// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_ARM) #include "ic-inl.h" #include "codegen-inl.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register name, Register offset) { ExternalReference key_offset(SCTableReference::keyReference(table)); ExternalReference value_offset(SCTableReference::valueReference(table)); Label miss; // Save the offset on the stack. __ push(offset); // Check that the key in the entry matches the name. __ mov(ip, Operand(key_offset)); __ ldr(ip, MemOperand(ip, offset, LSL, 1)); __ cmp(name, ip); __ b(ne, &miss); // Get the code entry from the cache. __ mov(ip, Operand(value_offset)); __ ldr(offset, MemOperand(ip, offset, LSL, 1)); // Check that the flags match what we're looking for. __ ldr(offset, FieldMemOperand(offset, Code::kFlagsOffset)); __ and_(offset, offset, Operand(~Code::kFlagsNotUsedInLookup)); __ cmp(offset, Operand(flags)); __ b(ne, &miss); // Restore offset and re-load code entry from cache. __ pop(offset); __ mov(ip, Operand(value_offset)); __ ldr(offset, MemOperand(ip, offset, LSL, 1)); // Jump to the first instruction in the code stub. __ add(offset, offset, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(offset); // Miss: Restore offset and fall through. __ bind(&miss); __ pop(offset); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a symbol and receiver must be a heap object. static void GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, String* name, Register scratch0, Register scratch1) { ASSERT(name->IsSymbol()); __ IncrementCounter(&Counters::negative_lookups, 1, scratch0, scratch1); __ IncrementCounter(&Counters::negative_lookups_miss, 1, scratch0, scratch1); Label done; const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. Register map = scratch1; __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); __ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask)); __ b(ne, miss_label); // Check that receiver is a JSObject. __ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmp(scratch0, Operand(FIRST_JS_OBJECT_TYPE)); __ b(lt, miss_label); // Load properties array. Register properties = scratch0; __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset)); Register tmp = properties; __ LoadRoot(tmp, Heap::kHashTableMapRootIndex); __ cmp(map, tmp); __ b(ne, miss_label); // Restore the temporarily used register. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Compute the capacity mask. const int kCapacityOffset = StringDictionary::kHeaderSize + StringDictionary::kCapacityIndex * kPointerSize; // Generate an unrolled loop that performs a few probes before // giving up. static const int kProbes = 4; const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the null value). for (int i = 0; i < kProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch1; // Capacity is smi 2^n. __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); __ sub(index, index, Operand(1)); __ and_(index, index, Operand( Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. Register entity_name = scratch1; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); Register tmp = properties; __ add(tmp, properties, Operand(index, LSL, 1)); __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); ASSERT(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ cmp(entity_name, tmp); if (i != kProbes - 1) { __ b(eq, &done); // Stop if found the property. __ cmp(entity_name, Operand(Handle(name))); __ b(eq, miss_label); // Check if the entry name is not a symbol. __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ ldrb(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ tst(entity_name, Operand(kIsSymbolMask)); __ b(eq, miss_label); // Restore the properties. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } else { // Give up probing if still not found the undefined value. __ b(ne, miss_label); } } __ bind(&done); __ DecrementCounter(&Counters::negative_lookups_miss, 1, scratch0, scratch1); } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra) { Label miss; // Make sure that code is valid. The shifting code relies on the // entry size being 8. ASSERT(sizeof(Entry) == 8); // Make sure the flags does not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Make sure that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); // Check that the receiver isn't a smi. __ tst(receiver, Operand(kSmiTagMask)); __ b(eq, &miss); // Get the map of the receiver and compute the hash. __ ldr(scratch, FieldMemOperand(name, String::kHashFieldOffset)); __ ldr(ip, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ add(scratch, scratch, Operand(ip)); __ eor(scratch, scratch, Operand(flags)); __ and_(scratch, scratch, Operand((kPrimaryTableSize - 1) << kHeapObjectTagSize)); // Probe the primary table. ProbeTable(masm, flags, kPrimary, name, scratch); // Primary miss: Compute hash for secondary probe. __ sub(scratch, scratch, Operand(name)); __ add(scratch, scratch, Operand(flags)); __ and_(scratch, scratch, Operand((kSecondaryTableSize - 1) << kHeapObjectTagSize)); // Probe the secondary table. ProbeTable(masm, flags, kSecondary, name, scratch); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { // Load the global or builtins object from the current context. __ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. __ ldr(prototype, FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. __ ldr(prototype, MemOperand(prototype, Context::SlotOffset(index))); // Load the initial map. The global functions all have initial maps. __ ldr(prototype, FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype) { // Get the global function with the given index. JSFunction* function = JSFunction::cast(Top::global_context()->get(index)); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Handle(function->initial_map())); // Load the prototype from the initial map. __ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } // Load a fast property out of a holder object (src). In-object properties // are loaded directly otherwise the property is loaded from the properties // fixed array. void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, JSObject* holder, int index) { // Adjust for the number of properties stored in the holder. index -= holder->map()->inobject_properties(); if (index < 0) { // Get the property straight out of the holder. int offset = holder->map()->instance_size() + (index * kPointerSize); __ ldr(dst, FieldMemOperand(src, offset)); } else { // Calculate the offset into the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; __ ldr(dst, FieldMemOperand(src, JSObject::kPropertiesOffset)); __ ldr(dst, FieldMemOperand(dst, offset)); } } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ tst(receiver, Operand(kSmiTagMask)); __ b(eq, miss_label); // Check that the object is a JS array. __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); __ b(ne, miss_label); // Load length directly from the JS array. __ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Ret(); } // Generate code to check if an object is a string. If the object is a // heap object, its map's instance type is left in the scratch1 register. // If this is not needed, scratch1 and scratch2 may be the same register. static void GenerateStringCheck(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* smi, Label* non_string_object) { // Check that the receiver isn't a smi. __ tst(receiver, Operand(kSmiTagMask)); __ b(eq, smi); // Check that the object is a string. __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ and_(scratch2, scratch1, Operand(kIsNotStringMask)); // The cast is to resolve the overload for the argument of 0x0. __ cmp(scratch2, Operand(static_cast(kStringTag))); __ b(ne, non_string_object); } // Generate code to load the length from a string object and return the length. // If the receiver object is not a string or a wrapped string object the // execution continues at the miss label. The register containing the // receiver is potentially clobbered. void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss) { Label check_wrapper; // Check if the object is a string leaving the instance type in the // scratch1 register. GenerateStringCheck(masm, receiver, scratch1, scratch2, miss, &check_wrapper); // Load length directly from the string. __ ldr(r0, FieldMemOperand(receiver, String::kLengthOffset)); __ Ret(); // Check if the object is a JSValue wrapper. __ bind(&check_wrapper); __ cmp(scratch1, Operand(JS_VALUE_TYPE)); __ b(ne, miss); // Unwrap the value and check if the wrapped value is a string. __ ldr(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset)); GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss); __ ldr(r0, FieldMemOperand(scratch1, String::kLengthOffset)); __ Ret(); } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mov(r0, scratch1); __ Ret(); } // Generate StoreField code, value is passed in r0 register. // When leaving generated code after success, the receiver_reg and name_reg // may be clobbered. Upon branch to miss_label, the receiver and name // registers have their original values. void StubCompiler::GenerateStoreField(MacroAssembler* masm, JSObject* object, int index, Map* transition, Register receiver_reg, Register name_reg, Register scratch, Label* miss_label) { // r0 : value Label exit; // Check that the receiver isn't a smi. __ tst(receiver_reg, Operand(kSmiTagMask)); __ b(eq, miss_label); // Check that the map of the receiver hasn't changed. __ ldr(scratch, FieldMemOperand(receiver_reg, HeapObject::kMapOffset)); __ cmp(scratch, Operand(Handle(object->map()))); __ b(ne, miss_label); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ push(receiver_reg); __ mov(r2, Operand(Handle(transition))); __ Push(r2, r0); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage)), 3, 1); return; } if (transition != NULL) { // Update the map of the object; no write barrier updating is // needed because the map is never in new space. __ mov(ip, Operand(Handle(transition))); __ str(ip, FieldMemOperand(receiver_reg, HeapObject::kMapOffset)); } // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); __ str(r0, FieldMemOperand(receiver_reg, offset)); // Skip updating write barrier if storing a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &exit); // Update the write barrier for the array address. // Pass the now unused name_reg as a scratch register. __ RecordWrite(receiver_reg, Operand(offset), name_reg, scratch); } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array __ ldr(scratch, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset)); __ str(r0, FieldMemOperand(scratch, offset)); // Skip updating write barrier if storing a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &exit); // Update the write barrier for the array address. // Ok to clobber receiver_reg and name_reg, since we return. __ RecordWrite(scratch, Operand(offset), name_reg, receiver_reg); } // Return the value (register r0). __ bind(&exit); __ Ret(); } void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) { ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC); Code* code = NULL; if (kind == Code::LOAD_IC) { code = Builtins::builtin(Builtins::LoadIC_Miss); } else { code = Builtins::builtin(Builtins::KeyedLoadIC_Miss); } Handle ic(code); __ Jump(ic, RelocInfo::CODE_TARGET); } static void GenerateCallFunction(MacroAssembler* masm, Object* object, const ParameterCount& arguments, Label* miss) { // ----------- S t a t e ------------- // -- r0: receiver // -- r1: function to call // ----------------------------------- // Check that the function really is a function. __ BranchOnSmi(r1, miss); __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE); __ b(ne, miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, arguments.immediate() * kPointerSize)); } // Invoke the function. __ InvokeFunction(r1, arguments, JUMP_FUNCTION); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, JSObject* holder_obj) { __ push(name); InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor(); ASSERT(!Heap::InNewSpace(interceptor)); Register scratch = name; __ mov(scratch, Operand(Handle(interceptor))); __ push(scratch); __ push(receiver); __ push(holder); __ ldr(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset)); __ push(scratch); } static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, Register name, JSObject* holder_obj) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly)); __ mov(r0, Operand(5)); __ mov(r1, Operand(ref)); CEntryStub stub(1); __ CallStub(&stub); } // Reserves space for the extra arguments to FastHandleApiCall in the // caller's frame. // // These arguments are set by CheckPrototypes and GenerateFastApiCall. static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { __ mov(scratch, Operand(Smi::FromInt(0))); __ push(scratch); __ push(scratch); __ push(scratch); __ push(scratch); } // Undoes the effects of ReserveSpaceForFastApiCall. static void FreeSpaceForFastApiCall(MacroAssembler* masm) { __ Drop(4); } // Generates call to FastHandleApiCall builtin. static void GenerateFastApiCall(MacroAssembler* masm, const CallOptimization& optimization, int argc) { // Get the function and setup the context. JSFunction* function = optimization.constant_function(); __ mov(r7, Operand(Handle(function))); __ ldr(cp, FieldMemOperand(r7, JSFunction::kContextOffset)); // Pass the additional arguments FastHandleApiCall expects. bool info_loaded = false; Object* callback = optimization.api_call_info()->callback(); if (Heap::InNewSpace(callback)) { info_loaded = true; __ Move(r0, Handle(optimization.api_call_info())); __ ldr(r6, FieldMemOperand(r0, CallHandlerInfo::kCallbackOffset)); } else { __ Move(r6, Handle(callback)); } Object* call_data = optimization.api_call_info()->data(); if (Heap::InNewSpace(call_data)) { if (!info_loaded) { __ Move(r0, Handle(optimization.api_call_info())); } __ ldr(r5, FieldMemOperand(r0, CallHandlerInfo::kDataOffset)); } else { __ Move(r5, Handle(call_data)); } __ add(sp, sp, Operand(1 * kPointerSize)); __ stm(ia, sp, r5.bit() | r6.bit() | r7.bit()); __ sub(sp, sp, Operand(1 * kPointerSize)); // Set the number of arguments. __ mov(r0, Operand(argc + 4)); // Jump to the fast api call builtin (tail call). Handle code = Handle( Builtins::builtin(Builtins::FastHandleApiCall)); ParameterCount expected(0); __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, JUMP_FUNCTION); } class CallInterceptorCompiler BASE_EMBEDDED { public: CallInterceptorCompiler(StubCompiler* stub_compiler, const ParameterCount& arguments, Register name) : stub_compiler_(stub_compiler), arguments_(arguments), name_(name) {} void Compile(MacroAssembler* masm, JSObject* object, JSObject* holder, String* name, LookupResult* lookup, Register receiver, Register scratch1, Register scratch2, Register scratch3, Label* miss) { ASSERT(holder->HasNamedInterceptor()); ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ BranchOnSmi(receiver, miss); CallOptimization optimization(lookup); if (optimization.is_constant_call()) { CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3, holder, lookup, name, optimization, miss); } else { CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3, name, holder, miss); } } private: void CompileCacheable(MacroAssembler* masm, JSObject* object, Register receiver, Register scratch1, Register scratch2, Register scratch3, JSObject* interceptor_holder, LookupResult* lookup, String* name, const CallOptimization& optimization, Label* miss_label) { ASSERT(optimization.is_constant_call()); ASSERT(!lookup->holder()->IsGlobalObject()); int depth1 = kInvalidProtoDepth; int depth2 = kInvalidProtoDepth; bool can_do_fast_api_call = false; if (optimization.is_simple_api_call() && !lookup->holder()->IsGlobalObject()) { depth1 = optimization.GetPrototypeDepthOfExpectedType(object, interceptor_holder); if (depth1 == kInvalidProtoDepth) { depth2 = optimization.GetPrototypeDepthOfExpectedType(interceptor_holder, lookup->holder()); } can_do_fast_api_call = (depth1 != kInvalidProtoDepth) || (depth2 != kInvalidProtoDepth); } __ IncrementCounter(&Counters::call_const_interceptor, 1, scratch1, scratch2); if (can_do_fast_api_call) { __ IncrementCounter(&Counters::call_const_interceptor_fast_api, 1, scratch1, scratch2); ReserveSpaceForFastApiCall(masm, scratch1); } // Check that the maps from receiver to interceptor's holder // haven't changed and thus we can invoke interceptor. Label miss_cleanup; Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, depth1, miss); // Invoke an interceptor and if it provides a value, // branch to |regular_invoke|. Label regular_invoke; LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2, ®ular_invoke); // Interceptor returned nothing for this property. Try to use cached // constant function. // Check that the maps from interceptor's holder to constant function's // holder haven't changed and thus we can use cached constant function. if (interceptor_holder != lookup->holder()) { stub_compiler_->CheckPrototypes(interceptor_holder, receiver, lookup->holder(), scratch1, scratch2, scratch3, name, depth2, miss); } else { // CheckPrototypes has a side effect of fetching a 'holder' // for API (object which is instanceof for the signature). It's // safe to omit it here, as if present, it should be fetched // by the previous CheckPrototypes. ASSERT(depth2 == kInvalidProtoDepth); } // Invoke function. if (can_do_fast_api_call) { GenerateFastApiCall(masm, optimization, arguments_.immediate()); } else { __ InvokeFunction(optimization.constant_function(), arguments_, JUMP_FUNCTION); } // Deferred code for fast API call case---clean preallocated space. if (can_do_fast_api_call) { __ bind(&miss_cleanup); FreeSpaceForFastApiCall(masm); __ b(miss_label); } // Invoke a regular function. __ bind(®ular_invoke); if (can_do_fast_api_call) { FreeSpaceForFastApiCall(masm); } } void CompileRegular(MacroAssembler* masm, JSObject* object, Register receiver, Register scratch1, Register scratch2, Register scratch3, String* name, JSObject* interceptor_holder, Label* miss_label) { Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss_label); // Call a runtime function to load the interceptor property. __ EnterInternalFrame(); // Save the name_ register across the call. __ push(name_); PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder); __ CallExternalReference( ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptorForCall)), 5); // Restore the name_ register. __ pop(name_); __ LeaveInternalFrame(); } void LoadWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, JSObject* holder_obj, Register scratch, Label* interceptor_succeeded) { __ EnterInternalFrame(); __ Push(holder, name_); CompileCallLoadPropertyWithInterceptor(masm, receiver, holder, name_, holder_obj); __ pop(name_); // Restore the name. __ pop(receiver); // Restore the holder. __ LeaveInternalFrame(); // If interceptor returns no-result sentinel, call the constant function. __ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r0, scratch); __ b(ne, interceptor_succeeded); } StubCompiler* stub_compiler_; const ParameterCount& arguments_; Register name_; }; // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. static Object* GenerateCheckPropertyCell(MacroAssembler* masm, GlobalObject* global, String* name, Register scratch, Label* miss) { Object* probe = global->EnsurePropertyCell(name); if (probe->IsFailure()) return probe; JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe); ASSERT(cell->value()->IsTheHole()); __ mov(scratch, Operand(Handle(cell))); __ ldr(scratch, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch, ip); __ b(ne, miss); return cell; } #undef __ #define __ ACCESS_MASM(masm()) Register StubCompiler::CheckPrototypes(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch1, Register scratch2, String* name, int save_at_depth, Label* miss) { // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; if (save_at_depth == depth) { __ str(reg, MemOperand(sp)); } // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. JSObject* current = object; while (current != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); JSObject* prototype = JSObject::cast(current->GetPrototype()); if (!current->HasFastProperties() && !current->IsJSGlobalObject() && !current->IsJSGlobalProxy()) { if (!name->IsSymbol()) { Object* lookup_result = Heap::LookupSymbol(name); if (lookup_result->IsFailure()) { set_failure(Failure::cast(lookup_result)); return reg; } else { name = String::cast(lookup_result); } } ASSERT(current->property_dictionary()->FindEntry(name) == StringDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // from now the object is in holder_reg __ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { // Get the map of the current object. __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); __ cmp(scratch1, Operand(Handle(current->map()))); // Branch on the result of the map check. __ b(ne, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); // Restore scratch register to be the map of the object. In the // new space case below, we load the prototype from the map in // the scratch register. __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); } reg = holder_reg; // from now the object is in holder_reg if (Heap::InNewSpace(prototype)) { // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. __ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. __ mov(reg, Operand(Handle(prototype))); } } if (save_at_depth == depth) { __ str(reg, MemOperand(sp)); } // Go to the next object in the prototype chain. current = prototype; } // Check the holder map. __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); __ cmp(scratch1, Operand(Handle(current->map()))); __ b(ne, miss); // Log the check depth. LOG(IntEvent("check-maps-depth", depth + 1)); // Perform security check for access to the global object and return // the holder register. ASSERT(current == holder); ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // If we've skipped any global objects, it's not enough to verify // that their maps haven't changed. We also need to check that the // property cell for the property is still empty. current = object; while (current != holder) { if (current->IsGlobalObject()) { Object* cell = GenerateCheckPropertyCell(masm(), GlobalObject::cast(current), name, scratch1, miss); if (cell->IsFailure()) { set_failure(Failure::cast(cell)); return reg; } } current = JSObject::cast(current->GetPrototype()); } // Return the register containing the holder. return reg; } void StubCompiler::GenerateLoadField(JSObject* object, JSObject* holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, int index, String* name, Label* miss) { // Check that the receiver isn't a smi. __ tst(receiver, Operand(kSmiTagMask)); __ b(eq, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); GenerateFastPropertyLoad(masm(), r0, reg, holder, index); __ Ret(); } void StubCompiler::GenerateLoadConstant(JSObject* object, JSObject* holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, Object* value, String* name, Label* miss) { // Check that the receiver isn't a smi. __ tst(receiver, Operand(kSmiTagMask)); __ b(eq, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Return the constant value. __ mov(r0, Operand(Handle(value))); __ Ret(); } bool StubCompiler::GenerateLoadCallback(JSObject* object, JSObject* holder, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, AccessorInfo* callback, String* name, Label* miss, Failure** failure) { // Check that the receiver isn't a smi. __ tst(receiver, Operand(kSmiTagMask)); __ b(eq, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Push the arguments on the JS stack of the caller. __ push(receiver); // Receiver. __ push(reg); // Holder. __ mov(ip, Operand(Handle(callback))); // callback data __ ldr(reg, FieldMemOperand(ip, AccessorInfo::kDataOffset)); __ Push(ip, reg, name_reg); // Do tail-call to the runtime system. ExternalReference load_callback_property = ExternalReference(IC_Utility(IC::kLoadCallbackProperty)); __ TailCallExternalReference(load_callback_property, 5, 1); return true; } void StubCompiler::GenerateLoadInterceptor(JSObject* object, JSObject* interceptor_holder, LookupResult* lookup, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, String* name, Label* miss) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ BranchOnSmi(receiver, miss); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsProperty() && lookup->IsCacheable()) { if (lookup->type() == FIELD) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsAccessorInfo() && AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) { compile_followup_inline = true; } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1)); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. __ EnterInternalFrame(); if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { // CALLBACKS case needs a receiver to be passed into C++ callback. __ Push(receiver, holder_reg, name_reg); } else { __ Push(holder_reg, name_reg); } // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor(masm(), receiver, holder_reg, name_reg, interceptor_holder); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r0, scratch1); __ b(eq, &interceptor_failed); __ LeaveInternalFrame(); __ Ret(); __ bind(&interceptor_failed); __ pop(name_reg); __ pop(holder_reg); if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { __ pop(receiver); } __ LeaveInternalFrame(); // Check that the maps from interceptor's holder to lookup's holder // haven't changed. And load lookup's holder into |holder| register. if (interceptor_holder != lookup->holder()) { holder_reg = CheckPrototypes(interceptor_holder, holder_reg, lookup->holder(), scratch1, scratch2, scratch3, name, miss); } if (lookup->type() == FIELD) { // We found FIELD property in prototype chain of interceptor's holder. // Retrieve a field from field's holder. GenerateFastPropertyLoad(masm(), r0, holder_reg, lookup->holder(), lookup->GetFieldIndex()); __ Ret(); } else { // We found CALLBACKS property in prototype chain of interceptor's // holder. ASSERT(lookup->type() == CALLBACKS); ASSERT(lookup->GetCallbackObject()->IsAccessorInfo()); AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); ASSERT(callback != NULL); ASSERT(callback->getter() != NULL); // Tail call to runtime. // Important invariant in CALLBACKS case: the code above must be // structured to never clobber |receiver| register. __ Move(scratch2, Handle(callback)); // holder_reg is either receiver or scratch1. if (!receiver.is(holder_reg)) { ASSERT(scratch1.is(holder_reg)); __ Push(receiver, holder_reg, scratch2); __ ldr(scratch1, FieldMemOperand(holder_reg, AccessorInfo::kDataOffset)); __ Push(scratch1, name_reg); } else { __ push(receiver); __ ldr(scratch1, FieldMemOperand(holder_reg, AccessorInfo::kDataOffset)); __ Push(holder_reg, scratch2, scratch1, name_reg); } ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadCallbackProperty)); __ TailCallExternalReference(ref, 5, 1); } } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); PushInterceptorArguments(masm(), receiver, holder_reg, name_reg, interceptor_holder); ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptorForLoad)); __ TailCallExternalReference(ref, 5, 1); } } void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) { if (kind_ == Code::KEYED_CALL_IC) { __ cmp(r2, Operand(Handle(name))); __ b(ne, miss); } } Object* CallStubCompiler::GenerateMissBranch() { Object* obj = StubCache::ComputeCallMiss(arguments().immediate(), kind_); if (obj->IsFailure()) return obj; __ Jump(Handle(Code::cast(obj)), RelocInfo::CODE_TARGET); return obj; } Object* CallStubCompiler::CompileCallField(JSObject* object, JSObject* holder, int index, String* name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); const int argc = arguments().immediate(); // Get the receiver of the function from the stack into r0. __ ldr(r0, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &miss); // Do the right check and compute the holder register. Register reg = CheckPrototypes(object, r0, holder, r1, r3, r4, name, &miss); GenerateFastPropertyLoad(masm(), r1, reg, holder, index); GenerateCallFunction(masm(), object, arguments(), &miss); // Handle call cache miss. __ bind(&miss); Object* obj = GenerateMissBranch(); if (obj->IsFailure()) return obj; // Return the generated code. return GetCode(FIELD, name); } Object* CallStubCompiler::CompileArrayPushCall(Object* object, JSObject* holder, JSFunction* function, String* name, CheckType check) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray()) { return Heap::undefined_value(); } // TODO(639): faster implementation. ASSERT(check == RECEIVER_MAP_CHECK); Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack const int argc = arguments().immediate(); __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the maps haven't changed. CheckPrototypes(JSObject::cast(object), r1, holder, r3, r0, r4, name, &miss); if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc * kPointerSize)); } __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush), argc + 1, 1); // Handle call cache miss. __ bind(&miss); Object* obj = GenerateMissBranch(); if (obj->IsFailure()) return obj; // Return the generated code. return GetCode(function); } Object* CallStubCompiler::CompileArrayPopCall(Object* object, JSObject* holder, JSFunction* function, String* name, CheckType check) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray()) { return Heap::undefined_value(); } // TODO(642): faster implementation. ASSERT(check == RECEIVER_MAP_CHECK); Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack const int argc = arguments().immediate(); __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the maps haven't changed. CheckPrototypes(JSObject::cast(object), r1, holder, r3, r0, r4, name, &miss); if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc * kPointerSize)); } __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop), argc + 1, 1); // Handle call cache miss. __ bind(&miss); Object* obj = GenerateMissBranch(); if (obj->IsFailure()) return obj; // Return the generated code. return GetCode(function); } Object* CallStubCompiler::CompileStringCharCodeAtCall(Object* object, JSObject* holder, JSFunction* function, String* name, CheckType check) { // TODO(722): implement this. return Heap::undefined_value(); } Object* CallStubCompiler::CompileStringCharAtCall(Object* object, JSObject* holder, JSFunction* function, String* name, CheckType check) { // TODO(722): implement this. return Heap::undefined_value(); } Object* CallStubCompiler::CompileCallConstant(Object* object, JSObject* holder, JSFunction* function, String* name, CheckType check) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- SharedFunctionInfo* function_info = function->shared(); if (function_info->HasCustomCallGenerator()) { const int id = function_info->custom_call_generator_id(); Object* result = CompileCustomCall(id, object, holder, function, name, check); // undefined means bail out to regular compiler. if (!result->IsUndefined()) { return result; } } Label miss_in_smi_check; GenerateNameCheck(name, &miss_in_smi_check); // Get the receiver from the stack const int argc = arguments().immediate(); __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. if (check != NUMBER_CHECK) { __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss_in_smi_check); } // Make sure that it's okay not to patch the on stack receiver // unless we're doing a receiver map check. ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); CallOptimization optimization(function); int depth = kInvalidProtoDepth; Label miss; switch (check) { case RECEIVER_MAP_CHECK: __ IncrementCounter(&Counters::call_const, 1, r0, r3); if (optimization.is_simple_api_call() && !object->IsGlobalObject()) { depth = optimization.GetPrototypeDepthOfExpectedType( JSObject::cast(object), holder); } if (depth != kInvalidProtoDepth) { __ IncrementCounter(&Counters::call_const_fast_api, 1, r0, r3); ReserveSpaceForFastApiCall(masm(), r0); } // Check that the maps haven't changed. CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name, depth, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { ASSERT(depth == kInvalidProtoDepth); __ ldr(r3, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc * kPointerSize)); } break; case STRING_CHECK: if (!function->IsBuiltin()) { // Calling non-builtins with a value as receiver requires boxing. __ jmp(&miss); } else { // Check that the object is a two-byte string or a symbol. __ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE); __ b(hs, &miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::STRING_FUNCTION_INDEX, r0); CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3, r1, r4, name, &miss); } break; case NUMBER_CHECK: { if (!function->IsBuiltin()) { // Calling non-builtins with a value as receiver requires boxing. __ jmp(&miss); } else { Label fast; // Check that the object is a smi or a heap number. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &fast); __ CompareObjectType(r1, r0, r0, HEAP_NUMBER_TYPE); __ b(ne, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::NUMBER_FUNCTION_INDEX, r0); CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3, r1, r4, name, &miss); } break; } case BOOLEAN_CHECK: { if (!function->IsBuiltin()) { // Calling non-builtins with a value as receiver requires boxing. __ jmp(&miss); } else { Label fast; // Check that the object is a boolean. __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r1, ip); __ b(eq, &fast); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ cmp(r1, ip); __ b(ne, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::BOOLEAN_FUNCTION_INDEX, r0); CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3, r1, r4, name, &miss); } break; } default: UNREACHABLE(); } if (depth != kInvalidProtoDepth) { GenerateFastApiCall(masm(), optimization, argc); } else { __ InvokeFunction(function, arguments(), JUMP_FUNCTION); } // Handle call cache miss. __ bind(&miss); if (depth != kInvalidProtoDepth) { FreeSpaceForFastApiCall(masm()); } __ bind(&miss_in_smi_check); Object* obj = GenerateMissBranch(); if (obj->IsFailure()) return obj; // Return the generated code. return GetCode(function); } Object* CallStubCompiler::CompileCallInterceptor(JSObject* object, JSObject* holder, String* name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); LookupResult lookup; LookupPostInterceptor(holder, name, &lookup); // Get the receiver from the stack. __ ldr(r1, MemOperand(sp, argc * kPointerSize)); CallInterceptorCompiler compiler(this, arguments(), r2); compiler.Compile(masm(), object, holder, name, &lookup, r1, r3, r4, r0, &miss); // Move returned value, the function to call, to r1. __ mov(r1, r0); // Restore receiver. __ ldr(r0, MemOperand(sp, argc * kPointerSize)); GenerateCallFunction(masm(), object, arguments(), &miss); // Handle call cache miss. __ bind(&miss); Object* obj = GenerateMissBranch(); if (obj->IsFailure()) return obj; // Return the generated code. return GetCode(INTERCEPTOR, name); } Object* CallStubCompiler::CompileCallGlobal(JSObject* object, GlobalObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); // Get the receiver from the stack. __ ldr(r0, MemOperand(sp, argc * kPointerSize)); // If the object is the holder then we know that it's a global // object which can only happen for contextual calls. In this case, // the receiver cannot be a smi. if (object != holder) { __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &miss); } // Check that the maps haven't changed. CheckPrototypes(object, r0, holder, r3, r1, r4, name, &miss); // Get the value from the cell. __ mov(r3, Operand(Handle(cell))); __ ldr(r1, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset)); // Check that the cell contains the same function. if (Heap::InNewSpace(function)) { // We can't embed a pointer to a function in new space so we have // to verify that the shared function info is unchanged. This has // the nice side effect that multiple closures based on the same // function can all use this call IC. Before we load through the // function, we have to verify that it still is a function. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE); __ b(ne, &miss); // Check the shared function info. Make sure it hasn't changed. __ mov(r3, Operand(Handle(function->shared()))); __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ cmp(r4, r3); __ b(ne, &miss); } else { __ cmp(r1, Operand(Handle(function))); __ b(ne, &miss); } // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc * kPointerSize)); } // Setup the context (function already in r1). __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Jump to the cached code (tail call). __ IncrementCounter(&Counters::call_global_inline, 1, r3, r4); ASSERT(function->is_compiled()); Handle code(function->code()); ParameterCount expected(function->shared()->formal_parameter_count()); __ InvokeCode(code, expected, arguments(), RelocInfo::CODE_TARGET, JUMP_FUNCTION); // Handle call cache miss. __ bind(&miss); __ IncrementCounter(&Counters::call_global_inline_miss, 1, r1, r3); Object* obj = GenerateMissBranch(); if (obj->IsFailure()) return obj; // Return the generated code. return GetCode(NORMAL, name); } Object* StoreStubCompiler::CompileStoreField(JSObject* object, int index, Map* transition, String* name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateStoreField(masm(), object, index, transition, r1, r2, r3, &miss); __ bind(&miss); Handle ic(Builtins::builtin(Builtins::StoreIC_Miss)); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name); } Object* StoreStubCompiler::CompileStoreCallback(JSObject* object, AccessorInfo* callback, String* name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the object isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the map of the object hasn't changed. __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r3, Operand(Handle(object->map()))); __ b(ne, &miss); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(r1, r3, &miss); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); __ push(r1); // receiver __ mov(ip, Operand(Handle(callback))); // callback info __ Push(ip, r2, r0); // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty)); __ TailCallExternalReference(store_callback_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic(Builtins::builtin(Builtins::StoreIC_Miss)); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(CALLBACKS, name); } Object* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver, String* name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the object isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the map of the object hasn't changed. __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r3, Operand(Handle(receiver->map()))); __ b(ne, &miss); // Perform global security token check if needed. if (receiver->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(r1, r3, &miss); } // Stub is never generated for non-global objects that require access // checks. ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded()); __ Push(r1, r2, r0); // Receiver, name, value. // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty)); __ TailCallExternalReference(store_ic_property, 3, 1); // Handle store cache miss. __ bind(&miss); Handle ic(Builtins::builtin(Builtins::StoreIC_Miss)); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(INTERCEPTOR, name); } Object* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object, JSGlobalPropertyCell* cell, String* name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r3, Operand(Handle(object->map()))); __ b(ne, &miss); // Store the value in the cell. __ mov(r2, Operand(Handle(cell))); __ str(r0, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset)); __ IncrementCounter(&Counters::named_store_global_inline, 1, r4, r3); __ Ret(); // Handle store cache miss. __ bind(&miss); __ IncrementCounter(&Counters::named_store_global_inline_miss, 1, r4, r3); Handle ic(Builtins::builtin(Builtins::StoreIC_Miss)); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, name); } Object* LoadStubCompiler::CompileLoadNonexistent(String* name, JSObject* object, JSObject* last) { // ----------- S t a t e ------------- // -- r0 : receiver // -- lr : return address // ----------------------------------- Label miss; // Check that receiver is not a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &miss); // Check the maps of the full prototype chain. CheckPrototypes(object, r0, last, r3, r1, r4, name, &miss); // If the last object in the prototype chain is a global object, // check that the global property cell is empty. if (last->IsGlobalObject()) { Object* cell = GenerateCheckPropertyCell(masm(), GlobalObject::cast(last), name, r1, &miss); if (cell->IsFailure()) return cell; } // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ Ret(); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NONEXISTENT, Heap::empty_string()); } Object* LoadStubCompiler::CompileLoadField(JSObject* object, JSObject* holder, int index, String* name) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadField(object, holder, r0, r3, r1, r4, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(FIELD, name); } Object* LoadStubCompiler::CompileLoadCallback(String* name, JSObject* object, JSObject* holder, AccessorInfo* callback) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; Failure* failure = Failure::InternalError(); bool success = GenerateLoadCallback(object, holder, r0, r2, r3, r1, r4, callback, name, &miss, &failure); if (!success) return failure; __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Object* LoadStubCompiler::CompileLoadConstant(JSObject* object, JSObject* holder, Object* value, String* name) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadConstant(object, holder, r0, r3, r1, r4, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } Object* LoadStubCompiler::CompileLoadInterceptor(JSObject* object, JSObject* holder, String* name) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; LookupResult lookup; LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(object, holder, &lookup, r0, r2, r3, r1, r4, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(INTERCEPTOR, name); } Object* LoadStubCompiler::CompileLoadGlobal(JSObject* object, GlobalObject* holder, JSGlobalPropertyCell* cell, String* name, bool is_dont_delete) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // If the object is the holder then we know that it's a global // object which can only happen for contextual calls. In this case, // the receiver cannot be a smi. if (object != holder) { __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &miss); } // Check that the map of the global has not changed. CheckPrototypes(object, r0, holder, r3, r4, r1, name, &miss); // Get the value from the cell. __ mov(r3, Operand(Handle(cell))); __ ldr(r4, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r4, ip); __ b(eq, &miss); } __ mov(r0, r4); __ IncrementCounter(&Counters::named_load_global_inline, 1, r1, r3); __ Ret(); __ bind(&miss); __ IncrementCounter(&Counters::named_load_global_inline_miss, 1, r1, r3); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NORMAL, name); } Object* KeyedLoadStubCompiler::CompileLoadField(String* name, JSObject* receiver, JSObject* holder, int index) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(Handle(name))); __ b(ne, &miss); GenerateLoadField(receiver, holder, r1, r2, r3, r4, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(FIELD, name); } Object* KeyedLoadStubCompiler::CompileLoadCallback(String* name, JSObject* receiver, JSObject* holder, AccessorInfo* callback) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(Handle(name))); __ b(ne, &miss); Failure* failure = Failure::InternalError(); bool success = GenerateLoadCallback(receiver, holder, r1, r0, r2, r3, r4, callback, name, &miss, &failure); if (!success) return failure; __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Object* KeyedLoadStubCompiler::CompileLoadConstant(String* name, JSObject* receiver, JSObject* holder, Object* value) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(Handle(name))); __ b(ne, &miss); GenerateLoadConstant(receiver, holder, r1, r2, r3, r4, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } Object* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver, JSObject* holder, String* name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(Handle(name))); __ b(ne, &miss); LookupResult lookup; LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(receiver, holder, &lookup, r1, r0, r2, r3, r4, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(INTERCEPTOR, name); } Object* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(Handle(name))); __ b(ne, &miss); GenerateLoadArrayLength(masm(), r1, r2, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Object* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; __ IncrementCounter(&Counters::keyed_load_string_length, 1, r1, r3); // Check the key is the cached one. __ cmp(r0, Operand(Handle(name))); __ b(ne, &miss); GenerateLoadStringLength(masm(), r1, r2, r3, &miss); __ bind(&miss); __ DecrementCounter(&Counters::keyed_load_string_length, 1, r1, r3); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } // TODO(1224671): implement the fast case. Object* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Object* KeyedStoreStubCompiler::CompileStoreField(JSObject* object, int index, Map* transition, String* name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // ----------------------------------- Label miss; __ IncrementCounter(&Counters::keyed_store_field, 1, r3, r4); // Check that the name has not changed. __ cmp(r1, Operand(Handle(name))); __ b(ne, &miss); // r3 is used as scratch register. r1 and r2 keep their values if a jump to // the miss label is generated. GenerateStoreField(masm(), object, index, transition, r2, r1, r3, &miss); __ bind(&miss); __ DecrementCounter(&Counters::keyed_store_field, 1, r3, r4); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss)); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name); } Object* ConstructStubCompiler::CompileConstructStub( SharedFunctionInfo* shared) { // ----------- S t a t e ------------- // -- r0 : argc // -- r1 : constructor // -- lr : return address // -- [sp] : last argument // ----------------------------------- Label generic_stub_call; // Use r7 for holding undefined which is used in several places below. __ LoadRoot(r7, Heap::kUndefinedValueRootIndex); #ifdef ENABLE_DEBUGGER_SUPPORT // Check to see whether there are any break points in the function code. If // there are jump to the generic constructor stub which calls the actual // code for the function thereby hitting the break points. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kDebugInfoOffset)); __ cmp(r2, r7); __ b(ne, &generic_stub_call); #endif // Load the initial map and verify that it is in fact a map. // r1: constructor function // r7: undefined __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ tst(r2, Operand(kSmiTagMask)); __ b(eq, &generic_stub_call); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ b(ne, &generic_stub_call); #ifdef DEBUG // Cannot construct functions this way. // r0: argc // r1: constructor function // r2: initial map // r7: undefined __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE); __ Check(ne, "Function constructed by construct stub."); #endif // Now allocate the JSObject in new space. // r0: argc // r1: constructor function // r2: initial map // r7: undefined __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset)); __ AllocateInNewSpace(r3, r4, r5, r6, &generic_stub_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to initial // map and properties and elements are set to empty fixed array. // r0: argc // r1: constructor function // r2: initial map // r3: object size (in words) // r4: JSObject (not tagged) // r7: undefined __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ mov(r5, r4); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); // Calculate the location of the first argument. The stack contains only the // argc arguments. __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); // Fill all the in-object properties with undefined. // r0: argc // r1: first argument // r3: object size (in words) // r4: JSObject (not tagged) // r5: First in-object property of JSObject (not tagged) // r7: undefined // Fill the initialized properties with a constant value or a passed argument // depending on the this.x = ...; assignment in the function. for (int i = 0; i < shared->this_property_assignments_count(); i++) { if (shared->IsThisPropertyAssignmentArgument(i)) { Label not_passed, next; // Check if the argument assigned to the property is actually passed. int arg_number = shared->GetThisPropertyAssignmentArgument(i); __ cmp(r0, Operand(arg_number)); __ b(le, ¬_passed); // Argument passed - find it on the stack. __ ldr(r2, MemOperand(r1, (arg_number + 1) * -kPointerSize)); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); __ b(&next); __ bind(¬_passed); // Set the property to undefined. __ str(r7, MemOperand(r5, kPointerSize, PostIndex)); __ bind(&next); } else { // Set the property to the constant value. Handle constant(shared->GetThisPropertyAssignmentConstant(i)); __ mov(r2, Operand(constant)); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); } } // Fill the unused in-object property fields with undefined. for (int i = shared->this_property_assignments_count(); i < shared->CalculateInObjectProperties(); i++) { __ str(r7, MemOperand(r5, kPointerSize, PostIndex)); } // r0: argc // r4: JSObject (not tagged) // Move argc to r1 and the JSObject to return to r0 and tag it. __ mov(r1, r0); __ mov(r0, r4); __ orr(r0, r0, Operand(kHeapObjectTag)); // r0: JSObject // r1: argc // Remove caller arguments and receiver from the stack and return. __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2)); __ add(sp, sp, Operand(kPointerSize)); __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2); __ IncrementCounter(&Counters::constructed_objects_stub, 1, r1, r2); __ Jump(lr); // Jump to the generic stub in case the specialized code cannot handle the // construction. __ bind(&generic_stub_call); Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric); Handle generic_construct_stub(code); __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM