# models a set of identical dice, that can be "rolled" and combined into a simple integer result. The # dice are identical in number of sides, and any re-roll or mapping rules that apply to them class GamesDice::Bunch # attributes is a hash of symbols used to set attributes of the new Bunch object. Each # attribute is explained in more detail in its own section. The following hash keys and values # are mandatory: # :ndice # :sides # The following are optional, and modify the behaviour of the Bunch object # :name # :prng # :rerolls # :maps # :keep_mode # :keep_number # Any other keys provided to the constructor are ignored def initialize( attributes ) @name = attributes[:name].to_s @ndice = Integer(attributes[:ndice]) raise ArgumentError, ":ndice must be 1 or more, but got #{@ndice}" unless @ndice > 0 @sides = Integer(attributes[:sides]) raise ArgumentError, ":sides must be 1 or more, but got #{@sides}" unless @sides > 0 options = Hash.new if attributes[:prng] # We deliberately do not clone this object, it will often be intended that it is shared prng = attributes[:prng] raise ":prng does not support the rand() method" if ! prng.respond_to?(:rand) end needs_complex_die = false if attributes[:rerolls] needs_complex_die = true options[:rerolls] = attributes[:rerolls].clone end if attributes[:maps] needs_complex_die = true options[:maps] = attributes[:maps].clone end if needs_complex_die options[:prng] = prng @single_die = GamesDice::ComplexDie.new( @sides, options ) else @single_die = GamesDice::Die.new( @sides, prng ) end case attributes[:keep_mode] when nil then @keep_mode = nil when :keep_best then @keep_mode = :keep_best @keep_number = Integer(attributes[:keep_number] || 1) when :keep_worst then @keep_mode = :keep_worst @keep_number = Integer(attributes[:keep_number] || 1) else raise ArgumentError, ":keep_mode can be nil, :keep_best or :keep_worst. Got #{attributes[:keep_mode].inspect}" end end # the string name as provided to the constructor, it will appear in explain_result attr_reader :name # integer number of dice to roll (initially, before re-rolls etc) attr_reader :ndice # individual die that will be rolled, #ndice times, an GamesDice::Die or GamesDice::ComplexDie object. attr_reader :single_die # may be nil, :keep_best or :keep_worst attr_reader :keep_mode # number of "best" or "worst" results to select when #keep_mode is not nil. This attribute is # 1 by default if :keep_mode is supplied, or nil by default otherwise. attr_reader :keep_number # after calling #roll, this is set to the final integer value from using the dice as specified attr_reader :result # either nil, or an array of GamesDice::RerollRule objects that are assessed on each roll of #single_die # Reroll types :reroll_new_die and :reroll_new_keeper do not affect the #single_die, but are instead # assessed in this container object def rerolls @single_die.rerolls end # either nil, or an array of GamesDice::MapRule objects that are assessed on each result of #single_die (after rerolls are completed) def maps @single_die.rerolls end # after calling #roll, this is an array of GamesDice::DieResult objects, one from each #single_die rolled, # allowing inspection of how the result was obtained. def result_details return nil unless @raw_result_details @raw_result_details.map { |r| r.is_a?(Fixnum) ? GamesDice::DieResult.new(r) : r } end # minimum possible integer value def min n = @keep_mode ? [@keep_number,@ndice].min : @ndice return n * @single_die.min end # maximum possible integer value def max n = @keep_mode ? [@keep_number,@ndice].min : @ndice return n * @single_die.max end # returns a hash of value (Integer) => probability (Float) pairs. Warning: Some dice schemes # cause this method to take a long time, and use a lot of memory. The worst-case offenders are # dice schemes with a #keep_mode of :keep_best or :keep_worst. def probabilities return @probabilities if @probabilities @probabilities_complete = true # TODO: It is possible to optimise this slightly by combining already-calculated values # Adding dice is same as multiplying probability sets for that number of dice # Combine(probabililities_3_dice, probabililities_single_die) == Combine(probabililities_2_dice, probabililities_2_dice) # It is possible to minimise the total number of multiplications, gaining about 30% efficiency, with careful choices single_roll_probs = @single_die.probabilities.to_h if @keep_mode && @ndice > @keep_number preadd_probs = {} single_roll_probs.each { |k,v| preadd_probs[k.to_s] = v } (@keep_number-1).times do preadd_probs = prob_accumulate_combinations preadd_probs, single_roll_probs end extra_dice = @ndice - @keep_number extra_dice.times do preadd_probs = prob_accumulate_combinations preadd_probs, single_roll_probs, @keep_mode end combined_probs = {} preadd_probs.each do |k,v| total = k.split(';').map { |s| s.to_i }.inject(:+) combined_probs[total] ||= 0.0 combined_probs[total] += v end else combined_probs = single_roll_probs.clone (@ndice-1).times do combined_probs = prob_accumulate combined_probs, single_roll_probs end end @probabilities_min, @probabilities_max = combined_probs.keys.minmax @probabilities = GamesDice::Probabilities.new( combined_probs ) end # simulate dice roll according to spec. Returns integer final total, and also stores it in #result def roll @result = 0 @raw_result_details = [] @ndice.times do @result += @single_die.roll @raw_result_details << @single_die.result end if ! @keep_mode return @result end use_dice = if @keep_mode && @keep_number < @ndice case @keep_mode when :keep_best then @raw_result_details.sort[-@keep_number..-1] when :keep_worst then @raw_result_details.sort[0..(@keep_number-1)] end else @raw_result_details end @result = use_dice.inject(0) { |so_far, die_result| so_far + die_result } end def explain_result return nil unless @result explanation = '' # With #keep_mode, we may need to show unused and used dice separately used_dice = result_details unused_dice = [] # Pick highest numbers and their associated details if @keep_mode && @keep_number < @ndice full_dice = result_details.sort_by { |die_result| die_result.total } case @keep_mode when :keep_best then used_dice = full_dice[-@keep_number..-1] unused_dice = full_dice[0..full_dice.length-1-@keep_number] when :keep_worst then used_dice = full_dice[0..(@keep_number-1)] unused_dice = full_dice[@keep_number..(full_dice.length-1)] end end # Show unused dice (if any) if @keep_mode || @single_die.maps explanation += result_details.map do |die_result| die_result.explain_value end.join(', ') if @keep_mode separator = @single_die.maps ? ', ' : ' + ' explanation += ". Keep: " + used_dice.map do |die_result| die_result.explain_total end.join( separator ) end if @single_die.maps explanation += ". Successes: #{@result}" end explanation += " = #{@result}" if @keep_mode && ! @single_die.maps && @keep_number > 1 else explanation += used_dice.map do |die_result| die_result.explain_value end.join(' + ') explanation += " = #{@result}" if @ndice > 1 end explanation end private # combines two sets of probabilities where the end result is the first set of keys plus # the second set of keys, at the associated probailities of the values def prob_accumulate first_probs, second_probs accumulator = Hash.new first_probs.each do |v1,p1| second_probs.each do |v2,p2| v3 = v1 + v2 p3 = p1 * p2 accumulator[v3] ||= 0.0 accumulator[v3] += p3 end end accumulator end # combines two sets of probabilities, as above, except tracking unique permutations def prob_accumulate_combinations so_far, die_probs, keep_rule = nil accumulator = Hash.new so_far.each do |sig,p1| combo = sig.split(';').map { |s| s.to_i } case keep_rule when nil then die_probs.each do |v2,p2| new_sig = (combo + [v2]).sort.join(';') p3 = p1 * p2 accumulator[new_sig] ||= 0.0 accumulator[new_sig] += p3 end when :keep_best then need_more_than = combo.min die_probs.each do |v2,p2| if v2 > need_more_than new_sig = (combo + [v2]).sort[1..combo.size].join(';') else new_sig = sig end p3 = p1 * p2 accumulator[new_sig] ||= 0.0 accumulator[new_sig] += p3 end when :keep_worst then need_less_than = combo.max die_probs.each do |v2,p2| if v2 < need_less_than new_sig = (combo + [v2]).sort[0..(combo.size-1)].join(';') else new_sig = sig end p3 = p1 * p2 accumulator[new_sig] ||= 0.0 accumulator[new_sig] += p3 end end end accumulator end # Generates all sets of [throw_away,may_keep_exactly,keep_preferentially,combinations] that meet # criteria for correct total number of dice and keep dice. These then need to be assessed for every # die value by the caller to get a full set of probabilities def generate_item_counts total_dice, keep_dice # Constraints are: # may_keep_exactly must be at least 1, and at most is all the dice # keep_preferentially plus may_keep_exactly must be >= keep_dice, but keep_preferentially < keep dice # sum of all three always == total_dice item_counts = [] (1..total_dice).each do |may_keep_exactly| min_kp = [keep_dice - may_keep_exactly, 0].max max_kp = [keep_dice - 1, total_dice - may_keep_exactly].min (min_kp..max_kp).each do |keep_preferentially| counts = [ total_dice - may_keep_exactly - keep_preferentially, may_keep_exactly, keep_preferentially ] counts << combinations(counts) item_counts << counts end end item_counts end # How many unique ways can a set of items, some of which are identical, be arranged? def combinations item_counts item_counts = item_counts.map { |i| Integer(i) }.select { |i| i > 0 } total_items = item_counts.inject(:+) numerator = 1.upto(total_items).inject(:*) denominator = item_counts.map { |i| 1.upto(i).inject(:*) }.inject(:*) numerator / denominator end end # class Bunch