Sha256: 432ad9bb32d26d6d52146ca69217172a25caf783759f98bea8eed27f842cb5fa
Contents?: true
Size: 1.58 KB
Versions: 1
Compression:
Stored size: 1.58 KB
Contents
require "ruby-spacy" require "terminal-table" nlp = Spacy::Language.new("en_core_web_lg") tokyo = nlp.get_lexeme("Tokyo") japan = nlp.get_lexeme("Japan") france = nlp.get_lexeme("France") query = tokyo.vector - japan.vector + france.vector headings = ["rank", "text", "score"] rows = [] results = nlp.most_similar(query, 20) results.each_with_index do |lexeme, i| index = (i + 1).to_s rows << [index, lexeme.text, lexeme.score] end table = Terminal::Table.new rows: rows, headings: headings puts table # +------+-------------+--------------------+ # | rank | text | score | # +------+-------------+--------------------+ # | 1 | FRANCE | 0.8346999883651733 | # | 2 | France | 0.8346999883651733 | # | 3 | france | 0.8346999883651733 | # | 4 | PARIS | 0.7703999876976013 | # | 5 | paris | 0.7703999876976013 | # | 6 | Paris | 0.7703999876976013 | # | 7 | TOULOUSE | 0.6381999850273132 | # | 8 | Toulouse | 0.6381999850273132 | # | 9 | toulouse | 0.6381999850273132 | # | 10 | marseille | 0.6370999813079834 | # | 11 | Marseille | 0.6370999813079834 | # | 12 | MARSEILLE | 0.6370999813079834 | # | 13 | Bordeaux | 0.6096000075340271 | # | 14 | BORDEAUX | 0.6096000075340271 | # | 15 | bordeaux | 0.6096000075340271 | # | 16 | prague | 0.6075000166893005 | # | 17 | PRAGUE | 0.6075000166893005 | # | 18 | Prague | 0.6075000166893005 | # | 19 | SWITZERLAND | 0.6068000197410583 | # | 20 | switzerland | 0.6068000197410583 | # +------+-------------+--------------------+
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
ruby-spacy-0.1.4.1 | examples/get_started/most_similar.rb |