# open the class to add methods to apply HVAC efficiency standards class OpenStudio::Model::SubSurface # Determine the component infiltration rate for this surface # # @param type [String] choices are 'baseline' and 'advanced' # @return [Double] infiltration rate # @units cubic meters per second (m^3/s) def component_infiltration_rate(type) comp_infil_rate_m3_per_s = 0.0 # Define the envelope component infiltration rates component_infil_rates_cfm_per_ft2 = { 'baseline' => { 'opaque_door' => 0.40, 'loading_dock_door' => 0.40, 'swinging_or_revolving_glass_door' => 1.0, 'vestibule' => 1.0, 'sliding_glass_door' => 0.40, 'window' => 0.40, 'skylight' => 0.40 }, 'advanced' => { 'opaque_door' => 0.20, 'loading_dock_door' => 0.20, 'swinging_or_revolving_glass_door' => 1.0, 'vestibule' => 1.0, 'sliding_glass_door' => 0.20, 'window' => 0.20, 'skylight' => 0.20 } } boundary_condition = outsideBoundaryCondition # Skip non-outdoor surfaces return comp_infil_rate_m3_per_s unless outsideBoundaryCondition == 'Outdoors' || outsideBoundaryCondition == 'Ground' # Per area infiltration rate for this surface surface_type = subSurfaceType infil_rate_cfm_per_ft2 = nil case boundary_condition when 'Outdoors' case surface_type when 'Door' infil_rate_cfm_per_ft2 = component_infil_rates_cfm_per_ft2[type]['opaque_door'] when 'OverheadDoor' infil_rate_cfm_per_ft2 = component_infil_rates_cfm_per_ft2[type]['loading_dock_door'] when 'GlassDoor' OpenStudio.logFree(OpenStudio::Info, 'openstudio.Standards.Model', "For #{name}, assuming swinging_or_revolving_glass_door for infiltration calculation.") infil_rate_cfm_per_ft2 = component_infil_rates_cfm_per_ft2[type]['swinging_or_revolving_glass_door'] when 'FixedWindow', 'OperableWindow' infil_rate_cfm_per_ft2 = component_infil_rates_cfm_per_ft2[type]['window'] when 'Skylight', 'TubularDaylightDome', 'TubularDaylightDiffuser' infil_rate_cfm_per_ft2 = component_infil_rates_cfm_per_ft2[type]['skylight'] end end if infil_rate_cfm_per_ft2.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.Standards.Model', "For #{name}, could not determine surface type for infiltration, will not be included in calculation.") return comp_infil_rate_m3_per_s end # Area of the surface area_m2 = netArea area_ft2 = OpenStudio.convert(area_m2, 'm^2', 'ft^2').get # Rate for this surface comp_infil_rate_cfm = area_ft2 * infil_rate_cfm_per_ft2 comp_infil_rate_m3_per_s = OpenStudio.convert(comp_infil_rate_cfm, 'cfm', 'm^3/s').get # OpenStudio::logFree(OpenStudio::Debug, "openstudio.Standards.Model", "......#{self.name}, infil = #{comp_infil_rate_cfm.round(2)} cfm @ rate = #{infil_rate_cfm_per_ft2} cfm/ft2, area = #{area_ft2.round} ft2.") return comp_infil_rate_m3_per_s end # Reduce the area of the subsurface by shrinking it # toward the centroid. # @author Julien Marrec # # @param percent_reduction [Double] the fractional amount # to reduce the area. def reduce_area_by_percent_by_shrinking_toward_centroid(percent_reduction) mult = 1 - percent_reduction scale_factor = mult**0.5 # Get the centroid (Point3d) g = centroid # Create an array to collect the new vertices new_vertices = [] # Loop on vertices (Point3ds) vertices.each do |vertex| # Point3d - Point3d = Vector3d # Vector from centroid to vertex (GA, GB, GC, etc) centroid_vector = vertex - g # Resize the vector (done in place) according to scale_factor centroid_vector.setLength(centroid_vector.length * scale_factor) # Move the vertex toward the centroid vertex = g + centroid_vector new_vertices << vertex end # Assign the new vertices to the self setVertices(new_vertices) end # Reduce the area of the subsurface by raising the # sill height. # # @param percent_reduction [Double] the fractional amount # to reduce the area. def reduce_area_by_percent_by_raising_sill(percent_reduction) mult = 1 - percent_reduction # Calculate the original area area_original = netArea # Find the min and max z values min_z_val = 99999 max_z_val = -99999 vertices.each do |vertex| # Min z value if vertex.z < min_z_val min_z_val = vertex.z end # Max z value if vertex.z > max_z_val max_z_val = vertex.z end end # Calculate the window height height = max_z_val - min_z_val # Calculate the new sill height new_sill_z = max_z_val - (height * mult) # Reset the z value of the lowest points new_vertices = [] vertices.each do |vertex| new_x = vertex.x new_y = vertex.y new_z = vertex.z if new_z == min_z_val new_z = new_sill_z end new_vertices << OpenStudio::Point3d.new(new_x, new_y, new_z) end # Reset the vertices setVertices(new_vertices) return true end # Determine if the sub surface is a vertical rectangle, # meaning a rectangle where the bottom is parallel to the ground. def vertical_rectangle? # Get the vertices once verts = vertices # Check for 4 vertices return false unless verts.size == 4 # Check if the 2 lowest z-values # are the same z_vals = [] verts.each do |vertex| z_vals << vertex.z end z_vals = z_vals.sort return false unless z_vals[0] = z_vals[1] # Check if the diagonals are equal length diag_a = verts[0] - verts[2] diag_b = verts[1] - verts[3] return false unless diag_a.length == diag_b.length # If here, we have a rectangle return true end end