# frozen_string_literal: true require 'rumale/values' require 'rumale/base/base_estimator' require 'rumale/base/regressor' require 'rumale/tree/decision_tree_regressor' module Rumale module Ensemble # AdaBoostRegressor is a class that implements random forest for regression. # This class uses decision tree for a weak learner. # # @example # estimator = # Rumale::Ensemble::AdaBoostRegressor.new( # n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # *Reference* # - D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression," Neural Computation 18 (7), pp. 1678--1710, 2006. # class AdaBoostRegressor include Base::BaseEstimator include Base::Regressor # Return the set of estimators. # @return [Array] attr_reader :estimators # Return the weight for each weak learner. # @return [Numo::DFloat] (size: n_estimates) attr_reader :estimator_weights # Return the importance for each feature. # @return [Numo::DFloat] (size: n_features) attr_reader :feature_importances # Return the random generator for random selection of feature index. # @return [Random] attr_reader :rng # Create a new regressor with random forest. # # @param n_estimators [Integer] The numeber of decision trees for contructing AdaBoost regressor. # @param threshold [Float] The threshold for delimiting correct and incorrect predictions. That is constrained to [0, 1] # @param exponent [Float] The exponent for the weight of each weak learner. # @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'. # @param max_depth [Integer] The maximum depth of the tree. # If nil is given, decision tree grows without concern for depth. # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree. # If nil is given, number of leaves is not limited. # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, max_features: max_features, random_seed: random_seed) check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf, threshold: threshold, exponent: exponent) check_params_string(criterion: criterion) check_params_positive(n_estimators: n_estimators, threshold: threshold, exponent: exponent, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features) @params = {} @params[:n_estimators] = n_estimators @params[:threshold] = threshold @params[:exponent] = exponent @params[:criterion] = criterion @params[:max_depth] = max_depth @params[:max_leaf_nodes] = max_leaf_nodes @params[:min_samples_leaf] = min_samples_leaf @params[:max_features] = max_features @params[:random_seed] = random_seed @params[:random_seed] ||= srand @estimators = nil @feature_importances = nil @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model. # @return [AdaBoostRegressor] The learned regressor itself. def fit(x, y) # rubocop:disable Metrics/AbcSize x = check_convert_sample_array(x) y = check_convert_tvalue_array(y) check_sample_tvalue_size(x, y) # Check target values raise ArgumentError, 'Expect target value vector to be 1-D arrray' unless y.shape.size == 1 # Initialize some variables. n_samples, n_features = x.shape @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer) @params[:max_features] = [[1, @params[:max_features]].max, n_features].min observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples) @estimators = [] @estimator_weights = [] @feature_importances = Numo::DFloat.zeros(n_features) sub_rng = @rng.dup # Construct forest. @params[:n_estimators].times do |_t| # Fit weak learner. ids = Rumale::Utils.choice_ids(n_samples, observation_weights, sub_rng) tree = Tree::DecisionTreeRegressor.new( criterion: @params[:criterion], max_depth: @params[:max_depth], max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf], max_features: @params[:max_features], random_seed: sub_rng.rand(Rumale::Values.int_max) ) tree.fit(x[ids, true], y[ids]) p = tree.predict(x) # Calculate errors. abs_err = ((p - y) / y).abs err = observation_weights[abs_err.gt(@params[:threshold])].sum break if err <= 0.0 # Calculate weight. beta = err**@params[:exponent] weight = Math.log(1.fdiv(beta)) # Store model. @estimators.push(tree) @estimator_weights.push(weight) @feature_importances += weight * tree.feature_importances # Update observation weights. update = Numo::DFloat.ones(n_samples) update[abs_err.le(@params[:threshold])] = beta observation_weights *= update observation_weights = observation_weights.clip(1.0e-15, nil) sum_observation_weights = observation_weights.sum break if sum_observation_weights.zero? observation_weights /= sum_observation_weights end @estimator_weights = Numo::DFloat.asarray(@estimator_weights) @feature_importances /= @estimator_weights.sum self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample. def predict(x) x = check_convert_sample_array(x) n_samples, = x.shape predictions = Numo::DFloat.zeros(n_samples) @estimators.size.times do |t| predictions += @estimator_weights[t] * @estimators[t].predict(x) end sum_weight = @estimator_weights.sum predictions / sum_weight end end end end