservice) module Aws::ForecastService class Client < Seahorse::Client::Base include Aws::ClientStubs @identifier = :forecastservice set_api(ClientApi::API) add_plugin(Seahorse::Client::Plugins::ContentLength) add_plugin(Aws::Plugins::CredentialsConfiguration) add_plugin(Aws::Plugins::Logging) add_plugin(Aws::Plugins::ParamConverter) add_plugin(Aws::Plugins::ParamValidator) add_plugin(Aws::Plugins::UserAgent) add_plugin(Aws::Plugins::HelpfulSocketErrors) add_plugin(Aws::Plugins::RetryErrors) add_plugin(Aws::Plugins::GlobalConfiguration) add_plugin(Aws::Plugins::RegionalEndpoint) add_plugin(Aws::Plugins::EndpointDiscovery) add_plugin(Aws::Plugins::EndpointPattern) add_plugin(Aws::Plugins::ResponsePaging) add_plugin(Aws::Plugins::StubResponses) add_plugin(Aws::Plugins::IdempotencyToken) add_plugin(Aws::Plugins::JsonvalueConverter) add_plugin(Aws::Plugins::ClientMetricsPlugin) add_plugin(Aws::Plugins::ClientMetricsSendPlugin) add_plugin(Aws::Plugins::TransferEncoding) add_plugin(Aws::Plugins::SignatureV4) add_plugin(Aws::Plugins::Protocols::JsonRpc) # @overload initialize(options) # @param [Hash] options # @option options [required, Aws::CredentialProvider] :credentials # Your AWS credentials. This can be an instance of any one of the # following classes: # # * `Aws::Credentials` - Used for configuring static, non-refreshing # credentials. # # * `Aws::InstanceProfileCredentials` - Used for loading credentials # from an EC2 IMDS on an EC2 instance. # # * `Aws::SharedCredentials` - Used for loading credentials from a # shared file, such as `~/.aws/config`. # # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role. # # When `:credentials` are not configured directly, the following # locations will be searched for credentials: # # * `Aws.config[:credentials]` # * The `:access_key_id`, `:secret_access_key`, and `:session_token` options. # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] # * `~/.aws/credentials` # * `~/.aws/config` # * EC2 IMDS instance profile - When used by default, the timeouts are # very aggressive. Construct and pass an instance of # `Aws::InstanceProfileCredentails` to enable retries and extended # timeouts. # # @option options [required, String] :region # The AWS region to connect to. The configured `:region` is # used to determine the service `:endpoint`. When not passed, # a default `:region` is search for in the following locations: # # * `Aws.config[:region]` # * `ENV['AWS_REGION']` # * `ENV['AMAZON_REGION']` # * `ENV['AWS_DEFAULT_REGION']` # * `~/.aws/credentials` # * `~/.aws/config` # # @option options [String] :access_key_id # # @option options [Boolean] :active_endpoint_cache (false) # When set to `true`, a thread polling for endpoints will be running in # the background every 60 secs (default). Defaults to `false`. # # @option options [Boolean] :client_side_monitoring (false) # When `true`, client-side metrics will be collected for all API requests from # this client. # # @option options [String] :client_side_monitoring_client_id ("") # Allows you to provide an identifier for this client which will be attached to # all generated client side metrics. Defaults to an empty string. # # @option options [String] :client_side_monitoring_host ("127.0.0.1") # Allows you to specify the DNS hostname or IPv4 or IPv6 address that the client # side monitoring agent is running on, where client metrics will be published via UDP. # # @option options [Integer] :client_side_monitoring_port (31000) # Required for publishing client metrics. The port that the client side monitoring # agent is running on, where client metrics will be published via UDP. # # @option options [Aws::ClientSideMonitoring::Publisher] :client_side_monitoring_publisher (Aws::ClientSideMonitoring::Publisher) # Allows you to provide a custom client-side monitoring publisher class. By default, # will use the Client Side Monitoring Agent Publisher. # # @option options [Boolean] :convert_params (true) # When `true`, an attempt is made to coerce request parameters into # the required types. # # @option options [Boolean] :disable_host_prefix_injection (false) # Set to true to disable SDK automatically adding host prefix # to default service endpoint when available. # # @option options [String] :endpoint # The client endpoint is normally constructed from the `:region` # option. You should only configure an `:endpoint` when connecting # to test endpoints. This should be avalid HTTP(S) URI. # # @option options [Integer] :endpoint_cache_max_entries (1000) # Used for the maximum size limit of the LRU cache storing endpoints data # for endpoint discovery enabled operations. Defaults to 1000. # # @option options [Integer] :endpoint_cache_max_threads (10) # Used for the maximum threads in use for polling endpoints to be cached, defaults to 10. # # @option options [Integer] :endpoint_cache_poll_interval (60) # When :endpoint_discovery and :active_endpoint_cache is enabled, # Use this option to config the time interval in seconds for making # requests fetching endpoints information. Defaults to 60 sec. # # @option options [Boolean] :endpoint_discovery (false) # When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`. # # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default) # The log formatter. # # @option options [Symbol] :log_level (:info) # The log level to send messages to the `:logger` at. # # @option options [Logger] :logger # The Logger instance to send log messages to. If this option # is not set, logging will be disabled. # # @option options [String] :profile ("default") # Used when loading credentials from the shared credentials file # at HOME/.aws/credentials. When not specified, 'default' is used. # # @option options [Float] :retry_base_delay (0.3) # The base delay in seconds used by the default backoff function. # # @option options [Symbol] :retry_jitter (:none) # A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number. # # @see https://www.awsarchitectureblog.com/2015/03/backoff.html # # @option options [Integer] :retry_limit (3) # The maximum number of times to retry failed requests. Only # ~ 500 level server errors and certain ~ 400 level client errors # are retried. Generally, these are throttling errors, data # checksum errors, networking errors, timeout errors and auth # errors from expired credentials. # # @option options [Integer] :retry_max_delay (0) # The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function. # # @option options [String] :secret_access_key # # @option options [String] :session_token # # @option options [Boolean] :simple_json (false) # Disables request parameter conversion, validation, and formatting. # Also disable response data type conversions. This option is useful # when you want to ensure the highest level of performance by # avoiding overhead of walking request parameters and response data # structures. # # When `:simple_json` is enabled, the request parameters hash must # be formatted exactly as the DynamoDB API expects. # # @option options [Boolean] :stub_responses (false) # Causes the client to return stubbed responses. By default # fake responses are generated and returned. You can specify # the response data to return or errors to raise by calling # {ClientStubs#stub_responses}. See {ClientStubs} for more information. # # ** Please note ** When response stubbing is enabled, no HTTP # requests are made, and retries are disabled. # # @option options [Boolean] :validate_params (true) # When `true`, request parameters are validated before # sending the request. # # @option options [URI::HTTP,String] :http_proxy A proxy to send # requests through. Formatted like 'http://proxy.com:123'. # # @option options [Float] :http_open_timeout (15) The number of # seconds to wait when opening a HTTP session before rasing a # `Timeout::Error`. # # @option options [Integer] :http_read_timeout (60) The default # number of seconds to wait for response data. This value can # safely be set # per-request on the session yeidled by {#session_for}. # # @option options [Float] :http_idle_timeout (5) The number of # seconds a connection is allowed to sit idble before it is # considered stale. Stale connections are closed and removed # from the pool before making a request. # # @option options [Float] :http_continue_timeout (1) The number of # seconds to wait for a 100-continue response before sending the # request body. This option has no effect unless the request has # "Expect" header set to "100-continue". Defaults to `nil` which # disables this behaviour. This value can safely be set per # request on the session yeidled by {#session_for}. # # @option options [Boolean] :http_wire_trace (false) When `true`, # HTTP debug output will be sent to the `:logger`. # # @option options [Boolean] :ssl_verify_peer (true) When `true`, # SSL peer certificates are verified when establishing a # connection. # # @option options [String] :ssl_ca_bundle Full path to the SSL # certificate authority bundle file that should be used when # verifying peer certificates. If you do not pass # `:ssl_ca_bundle` or `:ssl_ca_directory` the the system default # will be used if available. # # @option options [String] :ssl_ca_directory Full path of the # directory that contains the unbundled SSL certificate # authority files for verifying peer certificates. If you do # not pass `:ssl_ca_bundle` or `:ssl_ca_directory` the the # system default will be used if available. # def initialize(*args) super end # @!group API Operations # Creates an Amazon Forecast dataset. The information about the dataset # that you provide helps Forecast understand how to consume the data for # model training. This includes the following: # # * DataFrequency - How frequently your historical # time-series data is collected. # # * Domain and DatasetType - # Each dataset has an associated dataset domain and a type within the # domain. Amazon Forecast provides a list of predefined domains and # types within each domain. For each unique dataset domain and type # within the domain, Amazon Forecast requires your data to include a # minimum set of predefined fields. # # * Schema - A schema specifies the fields in the # dataset, including the field name and data type. # # After creating a dataset, you import your training data into it and # add the dataset to a dataset group. You use the dataset group to # create a predictor. For more information, see # howitworks-datasets-groups. # # To get a list of all your datasets, use the ListDatasets operation. # # For example Forecast datasets, see the [Amazon Forecast Sample GitHub # repository][1]. # # The `Status` of a dataset must be `ACTIVE` before you can import # training data. Use the DescribeDataset operation to get the status. # # # # # # [1]: https://github.com/aws-samples/amazon-forecast-samples/tree/master/data # # @option params [required, String] :dataset_name # A name for the dataset. # # @option params [required, String] :domain # The domain associated with the dataset. When you add a dataset to a # dataset group, this value and the value specified for the `Domain` # parameter of the CreateDatasetGroup operation must match. # # The `Domain` and `DatasetType` that you choose determine the fields # that must be present in the training data that you import to the # dataset. For example, if you choose the `RETAIL` domain and # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires # `item_id`, `timestamp`, and `demand` fields to be present in your # data. For more information, see howitworks-datasets-groups. # # @option params [required, String] :dataset_type # The dataset type. Valid values depend on the chosen `Domain`. # # @option params [String] :data_frequency # The frequency of data collection. This parameter is required for # RELATED\_TIME\_SERIES datasets. # # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), # 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 # minutes), and 1min (1 minute). For example, "D" indicates every day # and "15min" indicates every 15 minutes. # # @option params [required, Types::Schema] :schema # The schema for the dataset. The schema attributes and their order must # match the fields in your data. The dataset `Domain` and `DatasetType` # that you choose determine the minimum required fields in your training # data. For information about the required fields for a specific dataset # domain and type, see howitworks-domains-ds-types. # # @option params [Types::EncryptionConfig] :encryption_config # An AWS Key Management Service (KMS) key and the AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to access # the key. # # @return [Types::CreateDatasetResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateDatasetResponse#dataset_arn #dataset_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_dataset({ # dataset_name: "Name", # required # domain: "RETAIL", # required, accepts RETAIL, CUSTOM, INVENTORY_PLANNING, EC2_CAPACITY, WORK_FORCE, WEB_TRAFFIC, METRICS # dataset_type: "TARGET_TIME_SERIES", # required, accepts TARGET_TIME_SERIES, RELATED_TIME_SERIES, ITEM_METADATA # data_frequency: "Frequency", # schema: { # required # attributes: [ # { # attribute_name: "Name", # attribute_type: "string", # accepts string, integer, float, timestamp # }, # ], # }, # encryption_config: { # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # required # }, # }) # # @example Response structure # # resp.dataset_arn #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDataset AWS API Documentation # # @overload create_dataset(params = {}) # @param [Hash] params ({}) def create_dataset(params = {}, options = {}) req = build_request(:create_dataset, params) req.send_request(options) end # Creates a dataset group, which holds a collection of related datasets. # You can add datasets to the dataset group when you create the dataset # group, or later by using the UpdateDatasetGroup operation. # # After creating a dataset group and adding datasets, you use the # dataset group when you create a predictor. For more information, see # howitworks-datasets-groups. # # To get a list of all your datasets groups, use the ListDatasetGroups # operation. # # The `Status` of a dataset group must be `ACTIVE` before you can create # use the dataset group to create a predictor. To get the status, use # the DescribeDatasetGroup operation. # # # # @option params [required, String] :dataset_group_name # A name for the dataset group. # # @option params [required, String] :domain # The domain associated with the dataset group. When you add a dataset # to a dataset group, this value and the value specified for the # `Domain` parameter of the CreateDataset operation must match. # # The `Domain` and `DatasetType` that you choose determine the fields # that must be present in training data that you import to a dataset. # For example, if you choose the `RETAIL` domain and # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires # that `item_id`, `timestamp`, and `demand` fields are present in your # data. For more information, see howitworks-datasets-groups. # # @option params [Array] :dataset_arns # An array of Amazon Resource Names (ARNs) of the datasets that you want # to include in the dataset group. # # @return [Types::CreateDatasetGroupResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateDatasetGroupResponse#dataset_group_arn #dataset_group_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_dataset_group({ # dataset_group_name: "Name", # required # domain: "RETAIL", # required, accepts RETAIL, CUSTOM, INVENTORY_PLANNING, EC2_CAPACITY, WORK_FORCE, WEB_TRAFFIC, METRICS # dataset_arns: ["Arn"], # }) # # @example Response structure # # resp.dataset_group_arn #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetGroup AWS API Documentation # # @overload create_dataset_group(params = {}) # @param [Hash] params ({}) def create_dataset_group(params = {}, options = {}) req = build_request(:create_dataset_group, params) req.send_request(options) end # Imports your training data to an Amazon Forecast dataset. You provide # the location of your training data in an Amazon Simple Storage Service # (Amazon S3) bucket and the Amazon Resource Name (ARN) of the dataset # that you want to import the data to. # # You must specify a DataSource object that includes an AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to access # the data. For more information, see aws-forecast-iam-roles. # # The training data must be in CSV format. The delimiter must be a comma # (,). # # You can specify the path to a specific CSV file, the S3 bucket, or to # a folder in the S3 bucket. For the latter two cases, Amazon Forecast # imports all files up to the limit of 10,000 files. # # To get a list of all your dataset import jobs, filtered by specified # criteria, use the ListDatasetImportJobs operation. # # @option params [required, String] :dataset_import_job_name # The name for the dataset import job. We recommend including the # current timestamp in the name, for example, `20190721DatasetImport`. # This can help you avoid getting a `ResourceAlreadyExistsException` # exception. # # @option params [required, String] :dataset_arn # The Amazon Resource Name (ARN) of the Amazon Forecast dataset that you # want to import data to. # # @option params [required, Types::DataSource] :data_source # The location of the training data to import and an AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to access # the data. The training data must be stored in an Amazon S3 bucket. # # If encryption is used, `DataSource` must include an AWS Key Management # Service (KMS) key and the IAM role must allow Amazon Forecast # permission to access the key. The KMS key and IAM role must match # those specified in the `EncryptionConfig` parameter of the # CreateDataset operation. # # @option params [String] :timestamp_format # The format of timestamps in the dataset. The format that you specify # depends on the `DataFrequency` specified when the dataset was created. # The following formats are supported # # * "yyyy-MM-dd" # # For the following data frequencies: Y, M, W, and D # # * "yyyy-MM-dd HH:mm:ss" # # For the following data frequencies: H, 30min, 15min, and 1min; and # optionally, for: Y, M, W, and D # # If the format isn't specified, Amazon Forecast expects the format to # be "yyyy-MM-dd HH:mm:ss". # # @return [Types::CreateDatasetImportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateDatasetImportJobResponse#dataset_import_job_arn #dataset_import_job_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_dataset_import_job({ # dataset_import_job_name: "Name", # required # dataset_arn: "Arn", # required # data_source: { # required # s3_config: { # required # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # }, # }, # timestamp_format: "TimestampFormat", # }) # # @example Response structure # # resp.dataset_import_job_arn #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJob AWS API Documentation # # @overload create_dataset_import_job(params = {}) # @param [Hash] params ({}) def create_dataset_import_job(params = {}, options = {}) req = build_request(:create_dataset_import_job, params) req.send_request(options) end # Creates a forecast for each item in the `TARGET_TIME_SERIES` dataset # that was used to train the predictor. This is known as inference. To # retrieve the forecast for a single item at low latency, use the # operation. To export the complete forecast into your Amazon Simple # Storage Service (Amazon S3) bucket, use the CreateForecastExportJob # operation. # # The range of the forecast is determined by the `ForecastHorizon` # value, which you specify in the CreatePredictor request, multiplied by # the `DataFrequency` value, which you specify in the CreateDataset # request. When you query a forecast, you can request a specific date # range within the forecast. # # To get a list of all your forecasts, use the ListForecasts operation. # # The forecasts generated by Amazon Forecast are in the same time zone # as the dataset that was used to create the predictor. # # # # For more information, see howitworks-forecast. # # The `Status` of the forecast must be `ACTIVE` before you can query or # export the forecast. Use the DescribeForecast operation to get the # status. # # # # @option params [required, String] :forecast_name # A name for the forecast. # # @option params [required, String] :predictor_arn # The Amazon Resource Name (ARN) of the predictor to use to generate the # forecast. # # @option params [Array] :forecast_types # The quantiles at which probabilistic forecasts are generated. You can # specify up to 5 quantiles per forecast. Accepted values include `0.01 # to 0.99` (increments of .01 only) and `mean`. The mean forecast is # different from the median (0.50) when the distribution is not # symmetric (e.g. Beta, Negative Binomial). The default value is # `["0.1", "0.5", "0.9"]`. # # @return [Types::CreateForecastResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateForecastResponse#forecast_arn #forecast_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_forecast({ # forecast_name: "Name", # required # predictor_arn: "Arn", # required # forecast_types: ["ForecastType"], # }) # # @example Response structure # # resp.forecast_arn #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecast AWS API Documentation # # @overload create_forecast(params = {}) # @param [Hash] params ({}) def create_forecast(params = {}, options = {}) req = build_request(:create_forecast, params) req.send_request(options) end # Exports a forecast created by the CreateForecast operation to your # Amazon Simple Storage Service (Amazon S3) bucket. The forecast file # name will match the following conventions: # # <ForecastExportJobName>\_<ExportTimestamp>\_<PageNumber> # # where the <ExportTimestamp> component is in Java # SimpleDateFormat (yyyy-MM-ddTHH-mm-ssZ). # # You must specify a DataDestination object that includes an AWS # Identity and Access Management (IAM) role that Amazon Forecast can # assume to access the Amazon S3 bucket. For more information, see # aws-forecast-iam-roles. # # For more information, see howitworks-forecast. # # To get a list of all your forecast export jobs, use the # ListForecastExportJobs operation. # # The `Status` of the forecast export job must be `ACTIVE` before you # can access the forecast in your Amazon S3 bucket. To get the status, # use the DescribeForecastExportJob operation. # # # # @option params [required, String] :forecast_export_job_name # The name for the forecast export job. # # @option params [required, String] :forecast_arn # The Amazon Resource Name (ARN) of the forecast that you want to # export. # # @option params [required, Types::DataDestination] :destination # The location where you want to save the forecast and an AWS Identity # and Access Management (IAM) role that Amazon Forecast can assume to # access the location. The forecast must be exported to an Amazon S3 # bucket. # # If encryption is used, `Destination` must include an AWS Key # Management Service (KMS) key. The IAM role must allow Amazon Forecast # permission to access the key. # # @return [Types::CreateForecastExportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateForecastExportJobResponse#forecast_export_job_arn #forecast_export_job_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_forecast_export_job({ # forecast_export_job_name: "Name", # required # forecast_arn: "Arn", # required # destination: { # required # s3_config: { # required # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # }, # }, # }) # # @example Response structure # # resp.forecast_export_job_arn #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJob AWS API Documentation # # @overload create_forecast_export_job(params = {}) # @param [Hash] params ({}) def create_forecast_export_job(params = {}, options = {}) req = build_request(:create_forecast_export_job, params) req.send_request(options) end # Creates an Amazon Forecast predictor. # # In the request, you provide a dataset group and either specify an # algorithm or let Amazon Forecast choose the algorithm for you using # AutoML. If you specify an algorithm, you also can override # algorithm-specific hyperparameters. # # Amazon Forecast uses the chosen algorithm to train a model using the # latest version of the datasets in the specified dataset group. The # result is called a predictor. You then generate a forecast using the # CreateForecast operation. # # After training a model, the `CreatePredictor` operation also evaluates # it. To see the evaluation metrics, use the GetAccuracyMetrics # operation. Always review the evaluation metrics before deciding to use # the predictor to generate a forecast. # # Optionally, you can specify a featurization configuration to fill and # aggregate the data fields in the `TARGET_TIME_SERIES` dataset to # improve model training. For more information, see FeaturizationConfig. # # For RELATED\_TIME\_SERIES datasets, `CreatePredictor` verifies that # the `DataFrequency` specified when the dataset was created matches the # `ForecastFrequency`. TARGET\_TIME\_SERIES datasets don't have this # restriction. Amazon Forecast also verifies the delimiter and timestamp # format. For more information, see howitworks-datasets-groups. # # **AutoML** # # If you want Amazon Forecast to evaluate each algorithm and choose the # one that minimizes the `objective function`, set `PerformAutoML` to # `true`. The `objective function` is defined as the mean of the # weighted p10, p50, and p90 quantile losses. For more information, see # EvaluationResult. # # When AutoML is enabled, the following properties are disallowed: # # * `AlgorithmArn` # # * `HPOConfig` # # * `PerformHPO` # # * `TrainingParameters` # # To get a list of all of your predictors, use the ListPredictors # operation. # # Before you can use the predictor to create a forecast, the `Status` of # the predictor must be `ACTIVE`, signifying that training has # completed. To get the status, use the DescribePredictor operation. # # # # @option params [required, String] :predictor_name # A name for the predictor. # # @option params [String] :algorithm_arn # The Amazon Resource Name (ARN) of the algorithm to use for model # training. Required if `PerformAutoML` is not set to `true`. # # **Supported algorithms:** # # * `arn:aws:forecast:::algorithm/ARIMA` # # * `arn:aws:forecast:::algorithm/Deep_AR_Plus` # # Supports hyperparameter optimization (HPO) # # * `arn:aws:forecast:::algorithm/ETS` # # * `arn:aws:forecast:::algorithm/NPTS` # # * `arn:aws:forecast:::algorithm/Prophet` # # @option params [required, Integer] :forecast_horizon # Specifies the number of time-steps that the model is trained to # predict. The forecast horizon is also called the prediction length. # # For example, if you configure a dataset for daily data collection # (using the `DataFrequency` parameter of the CreateDataset operation) # and set the forecast horizon to 10, the model returns predictions for # 10 days. # # The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of # the TARGET\_TIME\_SERIES dataset length. # # @option params [Boolean] :perform_auto_ml # Whether to perform AutoML. When Amazon Forecast performs AutoML, it # evaluates the algorithms it provides and chooses the best algorithm # and configuration for your training dataset. # # The default value is `false`. In this case, you are required to # specify an algorithm. # # Set `PerformAutoML` to `true` to have Amazon Forecast perform AutoML. # This is a good option if you aren't sure which algorithm is suitable # for your training data. In this case, `PerformHPO` must be false. # # @option params [Boolean] :perform_hpo # Whether to perform hyperparameter optimization (HPO). HPO finds # optimal hyperparameter values for your training data. The process of # performing HPO is known as running a hyperparameter tuning job. # # The default value is `false`. In this case, Amazon Forecast uses # default hyperparameter values from the chosen algorithm. # # To override the default values, set `PerformHPO` to `true` and, # optionally, supply the HyperParameterTuningJobConfig object. The # tuning job specifies a metric to optimize, which hyperparameters # participate in tuning, and the valid range for each tunable # hyperparameter. In this case, you are required to specify an algorithm # and `PerformAutoML` must be false. # # The following algorithm supports HPO: # # * DeepAR+ # # ^ # # @option params [Hash] :training_parameters # The hyperparameters to override for model training. The # hyperparameters that you can override are listed in the individual # algorithms. For the list of supported algorithms, see # aws-forecast-choosing-recipes. # # @option params [Types::EvaluationParameters] :evaluation_parameters # Used to override the default evaluation parameters of the specified # algorithm. Amazon Forecast evaluates a predictor by splitting a # dataset into training data and testing data. The evaluation parameters # define how to perform the split and the number of iterations. # # @option params [Types::HyperParameterTuningJobConfig] :hpo_config # Provides hyperparameter override values for the algorithm. If you # don't provide this parameter, Amazon Forecast uses default values. # The individual algorithms specify which hyperparameters support # hyperparameter optimization (HPO). For more information, see # aws-forecast-choosing-recipes. # # If you included the `HPOConfig` object, you must set `PerformHPO` to # true. # # @option params [required, Types::InputDataConfig] :input_data_config # Describes the dataset group that contains the data to use to train the # predictor. # # @option params [required, Types::FeaturizationConfig] :featurization_config # The featurization configuration. # # @option params [Types::EncryptionConfig] :encryption_config # An AWS Key Management Service (KMS) key and the AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to access # the key. # # @return [Types::CreatePredictorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreatePredictorResponse#predictor_arn #predictor_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_predictor({ # predictor_name: "Name", # required # algorithm_arn: "Arn", # forecast_horizon: 1, # required # perform_auto_ml: false, # perform_hpo: false, # training_parameters: { # "ParameterKey" => "ParameterValue", # }, # evaluation_parameters: { # number_of_backtest_windows: 1, # back_test_window_offset: 1, # }, # hpo_config: { # parameter_ranges: { # categorical_parameter_ranges: [ # { # name: "Name", # required # values: ["Value"], # required # }, # ], # continuous_parameter_ranges: [ # { # name: "Name", # required # max_value: 1.0, # required # min_value: 1.0, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # integer_parameter_ranges: [ # { # name: "Name", # required # max_value: 1, # required # min_value: 1, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # }, # }, # input_data_config: { # required # dataset_group_arn: "Arn", # required # supplementary_features: [ # { # name: "Name", # required # value: "Value", # required # }, # ], # }, # featurization_config: { # required # forecast_frequency: "Frequency", # required # forecast_dimensions: ["Name"], # featurizations: [ # { # attribute_name: "Name", # required # featurization_pipeline: [ # { # featurization_method_name: "filling", # required, accepts filling # featurization_method_parameters: { # "ParameterKey" => "ParameterValue", # }, # }, # ], # }, # ], # }, # encryption_config: { # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # required # }, # }) # # @example Response structure # # resp.predictor_arn #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreatePredictor AWS API Documentation # # @overload create_predictor(params = {}) # @param [Hash] params ({}) def create_predictor(params = {}, options = {}) req = build_request(:create_predictor, params) req.send_request(options) end # Deletes an Amazon Forecast dataset that was created using the # CreateDataset operation. You can only delete datasets that have a # status of `ACTIVE` or `CREATE_FAILED`. To get the status use the # DescribeDataset operation. # # @option params [required, String] :dataset_arn # The Amazon Resource Name (ARN) of the dataset to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_dataset({ # dataset_arn: "Arn", # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteDataset AWS API Documentation # # @overload delete_dataset(params = {}) # @param [Hash] params ({}) def delete_dataset(params = {}, options = {}) req = build_request(:delete_dataset, params) req.send_request(options) end # Deletes a dataset group created using the CreateDatasetGroup # operation. You can only delete dataset groups that have a status of # `ACTIVE`, `CREATE_FAILED`, or `UPDATE_FAILED`. To get the status, use # the DescribeDatasetGroup operation. # # This operation deletes only the dataset group, not the datasets in the # group. # # @option params [required, String] :dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_dataset_group({ # dataset_group_arn: "Arn", # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteDatasetGroup AWS API Documentation # # @overload delete_dataset_group(params = {}) # @param [Hash] params ({}) def delete_dataset_group(params = {}, options = {}) req = build_request(:delete_dataset_group, params) req.send_request(options) end # Deletes a dataset import job created using the CreateDatasetImportJob # operation. You can delete only dataset import jobs that have a status # of `ACTIVE` or `CREATE_FAILED`. To get the status, use the # DescribeDatasetImportJob operation. # # @option params [required, String] :dataset_import_job_arn # The Amazon Resource Name (ARN) of the dataset import job to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_dataset_import_job({ # dataset_import_job_arn: "Arn", # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteDatasetImportJob AWS API Documentation # # @overload delete_dataset_import_job(params = {}) # @param [Hash] params ({}) def delete_dataset_import_job(params = {}, options = {}) req = build_request(:delete_dataset_import_job, params) req.send_request(options) end # Deletes a forecast created using the CreateForecast operation. You can # delete only forecasts that have a status of `ACTIVE` or # `CREATE_FAILED`. To get the status, use the DescribeForecast # operation. # # You can't delete a forecast while it is being exported. After a # forecast is deleted, you can no longer query the forecast. # # @option params [required, String] :forecast_arn # The Amazon Resource Name (ARN) of the forecast to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_forecast({ # forecast_arn: "Arn", # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteForecast AWS API Documentation # # @overload delete_forecast(params = {}) # @param [Hash] params ({}) def delete_forecast(params = {}, options = {}) req = build_request(:delete_forecast, params) req.send_request(options) end # Deletes a forecast export job created using the # CreateForecastExportJob operation. You can delete only export jobs # that have a status of `ACTIVE` or `CREATE_FAILED`. To get the status, # use the DescribeForecastExportJob operation. # # @option params [required, String] :forecast_export_job_arn # The Amazon Resource Name (ARN) of the forecast export job to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_forecast_export_job({ # forecast_export_job_arn: "Arn", # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteForecastExportJob AWS API Documentation # # @overload delete_forecast_export_job(params = {}) # @param [Hash] params ({}) def delete_forecast_export_job(params = {}, options = {}) req = build_request(:delete_forecast_export_job, params) req.send_request(options) end # Deletes a predictor created using the CreatePredictor operation. You # can delete only predictor that have a status of `ACTIVE` or # `CREATE_FAILED`. To get the status, use the DescribePredictor # operation. # # @option params [required, String] :predictor_arn # The Amazon Resource Name (ARN) of the predictor to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_predictor({ # predictor_arn: "Arn", # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeletePredictor AWS API Documentation # # @overload delete_predictor(params = {}) # @param [Hash] params ({}) def delete_predictor(params = {}, options = {}) req = build_request(:delete_predictor, params) req.send_request(options) end # Describes an Amazon Forecast dataset created using the CreateDataset # operation. # # In addition to listing the parameters specified in the `CreateDataset` # request, this operation includes the following dataset properties: # # * `CreationTime` # # * `LastModificationTime` # # * `Status` # # @option params [required, String] :dataset_arn # The Amazon Resource Name (ARN) of the dataset. # # @return [Types::DescribeDatasetResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeDatasetResponse#dataset_arn #dataset_arn} => String # * {Types::DescribeDatasetResponse#dataset_name #dataset_name} => String # * {Types::DescribeDatasetResponse#domain #domain} => String # * {Types::DescribeDatasetResponse#dataset_type #dataset_type} => String # * {Types::DescribeDatasetResponse#data_frequency #data_frequency} => String # * {Types::DescribeDatasetResponse#schema #schema} => Types::Schema # * {Types::DescribeDatasetResponse#encryption_config #encryption_config} => Types::EncryptionConfig # * {Types::DescribeDatasetResponse#status #status} => String # * {Types::DescribeDatasetResponse#creation_time #creation_time} => Time # * {Types::DescribeDatasetResponse#last_modification_time #last_modification_time} => Time # # @example Request syntax with placeholder values # # resp = client.describe_dataset({ # dataset_arn: "Arn", # required # }) # # @example Response structure # # resp.dataset_arn #=> String # resp.dataset_name #=> String # resp.domain #=> String, one of "RETAIL", "CUSTOM", "INVENTORY_PLANNING", "EC2_CAPACITY", "WORK_FORCE", "WEB_TRAFFIC", "METRICS" # resp.dataset_type #=> String, one of "TARGET_TIME_SERIES", "RELATED_TIME_SERIES", "ITEM_METADATA" # resp.data_frequency #=> String # resp.schema.attributes #=> Array # resp.schema.attributes[0].attribute_name #=> String # resp.schema.attributes[0].attribute_type #=> String, one of "string", "integer", "float", "timestamp" # resp.encryption_config.role_arn #=> String # resp.encryption_config.kms_key_arn #=> String # resp.status #=> String # resp.creation_time #=> Time # resp.last_modification_time #=> Time # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDataset AWS API Documentation # # @overload describe_dataset(params = {}) # @param [Hash] params ({}) def describe_dataset(params = {}, options = {}) req = build_request(:describe_dataset, params) req.send_request(options) end # Describes a dataset group created using the CreateDatasetGroup # operation. # # In addition to listing the parameters provided in the # `CreateDatasetGroup` request, this operation includes the following # properties: # # * `DatasetArns` - The datasets belonging to the group. # # * `CreationTime` # # * `LastModificationTime` # # * `Status` # # @option params [required, String] :dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group. # # @return [Types::DescribeDatasetGroupResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeDatasetGroupResponse#dataset_group_name #dataset_group_name} => String # * {Types::DescribeDatasetGroupResponse#dataset_group_arn #dataset_group_arn} => String # * {Types::DescribeDatasetGroupResponse#dataset_arns #dataset_arns} => Array<String> # * {Types::DescribeDatasetGroupResponse#domain #domain} => String # * {Types::DescribeDatasetGroupResponse#status #status} => String # * {Types::DescribeDatasetGroupResponse#creation_time #creation_time} => Time # * {Types::DescribeDatasetGroupResponse#last_modification_time #last_modification_time} => Time # # @example Request syntax with placeholder values # # resp = client.describe_dataset_group({ # dataset_group_arn: "Arn", # required # }) # # @example Response structure # # resp.dataset_group_name #=> String # resp.dataset_group_arn #=> String # resp.dataset_arns #=> Array # resp.dataset_arns[0] #=> String # resp.domain #=> String, one of "RETAIL", "CUSTOM", "INVENTORY_PLANNING", "EC2_CAPACITY", "WORK_FORCE", "WEB_TRAFFIC", "METRICS" # resp.status #=> String # resp.creation_time #=> Time # resp.last_modification_time #=> Time # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroup AWS API Documentation # # @overload describe_dataset_group(params = {}) # @param [Hash] params ({}) def describe_dataset_group(params = {}, options = {}) req = build_request(:describe_dataset_group, params) req.send_request(options) end # Describes a dataset import job created using the # CreateDatasetImportJob operation. # # In addition to listing the parameters provided in the # `CreateDatasetImportJob` request, this operation includes the # following properties: # # * `CreationTime` # # * `LastModificationTime` # # * `DataSize` # # * `FieldStatistics` # # * `Status` # # * `Message` - If an error occurred, information about the error. # # @option params [required, String] :dataset_import_job_arn # The Amazon Resource Name (ARN) of the dataset import job. # # @return [Types::DescribeDatasetImportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeDatasetImportJobResponse#dataset_import_job_name #dataset_import_job_name} => String # * {Types::DescribeDatasetImportJobResponse#dataset_import_job_arn #dataset_import_job_arn} => String # * {Types::DescribeDatasetImportJobResponse#dataset_arn #dataset_arn} => String # * {Types::DescribeDatasetImportJobResponse#timestamp_format #timestamp_format} => String # * {Types::DescribeDatasetImportJobResponse#data_source #data_source} => Types::DataSource # * {Types::DescribeDatasetImportJobResponse#field_statistics #field_statistics} => Hash<String,Types::Statistics> # * {Types::DescribeDatasetImportJobResponse#data_size #data_size} => Float # * {Types::DescribeDatasetImportJobResponse#status #status} => String # * {Types::DescribeDatasetImportJobResponse#message #message} => String # * {Types::DescribeDatasetImportJobResponse#creation_time #creation_time} => Time # * {Types::DescribeDatasetImportJobResponse#last_modification_time #last_modification_time} => Time # # @example Request syntax with placeholder values # # resp = client.describe_dataset_import_job({ # dataset_import_job_arn: "Arn", # required # }) # # @example Response structure # # resp.dataset_import_job_name #=> String # resp.dataset_import_job_arn #=> String # resp.dataset_arn #=> String # resp.timestamp_format #=> String # resp.data_source.s3_config.path #=> String # resp.data_source.s3_config.role_arn #=> String # resp.data_source.s3_config.kms_key_arn #=> String # resp.field_statistics #=> Hash # resp.field_statistics["String"].count #=> Integer # resp.field_statistics["String"].count_distinct #=> Integer # resp.field_statistics["String"].count_null #=> Integer # resp.field_statistics["String"].count_nan #=> Integer # resp.field_statistics["String"].min #=> String # resp.field_statistics["String"].max #=> String # resp.field_statistics["String"].avg #=> Float # resp.field_statistics["String"].stddev #=> Float # resp.data_size #=> Float # resp.status #=> String # resp.message #=> String # resp.creation_time #=> Time # resp.last_modification_time #=> Time # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJob AWS API Documentation # # @overload describe_dataset_import_job(params = {}) # @param [Hash] params ({}) def describe_dataset_import_job(params = {}, options = {}) req = build_request(:describe_dataset_import_job, params) req.send_request(options) end # Describes a forecast created using the CreateForecast operation. # # In addition to listing the properties provided in the `CreateForecast` # request, this operation lists the following properties: # # * `DatasetGroupArn` - The dataset group that provided the training # data. # # * `CreationTime` # # * `LastModificationTime` # # * `Status` # # * `Message` - If an error occurred, information about the error. # # @option params [required, String] :forecast_arn # The Amazon Resource Name (ARN) of the forecast. # # @return [Types::DescribeForecastResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeForecastResponse#forecast_arn #forecast_arn} => String # * {Types::DescribeForecastResponse#forecast_name #forecast_name} => String # * {Types::DescribeForecastResponse#forecast_types #forecast_types} => Array<String> # * {Types::DescribeForecastResponse#predictor_arn #predictor_arn} => String # * {Types::DescribeForecastResponse#dataset_group_arn #dataset_group_arn} => String # * {Types::DescribeForecastResponse#status #status} => String # * {Types::DescribeForecastResponse#message #message} => String # * {Types::DescribeForecastResponse#creation_time #creation_time} => Time # * {Types::DescribeForecastResponse#last_modification_time #last_modification_time} => Time # # @example Request syntax with placeholder values # # resp = client.describe_forecast({ # forecast_arn: "Arn", # required # }) # # @example Response structure # # resp.forecast_arn #=> String # resp.forecast_name #=> String # resp.forecast_types #=> Array # resp.forecast_types[0] #=> String # resp.predictor_arn #=> String # resp.dataset_group_arn #=> String # resp.status #=> String # resp.message #=> String # resp.creation_time #=> Time # resp.last_modification_time #=> Time # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeForecast AWS API Documentation # # @overload describe_forecast(params = {}) # @param [Hash] params ({}) def describe_forecast(params = {}, options = {}) req = build_request(:describe_forecast, params) req.send_request(options) end # Describes a forecast export job created using the # CreateForecastExportJob operation. # # In addition to listing the properties provided by the user in the # `CreateForecastExportJob` request, this operation lists the following # properties: # # * `CreationTime` # # * `LastModificationTime` # # * `Status` # # * `Message` - If an error occurred, information about the error. # # @option params [required, String] :forecast_export_job_arn # The Amazon Resource Name (ARN) of the forecast export job. # # @return [Types::DescribeForecastExportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeForecastExportJobResponse#forecast_export_job_arn #forecast_export_job_arn} => String # * {Types::DescribeForecastExportJobResponse#forecast_export_job_name #forecast_export_job_name} => String # * {Types::DescribeForecastExportJobResponse#forecast_arn #forecast_arn} => String # * {Types::DescribeForecastExportJobResponse#destination #destination} => Types::DataDestination # * {Types::DescribeForecastExportJobResponse#message #message} => String # * {Types::DescribeForecastExportJobResponse#status #status} => String # * {Types::DescribeForecastExportJobResponse#creation_time #creation_time} => Time # * {Types::DescribeForecastExportJobResponse#last_modification_time #last_modification_time} => Time # # @example Request syntax with placeholder values # # resp = client.describe_forecast_export_job({ # forecast_export_job_arn: "Arn", # required # }) # # @example Response structure # # resp.forecast_export_job_arn #=> String # resp.forecast_export_job_name #=> String # resp.forecast_arn #=> String # resp.destination.s3_config.path #=> String # resp.destination.s3_config.role_arn #=> String # resp.destination.s3_config.kms_key_arn #=> String # resp.message #=> String # resp.status #=> String # resp.creation_time #=> Time # resp.last_modification_time #=> Time # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeForecastExportJob AWS API Documentation # # @overload describe_forecast_export_job(params = {}) # @param [Hash] params ({}) def describe_forecast_export_job(params = {}, options = {}) req = build_request(:describe_forecast_export_job, params) req.send_request(options) end # Describes a predictor created using the CreatePredictor operation. # # In addition to listing the properties provided in the # `CreatePredictor` request, this operation lists the following # properties: # # * `DatasetImportJobArns` - The dataset import jobs used to import # training data. # # * `AutoMLAlgorithmArns` - If AutoML is performed, the algorithms that # were evaluated. # # * `CreationTime` # # * `LastModificationTime` # # * `Status` # # * `Message` - If an error occurred, information about the error. # # @option params [required, String] :predictor_arn # The Amazon Resource Name (ARN) of the predictor that you want # information about. # # @return [Types::DescribePredictorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribePredictorResponse#predictor_arn #predictor_arn} => String # * {Types::DescribePredictorResponse#predictor_name #predictor_name} => String # * {Types::DescribePredictorResponse#algorithm_arn #algorithm_arn} => String # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String> # * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters # * {Types::DescribePredictorResponse#hpo_config #hpo_config} => Types::HyperParameterTuningJobConfig # * {Types::DescribePredictorResponse#input_data_config #input_data_config} => Types::InputDataConfig # * {Types::DescribePredictorResponse#featurization_config #featurization_config} => Types::FeaturizationConfig # * {Types::DescribePredictorResponse#encryption_config #encryption_config} => Types::EncryptionConfig # * {Types::DescribePredictorResponse#predictor_execution_details #predictor_execution_details} => Types::PredictorExecutionDetails # * {Types::DescribePredictorResponse#dataset_import_job_arns #dataset_import_job_arns} => Array<String> # * {Types::DescribePredictorResponse#auto_ml_algorithm_arns #auto_ml_algorithm_arns} => Array<String> # * {Types::DescribePredictorResponse#status #status} => String # * {Types::DescribePredictorResponse#message #message} => String # * {Types::DescribePredictorResponse#creation_time #creation_time} => Time # * {Types::DescribePredictorResponse#last_modification_time #last_modification_time} => Time # # @example Request syntax with placeholder values # # resp = client.describe_predictor({ # predictor_arn: "Arn", # required # }) # # @example Response structure # # resp.predictor_arn #=> String # resp.predictor_name #=> String # resp.algorithm_arn #=> String # resp.forecast_horizon #=> Integer # resp.perform_auto_ml #=> Boolean # resp.perform_hpo #=> Boolean # resp.training_parameters #=> Hash # resp.training_parameters["ParameterKey"] #=> String # resp.evaluation_parameters.number_of_backtest_windows #=> Integer # resp.evaluation_parameters.back_test_window_offset #=> Integer # resp.hpo_config.parameter_ranges.categorical_parameter_ranges #=> Array # resp.hpo_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String # resp.hpo_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array # resp.hpo_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String # resp.hpo_config.parameter_ranges.continuous_parameter_ranges #=> Array # resp.hpo_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String # resp.hpo_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> Float # resp.hpo_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> Float # resp.hpo_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic" # resp.hpo_config.parameter_ranges.integer_parameter_ranges #=> Array # resp.hpo_config.parameter_ranges.integer_parameter_ranges[0].name #=> String # resp.hpo_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> Integer # resp.hpo_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> Integer # resp.hpo_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic" # resp.input_data_config.dataset_group_arn #=> String # resp.input_data_config.supplementary_features #=> Array # resp.input_data_config.supplementary_features[0].name #=> String # resp.input_data_config.supplementary_features[0].value #=> String # resp.featurization_config.forecast_frequency #=> String # resp.featurization_config.forecast_dimensions #=> Array # resp.featurization_config.forecast_dimensions[0] #=> String # resp.featurization_config.featurizations #=> Array # resp.featurization_config.featurizations[0].attribute_name #=> String # resp.featurization_config.featurizations[0].featurization_pipeline #=> Array # resp.featurization_config.featurizations[0].featurization_pipeline[0].featurization_method_name #=> String, one of "filling" # resp.featurization_config.featurizations[0].featurization_pipeline[0].featurization_method_parameters #=> Hash # resp.featurization_config.featurizations[0].featurization_pipeline[0].featurization_method_parameters["ParameterKey"] #=> String # resp.encryption_config.role_arn #=> String # resp.encryption_config.kms_key_arn #=> String # resp.predictor_execution_details.predictor_executions #=> Array # resp.predictor_execution_details.predictor_executions[0].algorithm_arn #=> String # resp.predictor_execution_details.predictor_executions[0].test_windows #=> Array # resp.predictor_execution_details.predictor_executions[0].test_windows[0].test_window_start #=> Time # resp.predictor_execution_details.predictor_executions[0].test_windows[0].test_window_end #=> Time # resp.predictor_execution_details.predictor_executions[0].test_windows[0].status #=> String # resp.predictor_execution_details.predictor_executions[0].test_windows[0].message #=> String # resp.dataset_import_job_arns #=> Array # resp.dataset_import_job_arns[0] #=> String # resp.auto_ml_algorithm_arns #=> Array # resp.auto_ml_algorithm_arns[0] #=> String # resp.status #=> String # resp.message #=> String # resp.creation_time #=> Time # resp.last_modification_time #=> Time # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictor AWS API Documentation # # @overload describe_predictor(params = {}) # @param [Hash] params ({}) def describe_predictor(params = {}, options = {}) req = build_request(:describe_predictor, params) req.send_request(options) end # Provides metrics on the accuracy of the models that were trained by # the CreatePredictor operation. Use metrics to see how well the model # performed and to decide whether to use the predictor to generate a # forecast. For more information, see metrics. # # This operation generates metrics for each backtest window that was # evaluated. The number of backtest windows (`NumberOfBacktestWindows`) # is specified using the EvaluationParameters object, which is # optionally included in the `CreatePredictor` request. If # `NumberOfBacktestWindows` isn't specified, the number defaults to # one. # # The parameters of the `filling` method determine which items # contribute to the metrics. If you want all items to contribute, # specify `zero`. If you want only those items that have complete data # in the range being evaluated to contribute, specify `nan`. For more # information, see FeaturizationMethod. # # Before you can get accuracy metrics, the `Status` of the predictor # must be `ACTIVE`, signifying that training has completed. To get the # status, use the DescribePredictor operation. # # # # @option params [required, String] :predictor_arn # The Amazon Resource Name (ARN) of the predictor to get metrics for. # # @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult> # # @example Request syntax with placeholder values # # resp = client.get_accuracy_metrics({ # predictor_arn: "Arn", # required # }) # # @example Response structure # # resp.predictor_evaluation_results #=> Array # resp.predictor_evaluation_results[0].algorithm_arn #=> String # resp.predictor_evaluation_results[0].test_windows #=> Array # resp.predictor_evaluation_results[0].test_windows[0].test_window_start #=> Time # resp.predictor_evaluation_results[0].test_windows[0].test_window_end #=> Time # resp.predictor_evaluation_results[0].test_windows[0].item_count #=> Integer # resp.predictor_evaluation_results[0].test_windows[0].evaluation_type #=> String, one of "SUMMARY", "COMPUTED" # resp.predictor_evaluation_results[0].test_windows[0].metrics.rmse #=> Float # resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses #=> Array # resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses[0].quantile #=> Float # resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses[0].loss_value #=> Float # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation # # @overload get_accuracy_metrics(params = {}) # @param [Hash] params ({}) def get_accuracy_metrics(params = {}, options = {}) req = build_request(:get_accuracy_metrics, params) req.send_request(options) end # Returns a list of dataset groups created using the CreateDatasetGroup # operation. For each dataset group, this operation returns a summary of # its properties, including its Amazon Resource Name (ARN). You can # retrieve the complete set of properties by using the dataset group ARN # with the DescribeDatasetGroup operation. # # @option params [String] :next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # # @option params [Integer] :max_results # The number of items to return in the response. # # @return [Types::ListDatasetGroupsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListDatasetGroupsResponse#dataset_groups #dataset_groups} => Array<Types::DatasetGroupSummary> # * {Types::ListDatasetGroupsResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.list_dataset_groups({ # next_token: "NextToken", # max_results: 1, # }) # # @example Response structure # # resp.dataset_groups #=> Array # resp.dataset_groups[0].dataset_group_arn #=> String # resp.dataset_groups[0].dataset_group_name #=> String # resp.dataset_groups[0].creation_time #=> Time # resp.dataset_groups[0].last_modification_time #=> Time # resp.next_token #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetGroups AWS API Documentation # # @overload list_dataset_groups(params = {}) # @param [Hash] params ({}) def list_dataset_groups(params = {}, options = {}) req = build_request(:list_dataset_groups, params) req.send_request(options) end # Returns a list of dataset import jobs created using the # CreateDatasetImportJob operation. For each import job, this operation # returns a summary of its properties, including its Amazon Resource # Name (ARN). You can retrieve the complete set of properties by using # the ARN with the DescribeDatasetImportJob operation. You can filter # the list by providing an array of Filter objects. # # @option params [String] :next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # # @option params [Integer] :max_results # The number of items to return in the response. # # @option params [Array] :filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the datasets that match the # statement from the list, respectively. The match statement consists of # a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the datasets that match the statement, specify # `IS`. To exclude matching datasets, specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `DatasetArn` and `Status`. # # * `Value` - The value to match. # # For example, to list all dataset import jobs whose status is ACTIVE, # you specify the following filter: # # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": "ACTIVE" # \} ]` # # @return [Types::ListDatasetImportJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListDatasetImportJobsResponse#dataset_import_jobs #dataset_import_jobs} => Array<Types::DatasetImportJobSummary> # * {Types::ListDatasetImportJobsResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.list_dataset_import_jobs({ # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # }) # # @example Response structure # # resp.dataset_import_jobs #=> Array # resp.dataset_import_jobs[0].dataset_import_job_arn #=> String # resp.dataset_import_jobs[0].dataset_import_job_name #=> String # resp.dataset_import_jobs[0].data_source.s3_config.path #=> String # resp.dataset_import_jobs[0].data_source.s3_config.role_arn #=> String # resp.dataset_import_jobs[0].data_source.s3_config.kms_key_arn #=> String # resp.dataset_import_jobs[0].status #=> String # resp.dataset_import_jobs[0].message #=> String # resp.dataset_import_jobs[0].creation_time #=> Time # resp.dataset_import_jobs[0].last_modification_time #=> Time # resp.next_token #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobs AWS API Documentation # # @overload list_dataset_import_jobs(params = {}) # @param [Hash] params ({}) def list_dataset_import_jobs(params = {}, options = {}) req = build_request(:list_dataset_import_jobs, params) req.send_request(options) end # Returns a list of datasets created using the CreateDataset operation. # For each dataset, a summary of its properties, including its Amazon # Resource Name (ARN), is returned. To retrieve the complete set of # properties, use the ARN with the DescribeDataset operation. # # @option params [String] :next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # # @option params [Integer] :max_results # The number of items to return in the response. # # @return [Types::ListDatasetsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListDatasetsResponse#datasets #datasets} => Array<Types::DatasetSummary> # * {Types::ListDatasetsResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.list_datasets({ # next_token: "NextToken", # max_results: 1, # }) # # @example Response structure # # resp.datasets #=> Array # resp.datasets[0].dataset_arn #=> String # resp.datasets[0].dataset_name #=> String # resp.datasets[0].dataset_type #=> String, one of "TARGET_TIME_SERIES", "RELATED_TIME_SERIES", "ITEM_METADATA" # resp.datasets[0].domain #=> String, one of "RETAIL", "CUSTOM", "INVENTORY_PLANNING", "EC2_CAPACITY", "WORK_FORCE", "WEB_TRAFFIC", "METRICS" # resp.datasets[0].creation_time #=> Time # resp.datasets[0].last_modification_time #=> Time # resp.next_token #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasets AWS API Documentation # # @overload list_datasets(params = {}) # @param [Hash] params ({}) def list_datasets(params = {}, options = {}) req = build_request(:list_datasets, params) req.send_request(options) end # Returns a list of forecast export jobs created using the # CreateForecastExportJob operation. For each forecast export job, this # operation returns a summary of its properties, including its Amazon # Resource Name (ARN). To retrieve the complete set of properties, use # the ARN with the DescribeForecastExportJob operation. You can filter # the list using an array of Filter objects. # # @option params [String] :next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # # @option params [Integer] :max_results # The number of items to return in the response. # # @option params [Array] :filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the forecast export jobs that # match the statement from the list, respectively. The match statement # consists of a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the forecast export jobs that match the # statement, specify `IS`. To exclude matching forecast export jobs, # specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `ForecastArn` and `Status`. # # * `Value` - The value to match. # # For example, to list all jobs that export a forecast named # *electricityforecast*, specify the following filter: # # `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value": # "arn:aws:forecast:us-west-2::forecast/electricityforecast" \} # ]` # # @return [Types::ListForecastExportJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListForecastExportJobsResponse#forecast_export_jobs #forecast_export_jobs} => Array<Types::ForecastExportJobSummary> # * {Types::ListForecastExportJobsResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.list_forecast_export_jobs({ # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # }) # # @example Response structure # # resp.forecast_export_jobs #=> Array # resp.forecast_export_jobs[0].forecast_export_job_arn #=> String # resp.forecast_export_jobs[0].forecast_export_job_name #=> String # resp.forecast_export_jobs[0].destination.s3_config.path #=> String # resp.forecast_export_jobs[0].destination.s3_config.role_arn #=> String # resp.forecast_export_jobs[0].destination.s3_config.kms_key_arn #=> String # resp.forecast_export_jobs[0].status #=> String # resp.forecast_export_jobs[0].message #=> String # resp.forecast_export_jobs[0].creation_time #=> Time # resp.forecast_export_jobs[0].last_modification_time #=> Time # resp.next_token #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobs AWS API Documentation # # @overload list_forecast_export_jobs(params = {}) # @param [Hash] params ({}) def list_forecast_export_jobs(params = {}, options = {}) req = build_request(:list_forecast_export_jobs, params) req.send_request(options) end # Returns a list of forecasts created using the CreateForecast # operation. For each forecast, this operation returns a summary of its # properties, including its Amazon Resource Name (ARN). To retrieve the # complete set of properties, specify the ARN with the DescribeForecast # operation. You can filter the list using an array of Filter objects. # # @option params [String] :next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # # @option params [Integer] :max_results # The number of items to return in the response. # # @option params [Array] :filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the forecasts that match the # statement from the list, respectively. The match statement consists of # a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the forecasts that match the statement, specify # `IS`. To exclude matching forecasts, specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `DatasetGroupArn`, `PredictorArn`, and `Status`. # # * `Value` - The value to match. # # For example, to list all forecasts whose status is not ACTIVE, you # would specify: # # `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value": # "ACTIVE" \} ]` # # @return [Types::ListForecastsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListForecastsResponse#forecasts #forecasts} => Array<Types::ForecastSummary> # * {Types::ListForecastsResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.list_forecasts({ # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # }) # # @example Response structure # # resp.forecasts #=> Array # resp.forecasts[0].forecast_arn #=> String # resp.forecasts[0].forecast_name #=> String # resp.forecasts[0].predictor_arn #=> String # resp.forecasts[0].dataset_group_arn #=> String # resp.forecasts[0].status #=> String # resp.forecasts[0].message #=> String # resp.forecasts[0].creation_time #=> Time # resp.forecasts[0].last_modification_time #=> Time # resp.next_token #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecasts AWS API Documentation # # @overload list_forecasts(params = {}) # @param [Hash] params ({}) def list_forecasts(params = {}, options = {}) req = build_request(:list_forecasts, params) req.send_request(options) end # Returns a list of predictors created using the CreatePredictor # operation. For each predictor, this operation returns a summary of its # properties, including its Amazon Resource Name (ARN). You can retrieve # the complete set of properties by using the ARN with the # DescribePredictor operation. You can filter the list using an array of # Filter objects. # # @option params [String] :next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # # @option params [Integer] :max_results # The number of items to return in the response. # # @option params [Array] :filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the predictors that match the # statement from the list, respectively. The match statement consists of # a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the predictors that match the statement, # specify `IS`. To exclude matching predictors, specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `DatasetGroupArn` and `Status`. # # * `Value` - The value to match. # # For example, to list all predictors whose status is ACTIVE, you would # specify: # # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": "ACTIVE" # \} ]` # # @return [Types::ListPredictorsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListPredictorsResponse#predictors #predictors} => Array<Types::PredictorSummary> # * {Types::ListPredictorsResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.list_predictors({ # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # }) # # @example Response structure # # resp.predictors #=> Array # resp.predictors[0].predictor_arn #=> String # resp.predictors[0].predictor_name #=> String # resp.predictors[0].dataset_group_arn #=> String # resp.predictors[0].status #=> String # resp.predictors[0].message #=> String # resp.predictors[0].creation_time #=> Time # resp.predictors[0].last_modification_time #=> Time # resp.next_token #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictors AWS API Documentation # # @overload list_predictors(params = {}) # @param [Hash] params ({}) def list_predictors(params = {}, options = {}) req = build_request(:list_predictors, params) req.send_request(options) end # Replaces the datasets in a dataset group with the specified datasets. # # The `Status` of the dataset group must be `ACTIVE` before you can use # the dataset group to create a predictor. Use the DescribeDatasetGroup # operation to get the status. # # # # @option params [required, String] :dataset_group_arn # The ARN of the dataset group. # # @option params [required, Array] :dataset_arns # An array of the Amazon Resource Names (ARNs) of the datasets to add to # the dataset group. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.update_dataset_group({ # dataset_group_arn: "Arn", # required # dataset_arns: ["Arn"], # required # }) # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroup AWS API Documentation # # @overload update_dataset_group(params = {}) # @param [Hash] params ({}) def update_dataset_group(params = {}, options = {}) req = build_request(:update_dataset_group, params) req.send_request(options) end # @!endgroup # @param params ({}) # @api private def build_request(operation_name, params = {}) handlers = @handlers.for(operation_name) context = Seahorse::Client::RequestContext.new( operation_name: operation_name, operation: config.api.operation(operation_name), client: self, params: params, config: config) context[:gem_name] = 'aws-sdk-forecastservice' context[:gem_version] = '1.2.0' Seahorse::Client::Request.new(handlers, context) end # @api private # @deprecated def waiter_names [] end class << self # @api private attr_reader :identifier # @api private def errors_module Errors end end end end