// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "x64/lithium-gap-resolver-x64.h" #include "x64/lithium-codegen-x64.h" namespace v8 { namespace internal { LGapResolver::LGapResolver(LCodeGen* owner) : cgen_(owner), moves_(32) {} void LGapResolver::Resolve(LParallelMove* parallel_move) { ASSERT(moves_.is_empty()); // Build up a worklist of moves. BuildInitialMoveList(parallel_move); for (int i = 0; i < moves_.length(); ++i) { LMoveOperands move = moves_[i]; // Skip constants to perform them last. They don't block other moves // and skipping such moves with register destinations keeps those // registers free for the whole algorithm. if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { PerformMove(i); } } // Perform the moves with constant sources. for (int i = 0; i < moves_.length(); ++i) { if (!moves_[i].IsEliminated()) { ASSERT(moves_[i].source()->IsConstantOperand()); EmitMove(i); } } moves_.Rewind(0); } void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { // Perform a linear sweep of the moves to add them to the initial list of // moves to perform, ignoring any move that is redundant (the source is // the same as the destination, the destination is ignored and // unallocated, or the move was already eliminated). const ZoneList* moves = parallel_move->move_operands(); for (int i = 0; i < moves->length(); ++i) { LMoveOperands move = moves->at(i); if (!move.IsRedundant()) moves_.Add(move); } Verify(); } void LGapResolver::PerformMove(int index) { // Each call to this function performs a move and deletes it from the move // graph. We first recursively perform any move blocking this one. We // mark a move as "pending" on entry to PerformMove in order to detect // cycles in the move graph. We use operand swaps to resolve cycles, // which means that a call to PerformMove could change any source operand // in the move graph. ASSERT(!moves_[index].IsPending()); ASSERT(!moves_[index].IsRedundant()); // Clear this move's destination to indicate a pending move. The actual // destination is saved in a stack-allocated local. Recursion may allow // multiple moves to be pending. ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated. LOperand* destination = moves_[index].destination(); moves_[index].set_destination(NULL); // Perform a depth-first traversal of the move graph to resolve // dependencies. Any unperformed, unpending move with a source the same // as this one's destination blocks this one so recursively perform all // such moves. for (int i = 0; i < moves_.length(); ++i) { LMoveOperands other_move = moves_[i]; if (other_move.Blocks(destination) && !other_move.IsPending()) { // Though PerformMove can change any source operand in the move graph, // this call cannot create a blocking move via a swap (this loop does // not miss any). Assume there is a non-blocking move with source A // and this move is blocked on source B and there is a swap of A and // B. Then A and B must be involved in the same cycle (or they would // not be swapped). Since this move's destination is B and there is // only a single incoming edge to an operand, this move must also be // involved in the same cycle. In that case, the blocking move will // be created but will be "pending" when we return from PerformMove. PerformMove(i); } } // We are about to resolve this move and don't need it marked as // pending, so restore its destination. moves_[index].set_destination(destination); // This move's source may have changed due to swaps to resolve cycles and // so it may now be the last move in the cycle. If so remove it. if (moves_[index].source()->Equals(destination)) { moves_[index].Eliminate(); return; } // The move may be blocked on a (at most one) pending move, in which case // we have a cycle. Search for such a blocking move and perform a swap to // resolve it. for (int i = 0; i < moves_.length(); ++i) { LMoveOperands other_move = moves_[i]; if (other_move.Blocks(destination)) { ASSERT(other_move.IsPending()); EmitSwap(index); return; } } // This move is not blocked. EmitMove(index); } void LGapResolver::Verify() { #ifdef ENABLE_SLOW_ASSERTS // No operand should be the destination for more than one move. for (int i = 0; i < moves_.length(); ++i) { LOperand* destination = moves_[i].destination(); for (int j = i + 1; j < moves_.length(); ++j) { SLOW_ASSERT(!destination->Equals(moves_[j].destination())); } } #endif } #define __ ACCESS_MASM(cgen_->masm()) void LGapResolver::EmitMove(int index) { LOperand* source = moves_[index].source(); LOperand* destination = moves_[index].destination(); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister()) { Register src = cgen_->ToRegister(source); if (destination->IsRegister()) { Register dst = cgen_->ToRegister(destination); __ movq(dst, src); } else { ASSERT(destination->IsStackSlot()); Operand dst = cgen_->ToOperand(destination); __ movq(dst, src); } } else if (source->IsStackSlot()) { Operand src = cgen_->ToOperand(source); if (destination->IsRegister()) { Register dst = cgen_->ToRegister(destination); __ movq(dst, src); } else { ASSERT(destination->IsStackSlot()); Operand dst = cgen_->ToOperand(destination); __ movq(kScratchRegister, src); __ movq(dst, kScratchRegister); } } else if (source->IsConstantOperand()) { LConstantOperand* constant_source = LConstantOperand::cast(source); if (destination->IsRegister()) { Register dst = cgen_->ToRegister(destination); if (cgen_->IsInteger32Constant(constant_source)) { __ movl(dst, Immediate(cgen_->ToInteger32(constant_source))); } else { __ LoadObject(dst, cgen_->ToHandle(constant_source)); } } else { ASSERT(destination->IsStackSlot()); Operand dst = cgen_->ToOperand(destination); if (cgen_->IsInteger32Constant(constant_source)) { // Zero top 32 bits of a 64 bit spill slot that holds a 32 bit untagged // value. __ movq(dst, Immediate(cgen_->ToInteger32(constant_source))); } else { __ LoadObject(kScratchRegister, cgen_->ToHandle(constant_source)); __ movq(dst, kScratchRegister); } } } else if (source->IsDoubleRegister()) { XMMRegister src = cgen_->ToDoubleRegister(source); if (destination->IsDoubleRegister()) { __ movaps(cgen_->ToDoubleRegister(destination), src); } else { ASSERT(destination->IsDoubleStackSlot()); __ movsd(cgen_->ToOperand(destination), src); } } else if (source->IsDoubleStackSlot()) { Operand src = cgen_->ToOperand(source); if (destination->IsDoubleRegister()) { __ movsd(cgen_->ToDoubleRegister(destination), src); } else { ASSERT(destination->IsDoubleStackSlot()); __ movsd(xmm0, src); __ movsd(cgen_->ToOperand(destination), xmm0); } } else { UNREACHABLE(); } moves_[index].Eliminate(); } void LGapResolver::EmitSwap(int index) { LOperand* source = moves_[index].source(); LOperand* destination = moves_[index].destination(); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister() && destination->IsRegister()) { // Swap two general-purpose registers. Register src = cgen_->ToRegister(source); Register dst = cgen_->ToRegister(destination); __ xchg(dst, src); } else if ((source->IsRegister() && destination->IsStackSlot()) || (source->IsStackSlot() && destination->IsRegister())) { // Swap a general-purpose register and a stack slot. Register reg = cgen_->ToRegister(source->IsRegister() ? source : destination); Operand mem = cgen_->ToOperand(source->IsRegister() ? destination : source); __ movq(kScratchRegister, mem); __ movq(mem, reg); __ movq(reg, kScratchRegister); } else if ((source->IsStackSlot() && destination->IsStackSlot()) || (source->IsDoubleStackSlot() && destination->IsDoubleStackSlot())) { // Swap two stack slots or two double stack slots. Operand src = cgen_->ToOperand(source); Operand dst = cgen_->ToOperand(destination); __ movsd(xmm0, src); __ movq(kScratchRegister, dst); __ movsd(dst, xmm0); __ movq(src, kScratchRegister); } else if (source->IsDoubleRegister() && destination->IsDoubleRegister()) { // Swap two double registers. XMMRegister source_reg = cgen_->ToDoubleRegister(source); XMMRegister destination_reg = cgen_->ToDoubleRegister(destination); __ movaps(xmm0, source_reg); __ movaps(source_reg, destination_reg); __ movaps(destination_reg, xmm0); } else if (source->IsDoubleRegister() || destination->IsDoubleRegister()) { // Swap a double register and a double stack slot. ASSERT((source->IsDoubleRegister() && destination->IsDoubleStackSlot()) || (source->IsDoubleStackSlot() && destination->IsDoubleRegister())); XMMRegister reg = cgen_->ToDoubleRegister(source->IsDoubleRegister() ? source : destination); LOperand* other = source->IsDoubleRegister() ? destination : source; ASSERT(other->IsDoubleStackSlot()); Operand other_operand = cgen_->ToOperand(other); __ movsd(xmm0, other_operand); __ movsd(other_operand, reg); __ movsd(reg, xmm0); } else { // No other combinations are possible. UNREACHABLE(); } // The swap of source and destination has executed a move from source to // destination. moves_[index].Eliminate(); // Any unperformed (including pending) move with a source of either // this move's source or destination needs to have their source // changed to reflect the state of affairs after the swap. for (int i = 0; i < moves_.length(); ++i) { LMoveOperands other_move = moves_[i]; if (other_move.Blocks(source)) { moves_[i].set_source(destination); } else if (other_move.Blocks(destination)) { moves_[i].set_source(source); } } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64